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Chapter

Probabilistic Modeling of Failure
Alireda Aljaroudi

Abstract

Failure of a system or a component of a system is and has been a major concern
to systems’ operators and owners. Failure could be traced back to different causes
and may take different forms and shapes. It may result from software malfunction,
hardware degraded performance, human error, sabotage, environmental as well as
other external factors. There are various techniques found in the literature that can
assist in the analysis of failure. These techniques comprise deterministic and prob-
abilistic techniques. Deterministic techniques ignore the variability and uncer-
tainties of the variables in the analysis which may lead to unsatisfactory and
inaccurate results. While probabilistic techniques produce accurate and an all-
inclusive result because they incorporate the variabilities and uncertainties in the
analysis. The focus of this chapter is to present commonly used probabilistic failure
analysis techniques and their mathematical derivations. Examples to enhance the
understanding of the concept of failure analysis are also presented.

Keywords: failure analysis, probabilistic methods in engineering, reliability
engineering

1. Introduction

Traditionally, failure analysis is conducted using deterministic techniques to
assess the operability and integrity of industrial systems. These techniques lack the
ability to report or predict the probabilistic nature of the systems’ behavior. More-
over, they ignore the probabilistic and random nature of the external factors that
have direct impact on the performance of the systems. Implementing these tech-
niques may produce inadequate assessment and eventually, may lead to wrong
decisions concerning the integrity and reliability of the evaluated systems. To make
an informed and reliable decision about the reliability and operability of such
systems, probabilistic failure analysis should be adopted as an alternative analysis
technique. This technique should be made as an integral part of the decision process
as well as be a part of the overall organization’s risk control.

This chapter presents techniques that assist in the analysis of failure using
engineering probabilistic methods. They include simulation as well as analytical
methods. Simulation methods can be conducted using Monte Carlo simulation
technique. Two different Monte Carlo simulation approaches are presented in this
chapter. These are, the counting approach and sample statistics approach. The main
drawback with simulation is that it takes great deal of time to perform and may
require an extensive processing power. However, it is an essential step in the
analysis to validate the results obtained by the analytical methods.

Some of the analytical methods include first order reliability method (FORM)
and second order reliability method (SORM). FORM involves two approaches to
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calculate probability of failure, these are first order and second moment (FOSM)
and advanced FOSM.

The focus of this chapter will be only on the FORM with the assumption that all
random variables are uncorrelated. Analysis that require the use of FORM for
correlated random variables is beyond the scope of this chapter. Likewise, analysis
requiring the application of SORM to analyze limit state functions involving second
order representation is beyond the scope of this chapter.

2. Failure modeling

Failure can be defined as the inability of industrial systems or subsystems either
partially or totally to satisfy operational requirements as set forth by design specifi-
cations. Failure of a system could be partial or complete; in either case the conse-
quences of failure may result in adverse consequences. Interruption of services,
degraded performance, system shutdown, environmental damage and customers’
dissatisfaction are some of the consequences. Such consequences may lead to finan-
cial losses, liabilities and destroyed image of the operating company. As an example,
if failure involves leak detection system to detect oil and gas leakage from subsea oil
and gas pipelines, consequences could be so severe. Pollution of the ocean, damage
to the fishery and tourism industries are some of the major consequences.

The system fails when the imposed demand or load on the system exceeds its
capacity or resistance. The strength or the capacity of the system is a design param-
eter that specifies the maximum load the system can endure or the maximum
demand the system can satisfy. The variabilities of the system’s capacity to satisfy
the demand or load imposed on it are mainly attributed to the inherent uncer-
tainties of the operation characteristics of the system’s components as well as exter-
nal environmental factors. Therefore, the capacity of the system is assumed to be
probabilistic in nature that varies from time to time due to the reasons mentioned
above. Likewise, using same argument the load or demand imposed on the system
are considered probabilistic in nature due to the effect of the varying environmental
conditions.

Considering the above, the performance function of the system or sometime is
called limit state function can be formulated as the difference between the system’s
capacity and the load or demand imposed on it. The same argument can be used for
production facility, the performance is the difference between supply and demand,
supply being the capacity, or the strength and demand is the load. If the two
parameters are the same then it can be said that the system is at a limit state, if the
system cannot meet the demand then the system is at a failure state, and if the
system capacity exceeds the load imposed on it, the system is at a satisfactory state.

3. Reliability analysis methods

Knowing in advance when the system is going to fail or degrade in performance
is an essential step in the failure analysis. Under this step, the probability of failure
is calculated in terms of the random variables affecting the performance of the
system. There are several approaches found in the literature that can be used to
evaluate the probability of failure either analytically or by simulation. Analytical
methods approximate the probability of failure by using first order reliability
method (FORM) or second order reliability method (SORM). The FORM uses two
approximation techniques that evaluates the probability of failure, these are the
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first order and second moment (FOSM) and advanced first order second moment
(AFOSM) techniques.

Calculating the probability of failure based on the methods mentioned above can
be used to predict the ability of the system to satisfy operational as well as safety
requirements during its life cycle. Combining this analysis with risk analysis, the
consequences of failure can be easily determined. First order reliability method
consists of two techniques namely:

3.1 Analytical methods

3.1.1 First order second moment (FOSM)

FOSM makes use of second moment statistics (mean and variance) and ignores
higher moments (skewness and kurtosis) of the random variables. It evaluates the
performance function by using the first order Taylor series expansion of the limit
state function (LSF) at the mean value. This method is used when the performance
function is linear having statistically independent, normally distributed and
noncorrelated random variables X0

is.
Performance function can be defined as [3, 5, 10]:

Z ¼ C� D (1)

where C is the capacity and D is the demand are statistically independent
random variables and are assumed to be normally distributed. Failure occurs when:

Z,0 (2)

Then the probability of failure (Pf ) can be computed as:

Pf ¼ P C,Dð Þð Þ (3)

Or

Pf ¼ P Z,0ð Þð Þ (4)

Figure 1 shows the probability density function (PDF) of the random variable Z,
as it can be depicted from the figure that the probability of failure comprises the
shaded area where Z < 0.

Figure 1.
Probability density function of the performance function.
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The probability of failure is expressed as [3, 5, 10]:

Pf ¼ P Z,0ð Þð Þ ¼
ð

0

�∞

f z Zð Þdz (5)

Alternatively, the performance function Z can be formulated in terms of many
random variables designated by a vector X as [3, 5, 10]:

Z Xð Þ ¼ Z X1;X2,…:Xnð Þ (6)

X1,…:Xn are the random variables in the performance function.
The integration of the performance function as indicated in Eq. (5) is performed

for the region where Z,0, this type of integration is difficult to solve, alternatively
Taylor series expansion is used. The first order Taylor series approximation about
the mean of the random variables is shown in Eq. (7). The expansion is truncated at
the linear terms to obtain the first order approximation of the performance function
[7–9].

Z ¼ Z μXð Þ þ ∑
n

i¼1

∂Z

∂Xi
Xi � μXi

� �

þ 1

2!
∑
n

i¼1
 ∑

n

j¼1

∂
2Z

∂Xi∂Xj
Xi � μXi

� �

Xj � μXj

� �

(7)

Z ¼ Z μXð Þ þ ∑
n

i¼1

∂Z

∂Xi
Xi � μXi

� �

(7.1)

Then the mean and variance are given as:

μZ ≈ Z μX1,μX2
;…::; μXn

� �

(8)

Var Z½ � ¼ Var Z μXð Þ þ ∑
n

i¼1

∂Z

∂Xi
Xi � μXi

� �

� �

(9)

Var Z½ � ¼ Var Z μXð Þ½ � þ Var ∑
n

i¼1

∂Z

∂Xi
Xið Þ

� �

� Var ∑
n

i¼1

∂Z

∂Xi
μXi

� �

� �

Xi

(10)

Var Z μXð Þ½ � ¼ 0 (10.1)

Var ∑
n

i¼1

∂Z

∂Xi
μXi

� �

� �

Xi

¼ 0 (10.2)

Var Z½ � ¼ ∑
n

i¼1

∂Z

∂Xi

� �2

Var Xið Þ (10.3)

σZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1

∂Z

∂Xi

� �2

Var Xið Þ
s

(10.4)

The reliability index (β) is taken as ratio of the mean to the standard deviation of
the performance function.

β ¼ μZ

σZ
(11)

The reliability index is computed for every failure mode, where the probability
of failure is expressed as:
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Pf ¼ ϕ �βð Þ ¼ 1� ϕ βð Þ (12)

This method is simple to use and assumes that the random variables are nor-
mally distributed. All is needed for the calculation is the knowledge of the mean and
the standard deviation and it is not necessary to know the distribution of the
random variables. The downside of this method is that it can cause error in the final
results if the function is nonlinear or if the tail of the distribution cannot be
approximated by normal distribution. Moreover, if the function is nonlinear it will
be provided different answer than that if it is linear. Advanced FOSM is used to deal
with the limitations of the FOSM mentioned above.

3.1.2 Advanced first order second moment method (AFOSM)

AFOSM provides solution for linear and nonlinear performance function by
determining the shortest distance from the origin to the failure surface. This
method is also called Hasofer-Lind method. It evaluates the probability of failure for
the limit state function or the performance function by determining the most
probable failure point instead of the mean. Hasofer and Lind developed this
advanced method in 1974 which is called Hasofer-Lind method and is abbreviated
as H-L method. As stated above, the main objective of this method is to estimate the
failure point which is the shortest distance from the origin to the failure surface that
separates the failure region from the safe region. This can be clearly shown in
Figure 2. The failure point is sometimes called in the literature design point or
check point, but in this chapter, it will be referred to as the most probable point of
failure (MPPF). Let us consider a limit state function/performance function with
normally distributed and independent random variables X as:

Z Xð Þ ¼ Z x1; x2;⋯⋯⋯⋯⋯⋯; xnð Þ ¼ 0 (13)

This method transforms the random variables into reduced form as:

ui ¼
xi � μxi
σxi

, i ¼ 1, 2, :…, (14)

xi ¼ ui ∗ σxi þ μxi , i ¼ 1, 2, :…, (15)

The performance function is then formulated in terms of the reduced random
variables as:

Z Uð Þ ¼ Z u1 ∗ σx1 þ μx1 ; u2 ∗ σx2 þ μx2 ;…………:un ∗ σxn þ μxn

� �

¼ 0 (16)

Figure 2 shows the plot of the limit state function in the original as well as the
transformed coordinates. It shows that the MPPF is the tangent point on the curve
Z Xð Þ ¼ 0 and the reliability index β as the shortest distance from the origin to the
limit surface.

To find the MPPF x0i on the limit surface under the condition that Z Xð Þ ¼ 0,
Taylor series expansion is used around the MPPF, considering the first order terms
only, this gives:

Z Uð Þ ¼ Z U ∗ð Þ þ ∑
n

i¼1

∂Z U ∗ð Þ
∂Ui

ui � u ∗
i

� �

(17)

ZðUÞ ¼ Zðu ∗
1 ∗ σx1 þ μx1Þðu

∗
2 ∗ σx2 þ μx2Þ………………:ðu ∗

n ∗ σxn þ μxnÞ ¼ 0 (18)
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Using chain rule for derivative and considering that relationship between U and
X as:

Z function of x ! Z ¼ g xð Þ
X function of u ! X ¼ f uð Þ

and using Eqs. (14) and (15) the partial derivative ∂g U ∗ð Þ
∂ui

becomes:

∂Z

∂Ui
¼ ∂Z

∂Xi

∂X

∂Ui
¼ ∂Z

∂Xi

	 


∂X u ∗
i ∗ σxi þ μxi

� �

∂Ui

	 


¼ ∂Z

∂Xi
σxi (19)

Substituting Eq. (19) into Eq. (17) gives:

Z Uð Þ ¼ Z U ∗ð Þ þ ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

σxi ui � u ∗
i

� �

(20)

Figure 2.
(a) Nonlinear limit state function—original coordinates. (b) Nonlinear limit state function—transformed
coordinates.
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The mean of Z Uð Þ is:

uz ¼ E Z U ∗ð Þ½ � þ E ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

σxiui

� �

� E ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

σxiu
∗
i

� �

(21)

E Z U ∗ð Þ½ � ¼ Z U ∗ð Þ (22)

E ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

σxiui

� �

¼ E ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

xi � uxið Þ
� �

¼ E xi½ � ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

� �

� E μxi

� �

∑
n

i¼1

∂Z X ∗ð Þ
∂xi

� �

(23)

μxi ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

� �

� μxi ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

� �

¼ 0 (24)

E ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

σxiu
∗
i

� �

¼ ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

σxiu
∗
i (25)

uz ¼ Z U ∗ð Þ � ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

σxiu
∗
i (26)

The variance is expressed as:

σ2Z ¼ VarðZ Uð Þ ¼ Var Z U ∗ð Þ½ � þ Var ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

σxi ui � u ∗
i

� �

� �

(27)

It must be noted that constants have no variance, their variances equal to zero.
The first term of the Taylor expansion in Eq. (27) is constant; therefore, its variance
equals to zero. Similarly, the variance at the mean value is zero.

Var Z U ∗ð Þ½ � ¼ 0 (28)

VarðZ Uð Þ ¼ Var ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

σxi uið Þ
� �

�Var ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

σxi u ∗
i

� �

� �

(29)

Var ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

σxi u ∗
i

� �

� �

¼ 0 (30)

VarðZ Uð Þ ¼ Var ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

σxi uið Þ
� �

¼Var ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

xi � uxið Þ
� �

(31)

Var ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

xi � uxið Þ
� �

¼ Var ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

xi

� �

� Var ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

uxi

� �

(31.1)

Var ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

uxi

� �

¼0 (32)

VarðZ Uð Þ¼ ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

	 
2

Var xi½ � (33)

σz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1

∂Z X ∗ð Þ
∂xi

	 
2

σ2xi

s

(34)

Alternatively, Eq. (31) can be calculated as [6]:
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Var ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

xi � uxið Þ
� �

¼ E ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

xi � uxið Þ
� �2

¼ ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

	 
2

E xi � uxið Þ½ �2

¼ ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

	 
2

Var xi½ �

(34.1)

The reliability index is calculated as:

β ¼ μZ

σZ
¼

Z X ∗ð Þ � ∑
n

i¼1

∂Z X ∗ð Þ
∂xi

σxi u ∗
i

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1

∂Z X ∗ð Þ
∂xi

σxi

� �2
s (35)

The directional cosine αi along the coordinate axes is computed as:

αi ¼ �
∂Z U ∗ð Þ

∂ui

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1

∂Z U ∗ð Þ
∂ui

� �2
s ¼ �

∂Z X ∗ð Þ
∂xi

σxi

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1

∂Z Xð Þ
∂xi

σxi

� �2
s (36)

It can be shown from Figure 2 that:

u ∗
i ¼ β ∗ Cos θið Þ or u ∗

i ¼ αxiβ (37)

Using Eqs. (14), (15) and (36) we can determine the design point in the original
coordinates as:

x ∗
i ¼ βαxiσxi þ μxi ¼ u ∗

i σxi þ μxi i ¼ 1, 2,……………, n (38)

The probability of failure, Pf can be computed as:

Pf ¼ Φ �βð Þ ¼ 1�Φ βð Þ (39)

The steps to estimate the reliability index are:

1. Formulate the performance function in terms of the original random variables, xi:

Z x1; x2;⋯⋯⋯⋯⋯⋯; xnð Þ

2. Assume the initial design points as the given mean of each variables.

3. Compute the initial reliability index β in terms of the mean values of the random
variables using Eq. (11).

4. Compute the partial derivatives of the limit state function (LSF)/performance
function in terms of mean value of the random variables.

5. Compute the directional cosines αi using Eq. (36).

6. Compute the new design point using Eq. (38).
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7. Compute the LSF in terms of new design points.

8. Compute the partial derivatives at the new design points.

9. Compute the new reliability index β using Eq. (35).

a.Another alternative is to compute β from the limit state function

Z Xð Þ ¼ Z βαxiσxi þ μxi

� �

¼ 0
� �

using the newly determined design points in

step 7 and solve for β.

10. Compute the directional cosine.

11. Repeat steps six through nine until β converges to a pre-established tolerance level.

12. Use Eq. (39) to calculate the probability of failure.

The stepsmentioned above are usedwith the assumption that the randomvariables
are normally distributed. For non-normally distributed variables additional steps are
needed to determine the mean and standard deviation of the equivalent normal distri-
bution as listed below. These steps should be carried out after step number two to
determine mean and standard deviation of the equivalent normal distribution. Assum-
ing the random variables are statistically independent and non-normally distributed:

1. Determine the distribution parameters.

2. Compute the cumulative distribution function cdf, F xið Þ, the probability
density function pdf, f xið Þ and the inverse cdf, Φ�1 F xið Þ½ � of the original
non-normal random variables at the initial design point.

3. Compute the values of the standard deviation, σxi and the mean, μxi of the
equivalent normal distribution as:

σxi ¼
ϕ Φ�1 F xið Þ½ �
� �

f xið Þ (40)

It must be noted that f xið Þ refers to the pdf of the original non-normal random
variable and ϕð Þ refers to the pdf of the equivalent standard normal random variable.

μxi ¼ xi �Φ�1 F xið Þ½ �σxi (41)

4. Compute the standard normal variable (uiÞ of xi by:

ui ¼
xi � μxi
σxi

, i ¼ 1, 2,………………, n (42)

For a log normally distributed random variable, distribution parameters μln xð Þ,

σln xð Þ are defined using the following equations:

σ2ln xð Þ ¼ ln
σx

μx

	 
2

þ 1

 !

, σln xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi

σ2ln xð Þ

q

(43)

μln xð Þ ¼ ln μxð Þ � 0:5σ2ln xð Þ (44)
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The pdf and cdf are defined as:

f xð Þ ¼ 1
ffiffiffiffiffi

2π
p

xð Þσln xð Þ
exp �0:5

ln xð Þ � μln xð Þ
σln xð Þ

	 
2
 !

(45)

F xð Þ ¼ Φ
ln xð Þ � μln xð Þ

σln xð Þ

	 


(46)

For other distribution types the readers are referred to Refs. [4, 7, 8].

3.2 Simulation methods

Alternatively, the probability of failure is computed using Monte Carlo simula-
tion method. Two methods are considered in this chapter, the counting and sample
statistics methods. The simulation is conducted using computer programs such
MATLAB, C++ or MINITAB or any other simulation programming packages.

3.2.1 Monte Carlo counting method

The counting method is formulated by dividing the number of simulation cycles
at the events when the Z function becomes less than 0 (Nf ,0Þ by the total number
of simulation cycles (N).

Pf ¼
Nf

N
(47)

The steps for Monte Carlo simulation counting method are listed below:
Counting method

1. Formulate the performance function in terms of the original random variables, xi:

Z x1; x2;⋯⋯⋯⋯⋯⋯; xnð Þ.

2. Determine the distribution and its parameters for each random variable.

3. Assign N to be the number of simulation cycles.

4. Assign M to be the number of calculation times.

5. Assign Nf to be the number of simulation cycles when the Z function becomes less
than 0.

6. Initialize:

a. Set M to zero

b. Set Nf to zero

7. Generate random values from the given distribution. With the determined
distribution parameters for each variable.

a. As an example, if the random variable is normally distributed use the following
Matlab function to generate the random values:
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x ¼ normrnd mu; var; n; 1ð Þ (48)

N is number of simulation cycles, mu and var. are the distribution parameters
(the mean and standard deviation of the random variable).

b. If the random variable is log normally distributed with a mean, μxi and

standard deviation, σxi :

i. Determine the distribution parameters; Eqs. (43) and (44) can be used use
to calculate these two parameters.

ii. Use the following Matlab function to generate the random values:

x ¼ lognrnd μln xð Þ; σln xð Þ;N; 1
� �

(49)

8. Calculate Pf:

a. Is Z < 0?

i. If yes:

• Nf = Nf +1,

• M = M + 1,

ii. If no:

• Is M = N?

a. If no—go to step 7

b.If yes—calculate Pf ¼ Nf
N

Alternative approach to random number generation is to use the following steps:

• Generate uniformly distributed random numbers ui between 0 and 1; this can be
accomplished by using software packages such as MATLAB, excel or C++ and other
software packages.

• Equate the inverse cumulative distribution function cdf of the random variable to
the generated random numbers, ui by using the following equation:

ui ¼ Fx xið Þ (49.1)

xi ¼ F�1
x uið Þ (49.2)

As an example, if xi follows normal distribution with a mean μxi , and standard

deviation σxi then its random number becomes:

xi ¼ μxi þ σxi F�1
x uið Þ

� �

(49.3)

F�1
x uið Þ

� �

can be determined using the cdf of the standard normal distribution, these

tables are included in most probability and statistics books.
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The random numbers can be generated N times using the following MATALB
function:

ui ¼ rand N; 1ð Þ (49.4)

3.2.2 Monte Carlo sample statistics method

The Monte Carlo sample statistics methods considers the mean μz and the standard
deviation σz in computing the reliability index.

β ¼ μz

σz
(50)

Pf ¼ Φ �βð Þ ¼ 1�Φ βð Þ (51)

The steps for Monte Carlo simulation sample statistics method are listed below:
Sampling method

1. Formulate the performance function in terms of the original random variables, xi:
Z x1; x2; � �⋯⋯⋯⋯⋯⋯; xnð Þ.

2. Determine the distribution and its parameters for each random variable.

3. Assign N to be the number of simulation times.

4. Assign M to be the number of calculation times.

5. Initialize:

a. Set M to zero

b.Set Nf to zero

6. Generate random values from the given distribution with the determined
distribution parameters for each variable.

7. Calculate Z function.

8. Calculate Pf:

c. Calculate β ¼ μz
σz

d. Calculate Pf ¼ 1� Φ βð Þ

e. Is M = N?

i.If no—go to step 6

ii.If yes—stop

It must be noted that Monte Carlo sample statistics method can be used only for linear
functions having uncorrelated normal random variables.

Example 1
The performance function for a system has been formulated as: z ¼ 2:5x1 � x2
where
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x1 � N 2;0:2ð Þ, x2 � N 3:1;0:32ð Þ

a. Determine the probability of failure using simulation methods: Monte Carlo
(MCS) sample statistics and Monte Carlo counting simulation methods.

b.Determine the probability of failure using the analytical methods: FOSM and
AFOSM (Hasofer-Lind) methods.

Solution:

A.Monte Carlo simulation was conducted for both methods, the sample statistics
and counting methods. The number of simulation cycles used in the analysis
are 2e5 and 1e6 cycles (Table 1).

B. See Table 2.

Example 2
The performance function for a leak detection system has been formulated as [2]:
z ¼ 2:8252x�1 � x2, x1 � N 1:1;0:02ð Þ, x2 � N 2:37;0:04ð Þ

a. Determine the probability of failure using Monte Carlo counting simulation
method.

b.Determine the probability of failure using AFOSM method.

This example is adopted from reference [1, 2], with some modifications.
Solution
Part a
Monte Carlo simulation was conducted for both methods, the sample statistics

and counting methods as indicated in the table.
Table 3 indicates that the probability of failure converges to 0.000476.

MCS—sample statistics method MCS—counting method

Number of simulation cycles Reliability index—β Pf Reliability index—β Pf

2e5 3.1993 0.000689 3.1967 0.000695

1e6 3.2030 0.00068 3.2005 0.000686

Table 1.
Simulation methods results—Example 1.

FOSM AFOSM

Reliability index—β Pf Reliability index—β Pf

3.2006 0.000686 3.2006 0.000686

**This example adopted from [9].

Table 2.
Analytical methods results—Example 1.
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Part b
First the Z function is computed in terms of the mean values of the random

variables:

x1 ¼ μx1 ¼ 1:1

x2 ¼ μx2 ¼ 2:37

u1 ¼
x1 � μx1

σx1
¼ 1:1� 1:1

0:02
¼ 0

u2 ¼
x2 � μx2

σx2
¼ 2:37 � 2:37

0:04
¼ 0

Z Xð Þ ¼ Z 1:1; 2:37ð Þ ¼ 0:1984

The partial derivatives:

∂z

∂x1
¼ �2:8252

x12
¼ �2:3349

∂z

∂x2
¼ �1

σz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1

∂Z Xð Þ
∂xi

σxi

	 
2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2:3349 ∗0:02ð Þ2 þ �1 ∗0:04ð Þ2
q

¼ 0:061487

α1 ¼ �
∂Z Xð Þ
∂x1

σx1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1

∂Z Xð Þ
∂xi

σxi

� �2
r ¼ � �2:3349 ∗0:02ð Þ

0:061487
¼ 0:75947

α2 ¼ �
∂Z Xð Þ
∂x2

σx2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1

∂g Xð Þ
∂xi

σxi

� �2
r ¼ � �1 ∗0:04ð Þ

0:061487
¼ 0:65054

β ¼ μz

σz
¼ 0:19836

0:061487
¼ 3:2261

Pf ¼ Φ �βð Þ ¼ 1�Φ βð Þ ¼ 1�Φ 3:2261ð Þ ¼ 0:000627

Iteration 1

u1 ¼ βαx1 ¼ 3:2261 ∗0:75947 ¼ 2:45013

u2 ¼ βαx2 ¼ 3:2261 ∗0:65054 ¼ 2:09872

x1 ¼ βα1σx1 þ μx1 ¼ u1σx1 þ μx1 ¼ 2:45013 ∗0:02þ 1:1 ¼ 1:149003

x2 ¼ βα2σx2 þ μx2 ¼ u2σx2 þ μx2 ¼ 2:09872 ∗0:04þ 2:37 ¼ 2:453949

MCS—counting method

Number of simulation cycles Reliability index—β Pf

1e5 3.2962 0.000490

1e6 3.3043 0.000476

Table 3.
Simulation methods results—Example 2.
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Z Xð Þ ¼ Z 1:149003; 2:453949ð Þ ¼ 0:004880

∂Z

∂x1
¼ �2:8252

x12
¼ �2:8252

1:149003ð Þ2
¼ �2:13997

∂Z

∂x2
¼ �1

α1 ¼ �
∂Z Xð Þ
∂x1

σx1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1

∂Z Xð Þ
∂xi

σxi

� �2
r ¼ � �2:13997 ∗0:02ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2:13997 ∗0:02ð Þ2 þ �1 ∗0:04ð Þ2
q ¼ 0:042799

0:05858
¼ 0:7306

α2 ¼ �
∂Z Xð Þ
∂x2

σx2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1

∂Z Xð Þ
∂xi

σxi

� �2
r ¼ � �1 ∗0:04ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2:13997 ∗0:02ð Þ2 þ �1 ∗0:04ð Þ2
q ¼ 0:6828

βHL ¼
Z Xð Þ �∑n

i¼1

∂Z Xð Þ
∂xi

σxi uið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1

∂Z
∂xi

σxi

� �2
r

¼ 0:004880� ð �2:13997 ∗0:02 ∗ 2:45013ð Þ þ �1 ∗0:04 ∗ 2:09872ð Þ
0:05858

¼ 0:19369

0:05858
¼ 3:3064

Pf ¼ Φ �βð Þ ¼ 1�Φ βð Þ ¼ 1�Φ 3:3064ð Þ ¼ 0:0004726

The probability of failure obtained by counting method is very close to that
obtained by AFOSM (Table 4).

Example 3
A pipeline segment is suffering corrosion that grows annually at steady rate. The

extent of the initial growth has been estimated to be 4.7 mm and it is assumed that it
follows log normal distribution with standard deviation of 1.1.

The corrosion annual growth follows log normal distribution with a mean and
standard deviation values of 0.2 and 0.01. The pipeline wall thickness follows
normal distribution with a mean and standard deviation values of 14 mm and 4.7
respectively. The critical pipeline wall thickness has been determined to be 80% of
the wall thickness [3]. A summary of the relevant information pertaining to the
pipeline corrosion is presented in the net table, Table 5.

The owner of the pipeline decides not to repair the corrosion and wants to know
if the pipeline can survive for the next 14 years without causing a leakage. It has
been decided that in order to be in the safe side the maximum acceptable probabil-
ity of failure has been set to 1e4 [3].

Solve this problem using analytical method as well as Monte Carlo (MCS) simu-
lation method.

Solution
Monte Carlo simulation
x1: Wall thickness, x1 � N 1:1;0:02ð Þ
x2: Extent of the initial corrosion, x2 � LGN 4:7; 1:1ð Þ
x3: Corrosion annual growth, x3 � LGN 0:2;0:01ð Þ
The limit state function can be formulated as indicated below:
The capacity portion is formulated as: 0:8x1
The demand portion is formulated as: x2 þ 14x3
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Iteration x1 x2 u1 u2 Z(X) ∂z/∂x1 ∂z/∂x2 α1 α2 β pf

1 1.100000 2.370000 0.000000 0.000000 0.198364 �2.334876 �1 0.759469 0.650543 3.226104 0.000627

2 1.149003 2.453949 2.450126 2.098721 0.004880 �2.139968 �1 0.730596 0.682810 3.306375 0.000473

3 1.148312 2.460305 2.415624 2.257626 0.000001 �2.142540 �1 0.731005 0.682372 3.306389 0.000473

4 1.148340 2.460248 2.416987 2.256188 0.000000 �2.142439 �1 0.730989 0.682389 3.306389 0.000473

Table 4.
Summary of the analytical methods results—Example 2.
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Z Xð Þ ¼ 0:8x1 � x2 þ 14x3ð Þ

Pipeline wall thickness:

μx1 ¼ 14, σx1 ¼ 0:07

x1 ¼ normrnd μx1 ; σx1 ;N; 1
� �

Initial corrosion:

μx2 ¼ 4:7, σx2 ¼ 1:1

σ2ln x2ð Þ ¼ ln
σx2
μx2

	 
2

þ 1

 !

¼ 0:0533

σln x2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

σ2ln x2ð Þ

q

¼ 0:2309

μln x2ð Þ ¼ ln μx2

� �

� 0:5σ2ln x2ð Þ ¼ 1:5209

x2 ¼ lognrnd μln x2ð Þ; σln x2ð Þ;N; 1
� �

Corrosion growth rate:

μx3 ¼ 0:2, σx3 ¼ 0:01

σ2ln x3ð Þ ¼ ln
σx3
μx3

	 
2

þ 1

 !

¼ 0:002497

σln x3ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

σ2ln x3ð Þ

q

¼ 0:04997

μln 3ð Þ ¼ ln μx3

� �

� 0:5σ2ln x3ð Þ ¼ �1:61069

x3 ¼ lognrnd μln x3ð Þ; σln x3ð Þ;N; 1
� �

Monte Carlo simulation produced the following results as shown in Table 6. The
probability of failure and beta converge to the following values:

Pf ¼ Nf

N
¼ 4396

1e6
¼ 0:004389

Beta ¼ Φ�1 Pfð Þ ¼ 2:6206

Wall thickness Initial corrosion Corrosion growth

Distribution type Normal distribution Log normal distribution Log normal distribution

Mean 14 mm 4.7 mm 0.2 mm

Standard deviation 0.07 1.1 0.01

Table 5.
Pipeline corrosion data—Example 3.
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Here only the counting method is used because the sampling method produces
different results. The sampling method produces accurate results for linear and
normal limit state/performance function only.

Analytical Solution
Assume the initial value for each random variable to be its mean.

Z Xð Þ ¼ Z 14;4:7;0:2ð Þ ¼ 3:7

∂Z

∂x1
¼ 0:8

∂Z

∂x2
¼ �1

∂Z

∂x3
¼ �14

For non-normal variables, the standard deviation and mean values of the equiv-
alent normal variables are calculated using Eqs. (40) and (41).

Pipeline wall thickness, x1:

μx1 ¼ 14, σx1 ¼ 0:07

Initial corrosion, x2:

μx2 ¼ 4:7, σx2 ¼ 1:1

σ2ln x2ð Þ ¼ ln
σx2
μx2

	 
2

þ 1

 !

¼ 0:0533

σln x2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

σ2ln x2ð Þ

q

¼ 0:2309

μln x2ð Þ ¼ ln μx2

� �

� 0:5σ2ln x2ð Þ ¼ 1:5209

Compute the pdf of the original non-normal variable (log normal distribution)
using Eq. (45):

f xð Þ ¼ 1
ffiffiffiffiffi

2π
p

xð Þσln xð Þ
exp �0:5

ln xð Þ � μln xð Þ
σln xð Þ

	 
2
 !

¼ 1
ffiffiffiffiffi

2π
p

4:7ð Þ 0:2309ð Þ
exp �0:5

ln 4:7ð Þ � 1:5209

0:2309

	 
2
 !

¼ 0:36512

MCS—counting method

Number of simulation cycles Reliability index—β Pf

1e6 2.6249 0.004334

1e7 2.6206 0.004389

Table 6.
Simulation methods results—Example 3.
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Compute the cdf of the original non-normal variable (log normal distribution)
using Eq. (46):

F xð Þ ¼ Φ
ln x2ð Þ � μln xð Þ

σln xð Þ

	 


¼ Φ
ln 4:7ð Þ � 1:5209

0:2309

	 


Φ�1 F xið Þ½ � ¼ ln 4:7ð Þ � 1:5209

0:2309

	 


¼ 0:115466

Compute the mean and standard deviation of the equivalent normal variable at
the design point using Eqs. (40) and (41):

σx2 ¼
ϕ Φ�1 F x2ð Þ½ �
� �

f x2ð Þ ¼ ϕ 0:115466ð Þ
0:36512

,

ϕð Þ refers to the equivalent standard normal random variable and is
calculated as:

ϕ 0:115466ð Þ ¼ 1
ffiffiffiffiffi

2π
p exp �0:5

ln x2ð Þ � μln xð Þ
σln xð Þ

	 
2
 !

¼ 1
ffiffiffiffiffi

2π
p exp �0:5 0:115466ð Þ2

� �

¼ 0:3963

σx2 ¼
0:3963

0:36512
¼ 1:0854

μx2 ¼ x2 �Φ�1 F x2ð Þ½ �σx2 ¼ 4:7 � 0:115466 1:0854ð Þ ¼ 4:5747

Corrosion growth, x3

The same procedures outline for initial corrosion extent, x2: to produces the
following results:

f x3ð Þ ¼ 39:907,Φ�1 F x3ð Þ½ � ¼ 0:02526,ϕ Φ�1 F x3ð Þ½ �
� �

¼ 0:398815,

σx3 ¼ 0:0099936 and μx3 ¼ 0:19975

σz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1

∂Z Xð Þ
∂xi

σxi

	 
2
s

¼ 1:0958

β ¼ μz

σz
¼ 3:7

1:0958
¼ 3:3766

Pf ¼ Φ �βð Þ ¼ 0:00037

α1 ¼ �
∂Z Xð Þ
∂x1

σx1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1

∂Z Xð Þ
∂x1

σx1

� �2
r ¼ �0:0511

α2 ¼ �
∂Z Xð Þ
∂x2

σx2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1

∂Z Xð Þ
∂x2

σx2

� �2
r ¼ 0:9905
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α3 ¼ �
∂Z Xð Þ
∂x3

σx3

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1

∂Z Xð Þ
∂x3

σx3

� �2
r ¼ 0:1277

Iteration 1

u1 ¼ βαx1 ¼ �0:1013

u2 ¼ βαx2 ¼ 3:3445

u3 ¼ βαx3 ¼ 0:4311

x1 ¼ βα1σx1 þ μx1 ¼ u1σx1 þ μx1 ¼ 13:9879

x2 ¼ βα2σx2 þ μx2 ¼ u2σx2 þ μx2 ¼ 8:2047

x3 ¼ βα3σx3 þ μx3 ¼ u2σx3 þ μx3 ¼ 0:20406

∂g

∂x1
¼ 0:8,

∂g

∂x2
¼ �1,

∂g

∂x3
¼ �14

Iteration 1 2 3 4 5 6

x1 14.0000 13.9879 13.9929 13.9953 13.9947 13.9947

x2 4.7000 8.2047 9.9091 8.5641 8.4595 8.3734

x3 0.2000 0.2041 0.2023 0.2015 0.2017 0.2016

u1 0.0000 �0.1726 �0.1013 �0.0675 �0.0753 �0.0750

u2 0.0000 3.3445 3.4276 2.7576 2.6609 2.6164

u3 0.0000 0.4311 0.2582 0.1706 0.1896 0.1889

mu1 14.0000 14.0000 14.0000 14.0000 14.0000 14.0000

mu2 4.5747 3.4147 2.2538 3.1972 3.2620 3.3145

mu3 0.1998 0.1997 0.1997 0.1997 0.1997 0.1997

σ1 0.0700 0.0700 0.0700 0.0700 0.0700 0.0700

σ2 1.0854 1.8947 2.2883 1.9777 1.9536 1.9337

σ3 0.0100 0.0102 0.0101 0.0101 0.0101 0.0101

Z(x) 3.7000 0.1288 �1.5475 �0.1882 �0.0869 �0.0006

∂z/∂x1 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000

∂z/∂x2 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000

∂z/∂x3 �14.0000 �14.0000 �14.0000 �14.0000 �14.0000 �14.0000

σ 1.0958 1.9009 2.2933 1.9835 1.9594 1.9396

α1 �0.0511 �0.0295 �0.0244 �0.0282 �0.0286 �0.0289

α2 0.9905 0.9967 0.9978 0.9971 0.9970 0.9969

α3 0.1277 0.0751 0.0617 0.0711 0.0720 0.0727

β 3.3766 3.4388 2.7637 2.6687 2.6243 2.6240

Pf 0.0004 0.0003 0.0029 0.0038 0.0043 0.0043

Table 7.
Analytical methods results—Example 3.
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Analytical method MCS—counting method

Reliability index—β Pf Reliability index—β Pf

2.6240 0.004345 2.6206 0.004389

Table 8.
Comparison of results—Example 3.

System A Distribution type and its parameters

Electric motor Capacity Demand

System energy N�(0.52, 0.05) N�(0.46, 0.08)

Number of parts N�(2, 0.5) N�(1, 0.3)

Weight N�(0.42 0.05) N�(0.400, 0.06)

System B Distribution type and its parameters

Pneumatic cylinder Capacity Demand

System energy N�(0.52, 0.05) N�(0.4, 0.04)

Number of parts N�(2, 0.5) N�(1, 0.3)

Weight N�(0.420, 0.05) N�(0.37, 0.04)

Table 9.
Capacity and demand variables—Example 4.

System A MCS—sample statistics method MCS—counting method

Number of simulation cycles Reliability index—β Pf Reliability index—β Pf

Electric motor—system energy

1e5 0.6334 0.2632 0.6326 0.2635

1e6 0.6363 0.2623 0.6363 0.2623

Electric motor—number of parts

1e5 1.7207 0.0427 1.7197 0.0427

1e6 1.7168 0.0430 1.7183 0.0429

Electric motor—weight

1e5 0.2556 0.3991 0.2572 0.3985

1e6 0.2558 0.3991 0.2564 0.3988

System B MCS—sample statistics method MCS—counting method

Number of simulation cycles Reliability index—β Pf Reliability index—β Pf

Pneumatic cylinder—system energy

1e5 1.8808 0.0300 1.8927 0.0292

1e6 1.8748 0.0304 1.8770 0.0303

Pneumatic cylinder—number of parts

1e5 1.7088 0.0437 1.7036 0.0442

1e6 1.7150 0.0432 1.7156 0.0431

Pneumatic cylinder—weight

1e5 0.7808 0.2175 0.7801 0.2177

1e6 0.781443467 0.2172709 0.78127631 0.21732

Table 10.
Simulation methods results systems A and B—Example 4.
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Electric motor—system energy

Iteration x1 x2 u1 u2 σ1 σ2 Z(X) ∂z/∂x1 ∂z/∂x2 α1 α2 σ_z β pf

1 0.5200 0.4600 0.0000 0.0000 0.0500 0.0800 0.0600 1.0000 �1.0000 �0.5300 0.8480 0.0943 0.6360 0.2624

2 0.5031 0.5031 �0.3371 0.5393 0.0500 0.0800 0.0000 1.0000 �1.0000 �0.5300 0.8480 0.0943 0.6360 0.2624

Electric motor—number of parts

Iteration x1 x2 u1 u2 σ1 σ2 Z(X) ∂z/∂x1 ∂z/∂x2 α1 α2 σ_z β pf

1 2.0000 1.0000 0.0000 0.0000 0.5000 0.3000 1.0000 1.0000 �1.0000 �0.8575 0.5145 0.5831 1.7150 0.0432

2 1.2647 1.2647 �1.4706 0.8824 0.5000 0.3000 0.0000 1.0000 �1.0000 �0.8575 0.5145 0.5831 1.7150 0.0432

Electric motor—weight

Iteration x1 x2 u1 u2 σ1 σ2 Z(X) ∂z/∂x1 ∂z/∂x2 α1 α2 σ_z β pf

1 0.4200 0.4000 0.0000 0.0000 0.0500 0.0600 0.0200 1.0000 �1.0000 �0.6402 0.7682 0.0781 0.2561 0.3989

2 0.4118 0.4118 �0.1639 0.1967 0.0500 0.0600 0.0000 1.0000 �1.0000 �0.6402 0.7682 0.0781 0.2561 0.3989

Pneumatic cylinder—system energy

Iteration x1 x2 u1 u2 σ1 σ2 Z(X) ∂z/∂x1 ∂z/∂x2 α1 α2 σ_z β pf

1 0.5200 0.4000 0.0000 0.0000 0.0500 0.0400 0.1200 1.0000 �1.0000 �0.7809 0.6247 0.0640 1.8741 0.0305

2 0.4468 0.4468 �1.4634 1.1707 0.0500 0.0400 0.0000 1.0000 �1.0000 �0.7809 0.6247 0.0640 1.8741 0.0305

Pneumatic cylinder—number of parts

Iteration x1 x2 u1 u2 σ1 σ2 Z(X) ∂z/∂x1 ∂z/∂x2 α1 α2 σ_z β pf

1 2.0000 1.0000 0.0000 0.0000 0.5000 0.3000 1.0000 1.0000 �1.0000 �0.8575 0.5145 0.5831 1.7150 0.0432

2 1.2647 1.2647 �1.4706 0.8824 0.5000 0.3000 0.0000 1.0000 �1.0000 �0.8575 0.5145 0.5831 1.7150 0.0432

Pneumatic cylinder—weight

Iteration x1 x2 u1 u2 σ1 σ2 Z(X) ∂z/∂x1 ∂z/∂x2 α1 α2 σ_z β pf

1 0.4200 0.3700 0.0000 0.0000 0.0500 0.0400 0.0500 1.0000 �1.0000 �0.7809 0.6247 0.0640 0.7809 0.2174

2 0.3895 0.3895 �0.6098 0.4878 0.0500 0.0400 0.0000 1.0000 �1.0000 �0.7809 0.6247 0.0640 0.7809 0.2174

Table 11.
Analytical method results—Example 4.
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Mean and standard deviation for normal variable x1 remain the same:

μx1 ¼ 14, σx1 ¼ 0:07

Mean and standard deviation for the equivalent normal distribution for the non-
normal variables, x2 and x3 (Table 7):

μx2 ¼ 3:4147, σx2 ¼ 1:8947, μx3 ¼ 0:1997, σx3 ¼ 0:010197

α1 ¼ �0:0295, α2 ¼ 0:9967, α3 ¼ 0:0751

σz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:8 ∗0:07ð Þ2 þ �1 ∗ 1:8947ð Þ2 þ �14 ∗0:010197ð Þ2
q

¼ 1:9009

Z Xð Þ ¼ Z 13:9879; 8:2047;0:20406ð Þ ¼ 0:1288

βHL ¼
Z Xð Þ �∑n

i¼1
∂Z Xð Þ
∂xi

σxi uið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1

∂Z
∂xi

σxi

� �2
r ¼ 0:1288� �6:4080ð Þ

1:9009
¼ 3:4388

Pf ¼ Φ �βð Þ ¼ 0:00037

Table 8 shows that the obtained values for beta and the probability of failure are
so close to each other.

The calculated probability of failure exceeds the target probability of failure

10�4.
Example 4
Two systems, system A and system B, each system has three main components

and each component with it; the probability distribution type and its parameters are
shown in Table 9. It is required to determine the probability of failure of each
component using FOSM, AFOSM and Monte Carlo simulation [9].

Solution
Formulate a general LSF for each component as:

Z Xð Þ ¼ x1 � x2

Formulate a general LSF for each component see the (Table 10).
Analytical Solution
Analytical solution see (Table 11).
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