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Chapter

Existence, Regularity, and
Compactness Properties in the
a-Norm for Some Partial
Functional Integrodifferential
Equations with Finite Delay

Boubacar Diao, Khalil Ezzinbi and Mamadou Sy

Abstract

The objective, in this work, is to study the alpha-norm, the existence, the
continuity dependence in initial data, the regularity, and the compactness of solu-
tions of mild solution for some semi-linear partial functional integrodifferential
equations in abstract Banach space. Our main tools are the fractional power of linear
operator theory and the operator resolvent theory. We suppose that the linear part
has a resolvent operator in the sense of Grimmer. The nonlinear part is assumed to
be continuous with respect to a fractional power of the linear part in the second
variable. An application is provided to illustrate our results.

Keywords: integrodifferential, mild solution, resolvent operator, fractional power
operator

1. Introduction

We consider, in this manuscript, partial functional equations of retarded type
with deviating arguments in terms of involving spatial partial derivatives in the
following form [1]:

du(t) g

——= = —Au(t) + J B(t — s)u(s)ds + F(t,u;) fort >0,
{ dt 0 (1)

ug = ¢ € Cu = C([=r, 0], D(A))),

where —A is the infinitesimal generator of an analytic semigroup (T'(¢)),», ona

Banach space X. B(?) is a closed linear operator with domain D(B(t)) D D(A) time-
independent. For 0 <a <1, A is the fractional power of A which will be precise in
the sequel. The domain D(A®) is endowed with the norm ||x||, = ||A%|| called
a— norm. C, is the Banach space C([—7, 0], D(A”)) of continuous functions from
[—7, 0] to D(A”) endowed with the following norm:

¢lle = sup ll¢(O)ll, for ¢ € Ca.

—r<60<0
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F:R; x C,; — X s a continuous function, and as usual, the history function
u; € C, is defined by
u,(0) =u(t+60) for 0 € [—r,0].

As a model for this class, one may take the following Lotka-Volterra equation:

ds

(ou(t,x) 0*u(t,x) N Jt 0*u(s, x)

= h(t —
o o2 S5

0
+J g(t,w>d9 fort>0 and x € [0, x],

0x (2)

u(t,0) =u(t,z) = 0 fort>0,

[ #(0,x) = uo(0,x) for 6 € [—r,0] and x € [0, ].

Here ug : [—7,0] x [0,7] = R,g : Ry x R — Rand % : R, — R are appropriate
functions.

In the particular case where a = 0, many results are obtained in the literature
under various hypotheses concerning A, B, and F (see, for instance, [2-6] and the
references therein). For example, in [7], Ezzinbi et al. investigated the existence and
regularity of solutions of the following equation:

dz—it) = —Au(t) + J; B(t — s)u(s)ds + F(t,u;) fort >0, (3)

ug = ¢ € C([-r, 0]; X),

The authors obtained also the uniqueness and the representation of solutions via
a variation of constant formula, and other properties of the resolvent operator were
studied. In [8], Ezzinbi et al. studied a local existence and regularity of Eq. (3). To
achieve their goal, the authors used the variation of constant formula, the theory of
resolvent operator, and the principle contraction method. Ezzinbi et al. in [9]
studied the local existence and global continuation for Eq. (3). Recall that the
resolvent operator plays an important role in solving Eq. (3); in the weak and strict
sense, it replaces the role of the ¢y semigroup theory. For more details in this topic,
here are the papers of Chen and Grimmer [2], Hannsgen [10], Smart [11], Miller
[12, 13], and Miller and Wheeler [14, 15]. In the case where the nonlinear part
involves spatial derivative, the above obtained results become invalid. To overcome
this difficulty, we shall restrict our problem in a Banach space Y, C X, to obtain our
main results for Eq. (1).

Considering the case where B = 0, Travis and Webb in [16] obtained results on the
existence, stability, regularity, and compactness of Eq. (1). To achieve their goal, the
authors assumed that —A is the infinitesimal generator of a compact analytic semi-
group and F is only continuous with respect to a fractional power of A in the second
variable. The present paper is motivated by the paper of Travis and Webb in [16].

The paper is organized as follows. In Section 2, we recall some fundamental
properties of the resolvent operator and fractional powers of closed operators. The
global existence, uniqueness, and continuous dependence with respect to the initial
data are studied in Section 3. In Section 4, we study the local existence and bowing
up phenomena. In Section 5 we prove, under some conditions, the regularity of the
mild solutions. And finally, we illustrate our main results in Section 6 by examining
an example.
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2. Fractional power of closed operators and resolvent operator for
integrodifferential equations

We shall write Y for D(A) endowed with the graph norm ||x||y = ||x|| + ||Ax]],
Y, for D(A%) and L(Y,, X) will denote the space of bounded linear operators from
Y, to X, and for Yo = X, we write £(X) with norm ||.[|;(x). We also frequently use

the Laplace transform of f which is denoted by f . If we assume that —A generates
an analytic semigroup and, without loss of generality, that 0 € ¢(A), then one can
define the fractional power A” for 0 <a <1, as a closed linear operator on its
domain Y, with its inverse A~ given by

1 (o]
A% = —J 1T (t) dt,
@t TV

where I' is the gamma function

[(a) = J t* et dt.
0

We have the following known results.
Theorem 2.1. [17] The following properties are true.

i. Y, = D(A") is a Banach space with the norm |x|, = [[A“|| for x € Y,,.
ii. A% is a closed linear operator with domain Y, = Im(A~*) and A* = (A~%)".
iii. A™" is a bounded linear operator in X.

iv. If 0 <a < p then D(A”)~D(A®). Moreover the injection is compact if T'(¢) is
compact for ¢z > 0.

Definition 2.2. [18] A family of bounded linear operators (R(t)), o in X is called
resolvent operator for the homogeneous equation of Eq. (3) if:

a.R(0) =Iand ||R(t)|| < M1 exp (ot) for some M;>1and o € R.
b.For all x € X, ¢t — R(¢)x is continuous for ¢ > 0.

c.R(t) € L(Y) fort>0.Forx € Y,R(.)x € C*(R,,X)nC(R,,Y), and fort >0 we
have

R'(t)x = —AR(t)x + Jt B(t —s)R(s)xds
0

= —R(t)Ax + Jt R(t — s)B(s)xds.
0

(4)

What follows is we assume the hypothesis taken from [1] which implies the
existence of an analytic resolvent operator (R(t)), o-

(V1) —A generates an analytic semigroup on X. (B(t)), ( is a closed operator on
X with domain at least D(A) a.e ¢t > 0 with B(t)x strongly measurable for
each x € Y and ||B(t)x| < b(t)||x|ly, for b € L}, (0, 00) with b* (1) abso-
lutely convergent for Rel > 0.
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(V2) p(A) = (AT + A — B* (1)) " exists as a bounded operator on X which is
analyticfor A€ A ={1€ C: |argd| <n/2 + 6}, where 0 <é<x/2.InAif
|| > € >0, there exists M = M(e) > 0 so that ||p(1)|| < M/|4|.

(V3) Ap(1) € L(X) for 4 € A and is analytic from A to L(X). B* (1) € L(Y, X)
and B* (1)p(4) € L(Y,X) for 4 € A. Given € > 0, there exists a positive
constant M = M(¢) so that |[Ap(d)x|| + ||B* (A)p(A)x|| < (M/|A])||x||y for
x € Yand 1 € Awith A>¢and ||B* (1)||—0 as |[4|o0 in A. In addition,
|Ap(A)x]|| < M|A|"||x|| for some n >0, A € A with A > e. Further, there exists
D c D(A?) which is dense in Y such that A(D) and B* (1)(D) are contained
in Y and ||B* (A)x||y is bounded for each x € D and 4 € A with || >e.

Theorem 2.3. [1] Assume that conditions (V1)—-(V3) are satisfied. Then there
exists an analytic resolvent operator (R(t)), ,. Moreover, there exist positive con-

stants N, N, such that ||R(¢)|| < Nand||A°R(t)|| < % fort>0and 0<a<1.
We take the following hypothesis.
(HO) The semigroup (T'(t)), o is compact for ¢ > 0.
Theorem 2.4. [19] Under the conditions (V1)-(V3) and (HO), the
corresponding resolvent operator (R(t)),s o is compact for ¢ > 0.

3. Global existence, uniqueness, and continuous dependence with
respect to the initial data

Definition 3.1. A function u : [0,b] — Y, is called a strict solution of Eq. (1), if:
i.t — u(t) is continuously differentiable on [0, b].

ii.u(t) e Y fort € [0,b].

iii. u satisfies Eq. (1) on [0, b].

Definition 3.2. A continuous function # : [0,b] — Y, is called a mild solution
of Eq. (1) if

T

u(t) =R(t)p(0) + Jo R(t — s)F(s,u)ds fort € [0,b], )

ug = @ € C,.

Now to obtain our first result, we take the following assumption.
(H1) There exists a constant Lr > 0 such that

|F(t, 1) — F(t,9,)|| < Lrll@; — @,]|, fort >0 and ¢y, ¢, € C,.

Theorem 3.3. Assume that (V1)-(V3) and (H1) hold. Then for ¢ € C,, Eq. (1)
has a unique mild solution which is defined for all £ > 0.
Proof. Let a > 0. For ¢ € C,, we define the set A by

A={y € C([0,a]; Yo) : y(0) = 9(0)}.

The set A is a closed subset of C([0,4]; Y,) where C([0,a]; Y,) is the space of
continuous functions from [0, 4] to Y, equipped with the uniform norm topology
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ylle = sup ly@)ll, fory € C([0,a]; Y,).

0<t<a

For y € A, we introduce the extension y of y on [—7,a] defined by y(¢) = y(¢) for
t € [0,a] and y(t) = ¢(t) fort € [—r, 0]. We consider the operator I" defined on A by

t

Iy(t) = R(t)p(0) + Jo R(t —s)F(s,y,) ds fort € [0, a].

We claim that I'(A) C A. In fact for y € A, we have (I'y)(0) = ¢(0), and by conti-
nuity of F and R(t)x for x € X, we deduce that I’y € A. In order to obtain our result,
we apply the strict contraction principle. In fact, letu,v € A and t € [0, a]. Then

() — T@))(t) = j R(t —5)(F(s,,) — F(s.7)) ds.

0

Using the a— norm, we have

4700 = TN O S LN, | e =71

A
SLFNaj 1 sup [lu(e) — (@), ds

o _S)(ZOSTSH

“d
< <LFN(1J —S)nu o,
05

Now we choose a such that

a
d
LFNaJ B
05*

Then I is a strict contraction on A, and it has a unique fixed point y which is the
unique mild solution of Eq. (1) on [0, 4]. To extend the solution of Eq. (1) in [a, 24],
we show that the following equation has a unique mild solution:

t

{ %Z(Z’) = —Az(t) + L B(t —s)z(s)ds + F(t,z;) fort € |a, 24|, 6)

2, =9, € C([-r,a],Y,).
Notice that the solution of Eq. (6) is given by
t

2(6) = R(t — a)z(a) + J R(t — $)F(s,2;) ds for ¢ € [a, 2a].

a

Let Z be the function defined by z(t) = z(t) for ¢ € [a,2a] and Z(t) = y(t) for
t € [-r,a]. Consider now again the set A defined by

A={z € C([a,2a];Y,) : z(a) = y(a)},

provided with the induced topological norm. We define the operator I', on A by

(Tu2)(t) =R(t —a)z(a) + Jt R(t —5)F(s,Z;) ds fort € [a,2a].

a
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We have (I';2)(a) = y(a) and I';2 is continuous. Then it follows that I'; A C A.
Moreover, for u, v € A, one has

47000 = T O S LV, | o= s

Since# = = ¢ in [—7, 0], we deduce that
. * ds
J4°(a) = o)) < (LeVs [ 5w =0l

Then we deduce that I, has a unique fixed point in A which extends the solution
¥ in [a, 2a]. Proceeding inductively, y is uniquely and continuously extended to
[na, (n + 1)a] for all » > 1, and this ends the proof.

Now we show the continuous dependence of the mild solutions with respect to
the initial data.

Theorem 3.4. Assume that (V1)-(V3) and (H1) hold. Then the mild solution
u(.,¢) of Eq. (1) defines a continuous Lipschitz operator U(t), t > 0 in C, by
U(t)p = u,(., ). That is, U(t)g is continuous from [0; o) to C, for each fixed ¢ € C,,.
Moreover there exist a real number § and a scalar function P such that for > 0 and
@1, @7 € C, we have

IU®) @1 — U®)p, |l < P(5)e™ |y — @2l (7)

Proof. We use the gamma formula

I(1-—a)k* = J e s s,
0

where k£ > 0 (see [20], p. 265). The continuity is obvious that the map
t — u(., @) is continuous. Now, let ¢, ¢, € C,. If we pose w(t) = u(t, p1) — u(t, ),
then we have

L Lo(t—s)

(e < Myl = ol + Lo || ol ®)
s

Let 6 a real number be such that
o —8<0 and Mymax{e ", 1}LsI'(1 - a)(6 — 0)* ' <1.
We define the function P by
P(5) = MiM3M, (1 ~ MaMLeT(1 — a)(5 — a)“‘l) N
where
M; = max{e‘sr, 1}, My = max{e"s”, 1}.

Fixt>0andlet E = sup,_ _; e % |lws||. If 0 < 7 <, then from Eq. (8), we have

Telod)es)
e llwsllods

0 (T—S)
<Millgy — ¢olly + LEMAET (1 — @) (5 — 0)* .

e w0 (2)l, < Mae™ oy — ol +LFNaJ o
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If -r<7<0, we have

e " lw(@)ll, < llgs — @l Ms. (10)
Therefore, Egs. (9) and (10) imply that
sup_, ...z € “llw(?)ll, < MiMsllpy — @,lle, + LEMLET (1 — a) (8 — o)t (11)
For 0 <t<t, we have

e Mwlly = sup e’ w(t+ o),
—r<0<0

<M, sup e’ |w+0), (12)

-r<60<0

Then from Egs. (11) and (12), we deduce that for 0 <t <t
e " lwill, < MiMsMallpy — @5l + LEMiM3ET (1 — @) (8 — o),
which implies that
E < MiM3Mull@y — @,llq + LEMiIM4ET (1 — ) (5 — 0>a_1‘

Then the result follows.

4. Local existence, blowing up phenomena, and the compactness of
the flow

We start by generalizing a result, obtained in [19] in the case of the usual norm
on X (a = 0), in the case where a # 0. We take the following assumption.

(H2) B(t) € L(X;4,X) for some 0<f<1,a.et>0and ||B(t)x|| < b(t)||x|| 5 for
x € X;, withb € L] (0, c0) where g >1/(1— f).

loc

Theorem 4.1. Assume that (V1)-(V3) and (H2) hold. Then for any a > 0, there
exists a positive constant M = M(a) such that for x € X we have

h

IA*(R(t + h)x — R(h)R(t)x)| < MJ ji: |x|| for 0< h <t < a.

0

Proof. Let a> 0 and x € X. Then

t-+h
%R(t +h)x = —AR(t + h)x + J B(t +h —s)R(s)x ds
0

= —AR(t +h)x + Jt B(t — $)R(s + h)x ds
0

t+-h
+ J B(t +h — s)R(s)x ds.

t

We deduce that R(¢ + h)x satisfies the equation of the form
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% (t) = —Ay(t) + JOB(t — s)y(s)ds —|—f(t).

Then by the variation o constante formula, it follows that

R(t —5) JHh B(s +h —u)R(u)x du ds

s

R(t+h)x =R(t)R(h)x + Jt
0

h ¢

R(h —s) JOB(u)R(s +1t—u)x duds.

= R(WR(t)x + J

0
Which yields that

h t

R(h —3s) J B(u)R(s +t — u)x duds.

R(t + h)x — R(R(E)x = J
0

0

Taking the a—norm, we obtain that

hq

—_— ds
o (h—s)

IA“(R(t + h)x — R(WR(E)] < N J r B(w)R(s + £ — )edlu

0

h t
< NO,J #J b(u)|A’R(t +s — u)x||duds

o(h—5)")o
hods (Y b(u)
g R e

Let p be such that 1/q + 1/p = 1, so p <1/p. Then it follows that
a 5 " ds
IA*(R(t + h)xc — R(A)R()) | < NaDNgllbl a0 o |~ || 1 0.0 el

And the proof is complete.

The local existence result is given by the following Theorem.

Theorem 4.2. Suppose that (V1)-(V3), (HO), and (H2) hold. Moreover, assume
that F defined from ] x Q into X is continuous where J x Q is an open set in
R, x C,. Then for each ¢ € Q, Eq. (1) has at least one mild solution which is defined
on some interval [0, b].

Proof. Let ¢ € Q. For any real { € J and p > 0, we define the following sets:

I;={t:0<t<¢} and H,={¢p€Cy: ||, <p}

For ¢ € H,, we choose { and p such that (t,¢ + ¢) € I; x H, and H,CQ. By
continuity of F, there exists N1 > 0 such that ||F(t,¢ + ¢)|| < N1 for (¢, ¢) in I; x H),.
We consider ¢ € C([—7,(]; Y,) as the function defined by @(t) = R(t)p(0) fort € I,
and @, = ¢. Suppose that p <p and choose 0 <b < { such that

b
d
NaN1J057j<? and ||¢; —¢|,<p—pfort el,.

Let Ko = {n € C([-7,b};Ya) : 79 = 0 and ||n,||, <P for 0<t < b}. Then we have
|\E(t, @, +n,)|| < N1for 0<t<bandn € Ky, since ||, + @, — ¢||, < p. Consider the
mapping S from Ky to C([—7,b];Y,) defined by (Sy)(0) = 0
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t

(Sn)(t) = JOR(t—s)F(s,nS +@,)dsfor 0<t<h. (13)

Notice that finding a fixed point of S in K is equivalent to finding a mild

solution of Eq. (1) in K. Furthermore, S is a mapping from K to Ko, since if 5 € K
we have (Sy), = 0 and

t

H@@@Msﬁﬂﬁwﬁ—ﬂﬂnm+@mm.

Then

SOl < Nots | 5

which implies that S(K() € Ko. We claim that {(Sy)(¢)) : # € Ko} is compact in
Y, for fixed t € [—r,b]. In fact, let §§ be such that 0 <a <  <1. The above estimate
show that {Aﬂ (Sn)(t) : n € Ko} is bounded in X. Since A’ is compact operator, we
infer that { A PA”(Sn)(t) : n € Ko} is compact in X, hence {(Sy)(t) : 7 € Ko} is
compact in Y,. Next, we show that {(Sy)(¢) : # € Ko} is equicontinuous. The

equicontinuity of {(Sy)(¢) : n € Ko} att = 0 follows from the above estimation of
(Sn)(t). Now let 0 <t <t < b with ty be fixed. Then we have

o

[A“((Sn) () — (Sn)(z0)) SJO |A%(R(2 — ) — R(t —t0)R(to — $))F (s, + ;)| ds

Lo

A*(R(t —tg) — I)J R(to —s)F(s,n, + @,)ds

.
0

A
+jnAma—wmam+amm.

o

(14)

Using Theorem 4.1, it follows that

[A“((Sn) () — (Sn) (o))l
< tONlMJ 0 s_fj +

o

(R(t —to) — )A® Jo R(to —s)F(s,n, + @,)ds

t—to
+ NaNl J —ds.
o

As the set {(Sy)(to) : 7 € Ko} is compact in Y,, we have

lim [|(Sn)(¢) — (Sn)(to)||, = O uniformly in 7 € K.

-ty

We obtain the same results by taking t( be fixed with 0 <t <t; < b. Then we
claim that lim,_., ||(Sn)(t) — (Sn)(to)||, = O uniformly in # € K, which means that
{(Sn)(t) : n € Ko} is equicontinuous. Then by Ascoli-Arzela theorem, {Sy : n € Ko}
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is relatively compact in K. Finally, we prove that S is continuous. Since F is
continuous, given ¢ > 0, there exists 6 > 0, such that

sup ||n(s) —7(s)||, <& implies that ||F(s,n, + @,) — F(s,71(s) + @,)|| <e.

0<s<bh

Then for 0 <t < b, we have

I(S)(0) = (SOl <N. | =5z IFs.,+5) = Fle.(6) +3,) s

t
SNasz é
05"

This yields the continuity of S, and using Schauder’s fixed point theorem, we
deduce that S has a fixed point. Then the proof of the theorem is complete.

The following result gives the blowing up phenomena of the mild solution in
finite times.

Theorem 4.3. Assume that (V1)-(V3), (HO), and (H2) hold and F is a contin-
uous and bounded mapping. Then for each ¢ € C,, Eq. (1) has a mild solution «(., ¢)
on a maximal interval of existence [—1/’, b(p). Moreover if b, < o0, then
limtﬂb; ||u(t7 QO) ||(x = +oo.

Proof. Let u(., ) be the mild solution of Eq. (1) defined on [0, b]. Similar argu-
ments used in the local existence result can be used for the existence of b1 >b and a
function u(.,u;) defined from [b, b1] to Y, satisfying

t

u(t,up(.,¢)) = R(t)u(b,p) + L R(t — 5)F(s,u,)ds fort € [b, b1].

By a similar proceeding, we show that the mild solution #(., ¢) can be extended
to a maximal interval of existence [—V, b(p). Assume that b, < + co0 and

mt_,b; |lu(t, @)|l, < + oo. There exists N, > 0 such that ||F(s, u;)|| < N,, for

s € [0,b,). We claim that «(., ¢) is uniformly continuous. In fact, let
0<h<t<t+h<b,. Then

u(t +h) —u(t) = (Rt +h) — R(£))p(0) + J; (R(t +h —s) — R(t — 5))F(s, u;) ds

t+h
+ J R(t+h —s)F(s,u,)ds.

t

By continuity of A“R(t), we claim that A*(R(t + &) — R(t))(0) is uniformly
continuous on each compact set. Moreover, Theorem 4.1 implies that
A*(R(t+h —s) —R(t —s))F(s,u;) — 0 uniformly in ¢ when 2 — 0. In fact we have

fumc+h—o—R@—»wuwomm
0

san@+h—w—meu—nﬁvwam¢
+||(R(h) — DA [y R(t — s)F(s, us)ds|

Then using Theorem 4.1, we obtain that

10
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ana+h—w—R@—nﬁvm»M$

h ¢
< bq,NzMJ ii;—k H(R(h) - I)A“J R(t — s)F(s,u)ds
0 0

We claim that the set {A” [{ R(t — s)F(s,u,)ds : t € [0,b,,) } is relatively compact.
In fact, let (¢,), s o be a sequence of [0,b,,). Then there exist a subsequence (t,,),

and a real number ¢y such that¢,, — ¢y. Using the dominated convergence theorem,
we deduce that

Lk Lo
J AR (ty, — s)F(s,u)ds — J A’R(to — s)F(s,u)ds.
0 0

This implies that {A“ [{ R(t — s)F(s,u;)ds : t € [0,b,)} is relatively compact.
Now using Banach-Steinhaus’ theorem, we deduce that

(R(h) —I)A“ J;R(t —5)F(s,u;)ds — 0

uniformly when 2 — 0 with respect to ¢ € [0,b,,). Moreover we have

" ds

S_(Z .

t4-h
| J R(t+h —s)F(s,u)ds||, < NzNaJ

t

Consequently |[u(¢ + k) — u(t)||, — 0 as h — O uniformly int € [0,b,,). If
h < 0, that is, for ¢t < ty, we have

t

u(t) —u(to) = (R(t) — R(t0))9(0) — JO (R(to —s) — R(to — £)R(t — 5))F (s, us) ds

t 1o

R(t — s)F(s,us)ds — J R(to — s)F (s, u)ds,

t

—wm—WJﬁ

0

one can show similar results by using the same reasoning. This implies that
u(., ) is uniformly continuous. Therefore lim, ., u(t, ¢) exists in Y,. And conse-

quently, (., ¢) can be extended to b,, which contradicts the maximality of [0,5,).
The next result gives the global existence of the mild solutions under weak
conditions of F. To achieve our goal, we introduce a following necessary result
which is a consequence of Lemma 7.1.1 given in ([21], p. 197, Exo 4).
Lemma 4.4. [21] Let a,a,b >0, #<1and 0 <d < co. Also assume that v is
nonnegative and locally integrable on [0, d) with

L ou(s)
v(t) < :—a+bJ0 (t_s>ﬁds fort € (0,d).

Then there exists a constant M, = M,(a, b, a, 3,d) < oo such that v(t) < M, /t*
on (0,d).

Theorem 4.5. Assume that (V1)-(V3), (HO), and (H2) hold and Fis a
completely continuous function on R, x C,. Moreover suppose that there exist
continuous nonnegative functions f, and f, such that ||[F(¢,¢)|| < f,(¢)|le], +f,()
for ¢ € C, and t > 0. Then Eq. (1) has a mild solution which is defined for ¢ > 0.

11
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Proof. Let [0,b,,) be the maximal interval of existence of a mild solution u(., ¢).
Assume that b, < + 0. By Theorem 4.3 we have EH; |lu(t, 9)||, = +o0. Recall
that the solution of Eq. (1) is given by #¢o = ¢ and

t

u(t,p) = R(t)p(0) + JOR(t — $)F(s,us(.,)) ds for t € [0,b,).

Then taking the a—norm, we obtain

b, t

ds 1
e )1 < IR O], + ko | " ds +al, | szl

0

where k; = maxo<, <y, |f;(¢)] and k; = maxo<,<y, |f,(¢)|. Then we deduce that

t 1 bwd
||u(t,fp)||aSNH€0(0)||a+k1NaJ ———5 Ssup ||u(T;¢)||ad5+k2NaJ 7: (15)
o(t—s) 0

—r<7<s§

Now we claim that the function

t
1
t— | ——5 su u(z, )|, ds,
|, =57 e lute.ol

—r<7<5s

is nondecreasing. In fact, let 0 < ¢; <t,. Then

11 1 t1 1
j— sup lu(e,@)lpds= | = sup [u(e, )] ds

a
0 (tl_s) —r<1t<s oS —r<1<t1—s

5]

= sup  |u(z, @) ds

05 —r<1<1tr—s
ty 1
= G s (o)l

JOo (tz —r<t<s

IA

which yields the result. Then it follows from Eq. (15) that

t

by d 1
sup Hu(s,(p)HaSNHfﬂ(O)Ha+kzNaj s—jd5+k1NaJ )" sup ||u(z, @)l ,ds.

—r<s<t 0 O(t_ —r <175

Then using Lemma 4.4, we deduce that (., ¢) is bounded in [0,b,,). Then we

obtain that mtﬂb; |lu(t, ¢)||, < o, which contradicts our hypothesis. Then the mild
solution is global.

We focus now to the compactness of the flow defined by the mild solutions.

Theorem 4.6. Assume that (V1)-(V3) and (HO)-(H2) hold. Then the flow U(%)
defined from C, to C, by U(t)p = u,(., ¢) is compact for ¢ > r, where u,(., ¢) denotes
the mild solution starting from ¢.

Proof. We use Ascoli-Arzela’s theorem. Let E = {q)y (Y € F} be a bounded subset

of C, and let ¢ > r be fixed, but arbitrary. We will prove that U(¢)E is compact. It
follows from (H1) and inequality Eq. (7) that there exists N5 such that

|F(z,u:(9,))|| < Na||lue (@,)) | + IF (2, 0)|| = Ns fory € T.

12
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For each y €I, we define f , € Co by f , = ut(., gay). We show now that for fixed
0 € [-r,0], the set {fy(é) Ly € F} is precompact in Y,. For any y € I', we have

t+6
f,(0) =R(t+0)p,(0) + JO R(t + 0 — $)F(s,us(., p)) ds.

As R(t) is compact for t > 0, we need only to prove that the set

{Jt+0R(t+ 0 —$)F(s,us(..,))ds : v € F}

0

is compact. Also we have

p ({R(s) Jt+9_€R(t +0—e—$)F(s,us(p))ds 7 € r}) -0,

0

where yu is the measure of non-compactness. Moreover, using Theorem 4.1, we

have

t+0—¢
< JO IR+ 0 —5) — RER(E + 0 — & — ) F(s, us(-, 9))|., ds

A GHHR(;: 40— —5)—R(R(E+0— e —)F(s,ul., goy))ds)
0

SNSMJ —S—> 0 as €—0.
0S¢
We deduce that

M({Jt+9£R(t +0—F(s,u(,))ds v € r}) - 0.

0

On the other hand, for 0 <a < <1, we have

0 140
HA/}J R(t+ 6 —s)F(s,us(., ,))ds SJ ||R(t+9—5)F(s,us(.,qoy))||ﬁds

t+0—¢ 1+0—¢
t+0 ds
SN/}NSJ T B
t+0—¢ (t+9—5)
“d
:NﬁNSJ —;—> 0 as &£—0.
0

146
Thus {Aﬁj R(t+60—s)F(s,us(.,,))ds : y € F} is a bounded subset of X.

t+0—¢
The precompactness in Y, now follows from the compactness of A : X — Y,
Then the set {(U(¢)E)(0) : —r< 0< 0} is precompacted in Y,. We prove that the

family {fy (Y E F} is equicontinuous. Let y inT, 0<e<t—7, and —r<0 <0< 0
with 6 be fixed and & = 6 — 0. Then

13
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A%(f,(h+0) ~£,0)) | < IR + 6+ h) ~R( + )0, (0)],

+ v HA“(R(H— 0+h —s) — R(h)R(t+9 —s))F(s,uS(.,(py)Hds

t+0 .
+ (R(h)—I)AﬂJ R(t+0 —5)F(s,u(.,,)) ds
0
t+0-+h A
+1 AR+ 0 +h —5)F(s,ui..0,))|| ds.
t+6

Then it follows that

A1, 04.8) ~£,(0)) | < | (Rle+0-+0) ~ R+ 0)) a0, 0] + pns(e+0) [ 2

(R(h) —I1)A“ J;+9 R(t+ 0 — $)F(s,us(.,,)) ds

_|_

" ds

s—(l .

+N5NaJ
0

Using the compactness of the set {A“ SR+ 60— s)F(s,us(.,,))ds 1y € F}
and the continuity of t — R(t)x for x € X, the right side of the above inequality can
be made sufficiently small for 2 > 0 small enough. Then we conclude that
{f LV E F} is equicontinuous. Consequently, by Ascoli-Arzela’s theorem, we

conclude that the set {U(t)¢ : ¢ € E} is compact, which means that the operator
U(t) is compact for t >r.

5. Regularity of the mild solutions

We define the set C. by C: = C*([~r, 0]; Y,) as the set of continuously differen-
tiable functions from [—7, 0] to Y,. We assume the following hypothesis.

(H3) F is continuously differentiable, and the partial derivatives D,F and D ,F
are locally Lipschitz in the classical sense with respect to the second argument.

Theorem 5.1. Assume that (V1)-(V3), (H1), and (H3) hold. Let ¢ in C}x be such
that ¢(0) € Y and ¢(0) = —A¢@(0) + F(0, ¢). Then the corresponding mild solution
u becomes a strict solution of Eq. (1).

Proof. Let a > 0. Take ¢ € C! such that ¢(0) € Y and ¢(0) = —A¢(0) + F(0, ¢),
and let # be the mild solution of Eq. (1) which is defined on [0, + oo[. Consider the
following equation:

v(t) =R()p(0) + J R(t — 5) [D;F (s, us) + Dy F(s, us)v;] ds

t (16)
+ J R(t — 5)B(s)g(0)ds for £ > 0,

\ Vo = @.

Using the strict contraction principle, we can show that there exists a unique
continuous function v solution in [0, a] of Eq. (16). We introduce the function w

defined by

14
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w(t) = {go(O) +J v(s)dsif t>0,

o(t) if —r<t<O0.

Then it follows

t
Wy :¢+J v, ds fort € [0,a].
0

Consequently, the mapst — w; and t — fé R(t —5)F(s, w;)ds are continuously
differentiable, and the following formula holds

t

F L R(e = s)E(s,ws)ds = R(©)F(0,w0) + JO R(t = 5)[DiF(5,0,) + D,F(s,w)v,] ds

t
— RI)F(0, ) + J R(t — ) [DiF(s,w3) + DyF(s, w.)oy] d.
0
This implies that

t

Rt — )F(s,w,)ds — L JO R(s — 7)[DeF(r,ws) + D F(r,w,),] deds.

Jt R(5)F(0, ) ds — J

0 0

On the other hand, from equality Eq. (4), we have

—J R(s)Ap(0)ds = R(t)p(0) — ¢(0) — J JS R(s — 7)B(7)(0)dzds.

0 0JO

We rewrite w as follows:

R(s)Ap(0)ds + J; R(s)F(0, @) ds

+ J R(s — 7)[DF(t,u;) + D,F(z,u.)v;| drds
0Jo

i J; J;R(S —7)B(2)¢(0)dzds.

Then it follows that

t S
+ J J (DyF(z,u:)v, — D,F(t,w,)v;) drds.
0Jo

We deduce, fort € [0,a], that

t

[u(2) — w(t)|, < . |A“R(t — s)(F(s, us) — F(s,ws))]| ds

+ t JS |A®R(s — 7)(D.F(z,u,) — D.F(z,w,))||drds (17)
JoJo

+f J |A“R(s — 7)(D,F(z,u.) — D,F(z,w.))v.||dzds.
0JO

15
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The set H = {u;,w; : s € [0,a]} is compact in C,. Since the partial derivatives of F
are locally Lipschitz with respect to the second argument, it is well-known that they
are globally Lipschitz on H. Then we deduce that

Jue) = 0O, < Nok(@) | sl = o
e sup o)~ ()]s

0(t—=5)"0<r<a

< Noh(a) J

where h(a) = LgN, + aN,Lip(DF) + aN,Lip(D,F), with Lip(D,F) and
Lip(D,F) the Lipschitz constant of D,F and D,F, respectively, which implies that

= wl, < (Nobla) [ 5 )=l

If we choose a such that

then# = w in [0,4]. Now we will prove that # = w in [0, +o0). Assume that there
exists £o > 0 such that u(to) # w(to). Lett; = inf{t >0 : |lu(t) —w(z)|| > 0}. By
continuity, one has # () = w(¢) for t < t;, and there exists ¢ > 0 such that
llu(t) —w(t)|| >0 fort € (t1,t; + €). Then it follows that for ¢ € (t1,¢1 + ¢€),

||u(t)—W(t)||aSNah(8)rij sup lu(z) = w(z)l,-

0% e<t<t1+e

Now choosing ¢ such that

then # = w in [t1,¢; + €] which gives a contradiction. Consequently, (t) = w(t)
fort > 0. We conclude that ¢ — %, from [0, +) to Y, and t — F(¢,u,) from
[0, +0) x C, to X are continuously differentiable. Thus, we claim that « is a strict
solution of Eq. (1) on [0, +o0) [22-31].

6. Application

For illustration, we propose to study the model Eq. (2) given in the Introduction.
We recall that this is defined by

( 0 02 t 62
gw(t,x) = ﬁw(t,x) + Lh(t —) ﬁw(s,x)ds

0
+J g(t,iw(t+9,x)>d9fort20 and x € [0, 7],
AN (18)

w(t,0) =w(t,n) = 0fort>0,

L w(0,x) =wo(0,x) for € [—r,0] and x € [0, ],
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where wg : [-7,0] x [0,7] = R, g: Ry x R — Rand & : Ry — R+ are appropri-
ate functions. To study this equation, we choose X = L*([0, z]), with its usual norm
||.||- We define the operator A : Y = D(A) cX — X by

Aw = —w'" with domain D(A) = H*(0,7z) nHj(0, z),

and B(t)x = h(t)Ax € X, for>0,x € Y. For a = 1/2, we define
Yy = ( ( ) |- |1/2> where |x|1/2 — |AY?x|| for each x € Y1/,. We define
Cipp = ([ r, 0], Y4 /2) equipped with norm ||, and the functions # and ¢ and F

by u(t) = w(t,x), ¢(0)(x) =wo(0,x) fora.ex € [0,z] and 6 € [-r,0], t >0, and
finally

F(t,p)(x) = Ji g(t,%(p(&)(x))dé fora.e x € [0,7] and ¢ € Cy)s.

Then Eq. (18) takes the abstract form

du(t) = —Au(t) + Jt B(t — s)u(s)ds + F(t,u;) fort >0,
dt 0 (19)

uo =@ € Cypp = C([—V, O],D(A1/2>]>,

The —A is a closed operator and generates an analytic compact semigroup
(T(t)),»o on X. Thus, there exists 6 in (0,7/2) and M > 0 such that

A= {1€C:largd| < Z+ 5}U{0} is contained in p(—A), the resolvent set of —A,
and ||R(4,—A)|| <M/|4| for A € A. The operator B(t) is closed and for x € Y,
|B()x|| < h(t)||x||y- The operator A has a discrete spectrum, the eigenvalues are 7?,
and the corresponding normalized eigenvectors are e, (x) = \/%sin (nx),n =1,2, --.

Moreover the following formula holds:
LAu =357 n*(u,e,)e, u € D(A).

i, A7V2y = S Yu,eye, foru € X.

n=1ln
il AY%u = 3" n(u,e,)e, foru € D(A1/2> ={ueX:Y 2 u,e,)e, € X}.

One also has the following result.
Lemma 6.1 [16] Let ¢ € Y1,. Then ¢ is absolutely continuous, ¢ € Xand

! 1
o Il = 1A%l

We assume the following assumptions.

(H4) The scalar function k(.) € L*(0, o) and satisfies g, (1) =1 +h* (1) # 0
(h* the Laplace transform of h) and 4g;*(1) € A for 2 € A. Further, 1" (1) — 0 as
14| — o0, forae Aand (h* (1)) = o(|A").

(H5) The functiong : Ry x R — R is continuous and Lipschitz with respect to
the second variable.

By assumption (H4), the operator

p(2) = (A +g, (WA =g (Ag* (I + A)_1 exists as a bounded operator on X,

17
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which is analytic in A and satisfies ||p(4)|| <M/|4|. On the other hand, for x € X, we
have

Ap(A)x = AL +g,(MA) 'x

= (A+ g7 (DI — Jgr" (WD) (AL +g,(DA) '«

— g () |1 -4 (W) (g 1 + 4) ],

Since Ag7*(4) (Ag7 H(A)I + A)_1 is bounded because g; (1) € A, then ||Ap(1)x|| has
the growth properties of g7 % (1) which tends to 1 if || goes to infinity. Then we

deduce that Ap(4) € £(X). Moreover, it is analytic from A to £(X). Now, forx € Y,
one has

Ap(N)x =g ' () (g7 (DI + A)_le and B* (A)p(A)x = h* (A)p(1)Ax.
Then it follows that
[Ap(A)x|| < M/|All|x]ly and [[B* ()p(A)|| < M/IAl[|x||y-

We deduce that Ap(1) € L(Y,X),B* (1) =h" (1)A € L(Y,X), and
B*(A)p(4) € L(Y,X). Considering D = Cj’([0, z]), we see that the conditions
(V1)-(V3) and (HO) are verified. Hence the homogeneous linear equation of
Eq. (18) has an analytic compact resolvent operator (R(t)), o- The function F is
continuous in the first variable from the fact that g is continuous in the first
variable. Moreover from Lemma 6.1 and the continuity of g, we deduce that F is
continuous with respect to the second argument. This yields the continuity of F in
Ry x C1/,. In addition, by assumption (H5) we deduce that

IF @, ¢1) — F(£, @)l < 7Ll — @slle, ,-

Then F is a continuous globally Lipschitz function with respect to the second
argument. We obtain the following important result.

Proposition 6.2. Suppose that the assumptions (H4)-(H5) hold. Then Eq. (19)
has a mild solution which is defined for ¢ > 0.
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