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Chapter

Existence, Regularity, and
Compactness Properties in the
α-Norm for Some Partial
Functional Integrodifferential
Equations with Finite Delay
Boubacar Diao, Khalil Ezzinbi and Mamadou Sy

Abstract

The objective, in this work, is to study the alpha-norm, the existence, the
continuity dependence in initial data, the regularity, and the compactness of solu-
tions of mild solution for some semi-linear partial functional integrodifferential
equations in abstract Banach space. Our main tools are the fractional power of linear
operator theory and the operator resolvent theory. We suppose that the linear part
has a resolvent operator in the sense of Grimmer. The nonlinear part is assumed to
be continuous with respect to a fractional power of the linear part in the second
variable. An application is provided to illustrate our results.

Keywords: integrodifferential, mild solution, resolvent operator, fractional power
operator

1. Introduction

We consider, in this manuscript, partial functional equations of retarded type
with deviating arguments in terms of involving spatial partial derivatives in the
following form [1]:

du tð Þ

dt
¼ �Au tð Þ þ

ðt

0
B t� sð Þu sð Þdsþ F t; utð Þ for t≥0,

u0 ¼ φ ∈ Cα ¼ C �r;0½ �;D Aαð Þ�ð Þ,

8

<

:

(1)

where �A is the infinitesimal generator of an analytic semigroup T tð Þð Þt≥0 on a

Banach space X. B tð Þ is a closed linear operator with domain D B tð Þð Þ⊃D Að Þ time-
independent. For 0, α, 1, Aα is the fractional power of A which will be precise in
the sequel. The domain D Aαð Þ is endowed with the norm ∥x∥α ¼ ∥Aαx∥ called
α� norm. Cα is the Banach space C �r;0½ �;D Aαð Þð Þ of continuous functions from
�r;0½ � to D Aαð Þ endowed with the following norm:

∥ϕ∥α ¼ sup
�r≤ θ≤ 0

∥ϕ θð Þ∥α for ϕ ∈ Cα:

1



F : Rþ � Cα ! X is a continuous function, and as usual, the history function
ut ∈ Cα is defined by

ut θð Þ ¼ u tþ θð Þ for θ ∈ �r;0½ �:

As a model for this class, one may take the following Lotka-Volterra equation:

∂u t; xð Þ

∂t
¼

∂
2u t; xð Þ

∂x2
þ

ðt

0
h t� sð Þ

∂
2u s; xð Þ

∂x2
ds

þ

ð0

�r
g t;

∂u tþ θ; xð Þ

∂x

� �

dθ for t≥0 and x ∈ 0; π½ �,

u t;0ð Þ ¼ u t; πð Þ ¼ 0 for t≥0,

u θ; xð Þ ¼ u0 θ; xð Þ for θ ∈ �r;0½ � and x ∈ 0; π½ �:

8
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(2)

Here u0 : �r;0½ � � 0; π½ � ! R, g : Rþ � R ! R and h : Rþ ! R are appropriate
functions.

In the particular case where α ¼ 0, many results are obtained in the literature
under various hypotheses concerning A, B, and F (see, for instance, [2–6] and the
references therein). For example, in [7], Ezzinbi et al. investigated the existence and
regularity of solutions of the following equation:

du tð Þ

dt
¼ �Au tð Þ þ

ðt

0
B t� sð Þu sð Þdsþ F t; utð Þ for t≥0,

u0 ¼ φ ∈ C �r;0½ �;Xð Þ,

8

<

:

(3)

The authors obtained also the uniqueness and the representation of solutions via
a variation of constant formula, and other properties of the resolvent operator were
studied. In [8], Ezzinbi et al. studied a local existence and regularity of Eq. (3). To
achieve their goal, the authors used the variation of constant formula, the theory of
resolvent operator, and the principle contraction method. Ezzinbi et al. in [9]
studied the local existence and global continuation for Eq. (3). Recall that the
resolvent operator plays an important role in solving Eq. (3); in the weak and strict
sense, it replaces the role of the c0 semigroup theory. For more details in this topic,
here are the papers of Chen and Grimmer [2], Hannsgen [10], Smart [11], Miller
[12, 13], and Miller and Wheeler [14, 15]. In the case where the nonlinear part
involves spatial derivative, the above obtained results become invalid. To overcome
this difficulty, we shall restrict our problem in a Banach space Yα ⊂X, to obtain our
main results for Eq. (1).

Considering the case where B ¼ 0, Travis andWebb in [16] obtained results on the
existence, stability, regularity, and compactness of Eq. (1). To achieve their goal, the
authors assumed that �A is the infinitesimal generator of a compact analytic semi-
group and F is only continuous with respect to a fractional power of A in the second
variable. The present paper is motivated by the paper of Travis andWebb in [16].

The paper is organized as follows. In Section 2, we recall some fundamental
properties of the resolvent operator and fractional powers of closed operators. The
global existence, uniqueness, and continuous dependence with respect to the initial
data are studied in Section 3. In Section 4, we study the local existence and bowing
up phenomena. In Section 5 we prove, under some conditions, the regularity of the
mild solutions. And finally, we illustrate our main results in Section 6 by examining
an example.
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2. Fractional power of closed operators and resolvent operator for
integrodifferential equations

We shall write Y for D Að Þ endowed with the graph norm xk k
Y
¼ xk k þ Axk k,

Yα for D Aαð Þ and L Yα;Xð Þ will denote the space of bounded linear operators from
Yα to X, and for Y0 ¼ X, we write L Xð Þ with norm :k k

L Xð Þ. We also frequently use

the Laplace transform of f which is denoted by f ∗ . If we assume that �A generates
an analytic semigroup and, without loss of generality, that 0 ∈ ϱ Að Þ, then one can
define the fractional power Aα for 0, α, 1, as a closed linear operator on its
domain Yα with its inverse A�α given by

A�α ¼
1

Γ αð Þ

ð∞

0
tα�1T tð Þdt,

where Γ is the gamma function

Γ αð Þ ¼

ð∞

0
tα�1e�tdt:

We have the following known results.
Theorem 2.1. [17] The following properties are true.

i.Yα ¼ D Aαð Þ is a Banach space with the norm xj jα ¼ ∥Aαx∥ for x ∈ Yα.

ii.Aα is a closed linear operator with domain Yα ¼ Im A�αð Þ and Aα ¼ A�αð Þ�1.

iii.A�α is a bounded linear operator in X.

iv. If 0, α≤ β then D Aβ
� �

↣D Aαð Þ. Moreover the injection is compact if T tð Þ is
compact for t.0.

Definition 2.2. [18] A family of bounded linear operators R tð Þð Þt≥0 in X is called

resolvent operator for the homogeneous equation of Eq. (3) if:

a.R 0ð Þ ¼ I and R tð Þk k≤ M1 exp σtð Þ for some M1 ≥ 1 and σ ∈ R.

b.For all x ∈ X, t ! R tð Þx is continuous for t≥0.

c.R tð Þ ∈ L Yð Þ for t≥0. For x ∈ Y, R :ð Þx ∈ C1
Rþ;Xð Þ∩C Rþ;Yð Þ, and for t≥0 we

have

R0 tð Þx ¼ �AR tð Þxþ

ðt

0
B t� sð ÞR sð Þxds

¼ �R tð ÞAxþ

ðt

0
R t� sð ÞB sð Þxds:

(4)

What follows is we assume the hypothesis taken from [1] which implies the
existence of an analytic resolvent operator R tð Þð Þt≥0.

(V1) �A generates an analytic semigroup on X. B tð Þð Þt≥0 is a closed operator on

X with domain at least D Að Þ a.e t≥0 with B tð Þx strongly measurable for

each x ∈ Y and B tð Þxk k≤ b tð Þ∥x∥Y, for b ∈ L1
loc 0;∞ð Þ with b ∗

λð Þ abso-
lutely convergent for Reλ.0.
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(V2) ρ λð Þ ¼ λI þ A� B ∗ λð Þð Þ�1 exists as a bounded operator on X which is
analytic for λ ∈ Λ ¼ λ ∈ C : argλj j, π=2þ δf g, where 0, δ, π=2. In Λ if
λj j≥ ϵ.0, there exists M ¼ M ϵð Þ.0 so that ρ λð Þk k≤ M= λj j.

(V3) Aρ λð Þ ∈ L Xð Þ for λ ∈ Λ and is analytic from Λ to L Xð Þ. B ∗ λð Þ ∈ L Y;Xð Þ
and B ∗ λð Þρ λð Þ ∈ L Y;Xð Þ for λ ∈ Λ. Given ϵ.0, there exists a positive
constant M ¼ M εð Þ so that Aρ λð Þxk k þ B ∗ λð Þρ λð Þxk k≤ M= λj jð Þ xk k

Y
for

x ∈ Y and λ ∈ Λ with λ≥ ε and B ∗ λð Þk k↦0 as λj j↦∞ in Λ. In addition,
Aρ λð Þxk k≤ M λj jn∥x∥ for some n.0, λ ∈ Λ with λ≥ ε. Further, there exists

D⊂D A2
� �

which is dense in Y such that A Dð Þ and B ∗ λð Þ Dð Þ are contained

in Y and B ∗ λð Þxk k
Y
is bounded for each x ∈ D and λ ∈ Λ with λj j≥ ϵ.

Theorem 2.3. [1] Assume that conditions (V1)–(V3) are satisfied. Then there
exists an analytic resolvent operator R tð Þð Þt≥0. Moreover, there exist positive con-

stants N,Nα such that R tð Þk k≤ Nand AαR tð Þk k≤ Nα

tα for t.0 and 0≤ α, 1.

We take the following hypothesis.
(H0) The semigroup T tð Þð Þt≥0 is compact for t.0.

Theorem 2.4. [19] Under the conditions (V1)–(V3) and (H0), the
corresponding resolvent operator R tð Þð Þt≥0 is compact for t.0.

3. Global existence, uniqueness, and continuous dependence with
respect to the initial data

Definition 3.1. A function u : 0; b½ � ! Yα is called a strict solution of Eq. (1), if:

i. t ! u tð Þ is continuously differentiable on 0; b½ �.

ii. u tð Þ ∈ Y for t ∈ 0; b½ �.

iii. u satisfies Eq. (1) on 0; b½ �.

Definition 3.2. A continuous function u : 0; b½ � ! Yα is called a mild solution
of Eq. (1) if

u tð Þ ¼ R tð Þφ 0ð Þ þ

ðt

0
R t� sð ÞF s; usð Þds for t ∈ 0; b½ �,

u0 ¼ φ ∈ Cα:

8

<

:

(5)

Now to obtain our first result, we take the following assumption.
(H1) There exists a constant LF.0 such that

F t;φ1ð Þ � F t;φ2ð Þk k≤ LF φ1 � φ2k kα for t≥0 and φ1,φ2 ∈ Cα:

Theorem 3.3. Assume that (V1)–(V3) and (H1) hold. Then for φ ∈ Cα, Eq. (1)
has a unique mild solution which is defined for all t≥0:

Proof. Let a.0. For φ ∈ Cα, we define the set ∧ by

∧ ¼ y ∈ C 0; a½ �;Yαð Þ : y 0ð Þ ¼ φ 0ð Þf g:

The set ∧ is a closed subset of C 0; a½ �;Yαð Þ where C 0; a½ �;Yαð Þ is the space of
continuous functions from 0; a½ � to Yα equipped with the uniform norm topology
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∥y∥α ¼ sup
0≤ t≤ a

∥y tð Þ∥α for y ∈ C 0; a½ �;Yαð Þ:

For y ∈ ∧, we introduce the extension y of y on �r; a½ � defined by y tð Þ ¼ y tð Þ for
t ∈ 0; a½ � and y tð Þ ¼ φ tð Þ for t ∈ �r;0½ �. We consider the operator Γ defined on ∧ by

Γy tð Þ ¼ R tð Þφ 0ð Þ þ

ðt

0
R t� sð ÞF s; ys

� �

ds for t ∈ 0; a½ �:

We claim that Γ ∧ð Þ⊂∧: In fact for y ∈ ∧, we have Γyð Þ 0ð Þ ¼ φ 0ð Þ, and by conti-
nuity of F and R tð Þx for x ∈ X, we deduce that Γy ∈ ∧: In order to obtain our result,
we apply the strict contraction principle. In fact, let u, v ∈ ∧ and t ∈ 0; a½ �. Then

Γ uð Þ � Γ vð Þð Þ tð Þ ¼

ðt

0
R t� sð Þ F s; usð Þ � F s; vsð Þð Þ ds:

Using the α� norm, we have

Aα
Γ uð Þ � Γ vð Þð Þ tð Þk k≤ LFNα

ðt

0

1

t� sð Þα
us � vsk kα ds

≤ LFNα

ðt

0

1

t� sð Þα
sup

0≤ τ≤ a

u τð Þ � v τð Þk kα ds

≤ LFNα

ða

0

ds

sα

� �

u� vk kα:

Now we choose a such that

LFNα

ða

0

ds

sα
, 1:

Then Γ is a strict contraction on ∧, and it has a unique fixed point y which is the
unique mild solution of Eq. (1) on 0; a½ �. To extend the solution of Eq. (1) in a; 2a½ �,
we show that the following equation has a unique mild solution:

d

dt
z tð Þ ¼ �Az tð Þ þ

ðt

a
B t� sð Þ z sð Þdsþ F t; ztð Þ for t ∈ a; 2a½ �,

za ¼ ya ∈ C �r; a½ �;Yαð Þ:

8

<

:

(6)

Notice that the solution of Eq. (6) is given by

z tð Þ ¼ R t� að Þz að Þ þ

ðt

a
R t� sð ÞF s; zsð Þ ds for t ∈ a; 2a½ �:

Let z be the function defined by z tð Þ ¼ z tð Þ for t ∈ a; 2a½ � and z tð Þ ¼ y tð Þ for
t ∈ �r; a½ �. Consider now again the set ∧ defined by

∧ ¼ z ∈ C a; 2a½ �;Yαð Þ : z að Þ ¼ y að Þf g,

provided with the induced topological norm. We define the operator Γa on ∧ by

Γazð Þ tð Þ ¼ R t� að Þz að Þ þ

ðt

a
R t� sð ÞF s; zsð Þ ds for t ∈ a; 2a½ �:

5
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We have Γazð Þ að Þ ¼ y að Þ and Γaz is continuous. Then it follows that Γa∧⊂∧:
Moreover, for u, v ∈ ∧, one has

Aα
Γa uð Þ � Γa vð Þð Þ tð Þk k≤ LFNα

ðt

a

1

t� sð Þα
us � vsk kα ds:

Since u ¼ v ¼ φ in �r;0½ �, we deduce that

Aα
Γa uð Þ � Γa vð Þð Þk k≤ LFNα

ða

0

ds

sα

� �

u� vk kα:

Then we deduce that Γa has a unique fixed point in ∧ which extends the solution
y in a; 2a½ �. Proceeding inductively, y is uniquely and continuously extended to
na; nþ 1ð Þa½ � for all n≥ 1, and this ends the proof.

Now we show the continuous dependence of the mild solutions with respect to
the initial data.

Theorem 3.4. Assume that (V1)–(V3) and (H1) hold. Then the mild solution
u :;φð Þ of Eq. (1) defines a continuous Lipschitz operator U tð Þ, t≥0 in Cα by
U tð Þφ ¼ ut :;φð Þ. That is, U tð Þφ is continuous from 0;∞½ Þ to Cα for each fixed φ ∈ Cα.
Moreover there exist a real number δ and a scalar function P such that for t≥0 and
φ1,φ2 ∈ Cα we have

∥U tð Þφ1 � U tð Þφ2∥≤ P δð Þeδt∥φ1 � φ2∥α: (7)

Proof. We use the gamma formula

Γ 1� αð Þkα�1 ¼

ð∞

0
e�kss�αds,

where k.0 (see [20], p. 265). The continuity is obvious that the map
t ! ut :;φð Þ is continuous. Now, let φ1,φ2 ∈ Cα: If we pose w tð Þ ¼ u t;φ1ð Þ � u t;φ2ð Þ,
then we have

∥w tð Þ∥α ≤ M1e
σt∥φ1 � φ2∥α þ LFNα

ðt

0

eσ t�sð Þ

t� sð Þα
∥ws∥αds: (8)

Let δ a real number be such that

σ � δ,0 and M1max e�δr; 1
� �

LFΓ 1� αð Þ δ� σð Þα�1
, 1:

We define the function P by

P δð Þ ¼ M1M3M4 1�M1M4LFΓ 1� αð Þ δ� σð Þα�1
� 	�1

where

M3 ¼ max eδr; 1
� �

,M4 ¼ max e�δr; 1
� �

:

Fix t.0 and let E ¼ sup0≤ s≤ t e
�δs∥ws∥. If 0≤ τ≤ t, then from Eq. (8), we have

e�δτ∥w τð Þ∥α ≤ M1e
σ�δð Þτ∥φ1 � φ2∥α þ LFNα

ðτ

0

e σ�δð Þ τ�sð Þ

τ � sð Þα
e�δs∥ws∥αds

≤ M1∥φ1 � φ2∥α þ LFM1EΓ 1� αð Þ δ� σð Þα�1:

(9)

6
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If �r≤ τ≤ 0, we have

e�δτ∥w τð Þ∥α ≤ ∥φ1 � φ2∥αM3: (10)

Therefore, Eqs. (9) and (10) imply that

sup�r≤ τ≤ t e
�δτ∥w τð Þ∥α ≤ M1M3∥φ1 � φ2∥Cα þ LFM1EΓ 1� αð Þ δ� σð Þα�1: (11)

For 0≤ t≤ t, we have

e�δt∥wt∥α ¼ sup
�r≤ θ≤ 0

eδθe�δ tþθð Þ∥w tþ θð Þ∥α

≤ M4 sup
�r≤ θ≤ 0

e�δ tþθð Þ∥w tþ θð Þ∥α

≤ M4 sup
�r≤ τ≤ t

e�δτ∥w τð Þ∥α:

(12)

Then from Eqs. (11) and (12), we deduce that for 0≤ t≤ t

e�δt∥wt∥α ≤ M1M3M4∥φ1 � φ2∥α þ LFM1M3EΓ 1� αð Þ δ� σð Þα�1,

which implies that

E≤ M1M3M4∥φ1 � φ2∥α þ LFM1M4EΓ 1� αð Þ δ� σð Þα�1:

Then the result follows.

4. Local existence, blowing up phenomena, and the compactness of
the flow

We start by generalizing a result, obtained in [19] in the case of the usual norm
on X α ¼ 0ð Þ, in the case where α 6¼ 0. We take the following assumption.

(H2) B tð Þ ∈ L Xβ;X
� �

for some 0, β, 1, a.e t≥0 and B tð Þxk k≤ b tð Þ xk kβ for

x ∈ Xβ, with b ∈ L
q
loc 0;∞ð Þ where q. 1= 1� βð Þ:

Theorem 4.1. Assume that (V1)–(V3) and (H2) hold. Then for any a.0, there
exists a positive constant M ¼ M að Þ such that for x ∈ X we have

Aα R tþ hð Þx� R hð ÞR tð Þxð Þk k≤ M

ðh

0

ds

sα
xk k for 0≤ h, t≤ a:

Proof. Let a.0 and x ∈ X. Then

d

dt
R tþ hð Þx ¼ �AR tþ hð Þxþ

ðtþh

0
B tþ h� sð ÞR sð Þx ds

¼ �AR tþ hð Þxþ

ðt

0
B t� sð ÞR sþ hð Þx ds

þ

ðtþh

t

B tþ h� sð ÞR sð Þx ds:

We deduce that R tþ hð Þx satisfies the equation of the form

7
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d

dt
y tð Þ ¼ �Ay tð Þ þ

ðt

0
B t� sð Þy sð Þdsþ f tð Þ:

Then by the variation o constante formula, it follows that

R tþ hð Þx ¼ R tð ÞR hð Þxþ

ðt

0
R t� sð Þ

ðsþh

s
B sþ h� uð ÞR uð Þx du ds

¼ R hð ÞR tð Þxþ

ðh

0
R h� sð Þ

ðt

0
B uð ÞR sþ t� uð Þx duds:

Which yields that

R tþ hð Þx� R hð ÞR tð Þx ¼

ðh

0
R h� sð Þ

ðt

0
B uð ÞR sþ t� uð Þx duds:

Taking the α�norm, we obtain that

Aα R tþ hð Þx� R hð ÞR tð Þxð Þk k≤ Nα

ðh

0

1

h� sð Þα

ðt

0
B uð ÞR sþ t� uð Þxdu

























ds

≤ Nα

ðh

0

1

h� sð Þα

ðt

0
b uð Þ∥AβR tþ s� uð Þx∥duds

≤ NαNβ

ðh

0

ds

h� sð Þα

ðt

0

b uð Þ

t� uð Þβ
∥x∥du:

Let p be such that 1=qþ 1=p ¼ 1, so p, 1=β: Then it follows that

Aα R tþ hð Þx� R hð ÞR tð Þxð Þk k≤ NαNβ bk kLq 0;að Þ u�β












L p 0;að Þ

ðh

0

ds

sα
∥x∥:

And the proof is complete.
The local existence result is given by the following Theorem.
Theorem 4.2. Suppose that (V1)–(V3), (H0), and (H2) hold. Moreover, assume

that F defined from J �Ω into X is continuous where J � Ω is an open set in
Rþ � Cα. Then for each φ ∈ Ω, Eq. (1) has at least one mild solution which is defined
on some interval 0; b½ �.

Proof. Let φ ∈ Ω. For any real ζ ∈ J and p.0, we define the following sets:

Iζ ¼ t : 0≤ t≤ ζf g and Hp ¼ ϕ ∈ Cα : ϕk kα ≤ p
� �

:

For ϕ ∈ Hp, we choose ζ and p such that t;ϕþ φð Þ ∈ Iζ �Hp and Hp⊆Ω: By
continuity of F, there exists N1 ≥0 such that F t;ϕþ φð Þk k≤ N1 for t;ϕð Þ in Iζ �Hp.
We consider φ ∈ C �r; ζ½ �;Yαð Þ as the function defined by φ tð Þ ¼ R tð Þφ 0ð Þ for t ∈ Iζ
and φ0 ¼ φ. Suppose that p, p and choose 0, b, ζ such that

NαN1

ðb

0

ds

sα
, p and φt � φk kα ≤ p� p for t ∈ Ib:

Let K0 ¼ η ∈ C �r; b½ �;Yαð Þ : η0 ¼ 0 and  ηtk kα ≤ p for 0≤ t≤ b
� �

: Then we have
F t;φt þ ηtð Þk k≤ N1 for 0≤ t≤ b and η ∈ K0, since ηt þ φt � φk kα ≤ p: Consider the

mapping S from K0 to C �r; b½ �;Yαð Þ defined by Sηð Þ 0ð Þ ¼ 0

8
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Sηð Þ tð Þ ¼

ðt

0
R t� sð ÞF s; ηs þ φsð Þds for 0≤ t≤ b: (13)

Notice that finding a fixed point of S in K0 is equivalent to finding a mild
solution of Eq. (1) in K0. Furthermore, S is a mapping from K0 to K0, since if η ∈ K0

we have Sηð Þ0 ¼ 0 and

Sηð Þ tð Þk kα ≤

ðt

0
AαR t� sð ÞF s; ηs þ φsð Þk kds:

Then

Sηð Þ tð Þk kα ≤ NαN1

ðt

0

ds

t� sð Þα

≤ NαN1

ðb

0

ds

sα
, p

which implies that S K0ð Þ⊂K0. We claim that Sηð Þ tð Þf Þ : η ∈ K0g is compact in
Yα for fixed t ∈ �r; b½ �: In fact, let β be such that 0, α≤ β, 1. The above estimate

show that Aβ Sηð Þ tð Þ : η ∈ K0

� �

is bounded in X. Since Aα�β is compact operator, we

infer that Aα�βAβ Sηð Þ tð Þ : η ∈ K0

� �

is compact in X, hence Sηð Þ tð Þ : η ∈ K0f g is
compact in Yα. Next, we show that Sηð Þ tð Þ : η ∈ K0f g is equicontinuous. The
equicontinuity of Sηð Þ tð Þ : η ∈ K0f g at t ¼ 0 follows from the above estimation of
Sηð Þ tð Þ. Now let 0, t0, t≤ b with t0 be fixed. Then we have

Aα Sηð Þ tð Þ � Sηð Þ t0ð Þð Þk k≤

ðt0

0
Aα R t� sð Þ � R t� t0ð ÞR t0 � sð Þð ÞF s; ηs þ φsð Þk k ds

þ Aα R t� t0ð Þ � Ið Þ

ðt0

0
R t0 � sð ÞFðs; ηs þ φsÞds

























þ

ðt

t0

AαR t� sð ÞFðs; ηs þ φsÞk kds:

(14)

Using Theorem 4.1, it follows that

Aα Sηð Þ tð Þ � Sηð Þ t0ð Þð Þk k

≤ t0N1M

ðt�t0

0

ds

sα
þ R t� t0ð Þ � Ið ÞAα

ðt0

0
R t0 � sð ÞFðs; ηs þ φsÞds

























þ NαN1

ðt�t0

0

1

sα
ds:

As the set Sηð Þ t0ð Þ : η ∈ K0f g is compact in Yα, we have

lim
t!tþ0

Sηð Þ tð Þ � Sηð Þ t0ð Þk kα ¼ 0 uniformly in η ∈ K0:

We obtain the same results by taking t0 be fixed with 0, t, t0 ≤ b: Then we
claim that limt!t0 Sηð Þ tð Þ � Sηð Þ t0ð Þk kα ¼ 0 uniformly in η ∈ K0 which means that
Sηð Þ tð Þ : η ∈ K0f g is equicontinuous. Then by Ascoli-Arzela theorem, Sη : η ∈ K0f g

9

Existence, Regularity, and Compactness Properties in the α-Norm for Some…
DOI: http://dx.doi.org/10.5772/intechopen.88090



is relatively compact in K0. Finally, we prove that S is continuous. Since F is
continuous, given ε.0, there exists δ.0, such that

sup
0≤ s≤ b

η sð Þ � η̂ sð Þk kα, δ implies that  F s; ηs þ φsð Þ � F s; η̂ sð Þ þ φsð Þk k, ε:

Then for 0≤ t≤ b, we have

Sηð Þ tð Þ � Sη̂ð Þ tð Þk kα ≤ Nα

ðt

0

1

t� sð Þα
F s; ηs þ φsð Þ � Fðs; η̂ sð Þ þ φsÞk kds

≤ Nαε

ðt

0

ds

sα
:

This yields the continuity of S, and using Schauder’s fixed point theorem, we
deduce that S has a fixed point. Then the proof of the theorem is complete.

The following result gives the blowing up phenomena of the mild solution in
finite times.

Theorem 4.3. Assume that (V1)–(V3), (H0), and (H2) hold and F is a contin-
uous and bounded mapping. Then for each φ ∈ Cα, Eq. (1) has a mild solution u :;φð Þ

on a maximal interval of existence �r; bφ
� �

. Moreover if bφ,∞, then

limt!b�φ
u t;φð Þk kα ¼ þ∞.

Proof. Let u :;φð Þ be the mild solution of Eq. (1) defined on 0; b½ �. Similar argu-
ments used in the local existence result can be used for the existence of b1. b and a
function u :; ubð Þ defined from b; b1½ � to Yα satisfying

u t; ub :;φð Þð Þ ¼ R tð Þu b;φð Þ þ

ðt

b
R t� sð ÞF s; usð Þds for t ∈ b; b1½ �:

By a similar proceeding, we show that the mild solution u :;φð Þ can be extended
to a maximal interval of existence �r; bφ

� �

. Assume that bφ, þ∞ and

limt!b�φ
u t;φð Þk kα, þ∞. There exists N2.0 such that F s; usð Þk k≤ N2, for

s ∈ 0; bφ
� �

. We claim that u :;φð Þ is uniformly continuous. In fact, let
0, h≤ t≤ tþ h, bφ. Then

u tþ hð Þ � u tð Þ ¼ R tþ hð Þ � R tð Þð Þφ 0ð Þ þ

ðt

0
R tþ h� sð Þ � R t� sð Þð ÞF s; usð Þds

þ

ðtþh

t
R tþ h� sð ÞF s; usð Þds:

By continuity of AαR tð Þ, we claim that Aα R tþ hð Þ � R tð Þð Þφ 0ð Þ is uniformly
continuous on each compact set. Moreover, Theorem 4.1 implies that
Aα R tþ h� sð Þ � R t� sð Þð ÞF s; usð Þ ! 0 uniformly in t when h ! 0: In fact we have

ðt

0
R tþ h� sð Þ � R t� sð Þð ÞF s; usð Þk kαds

≤

ðt

0
R tþ h� sð Þ � R hð ÞR t� sð Þð ÞF s; usð Þk kαds

þ R hð Þ � Ið ÞAα
Ð t
0 R t� sð ÞFðs; usÞds













Then using Theorem 4.1, we obtain that
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ðt

0
R tþ h� sð Þ � R t� sð Þð ÞF s; usð Þk kαds

≤ bφN2M

ðh

0

ds

sα
þ R hð Þ � Ið ÞAα

ðt

0
R t� sð ÞFðs; usÞds

























:

We claim that the set Aα
Ð t
0 R t� sð ÞF s; usð Þds : t ∈ 0, bφ

� �� �

is relatively compact.

In fact, let tnð Þn≥0 be a sequence of 0; bφ
� �

. Then there exist a subsequence tnk
� �

k

and a real number t0 such that tnk ! t0. Using the dominated convergence theorem,
we deduce that

ðtnk

0
AαR tnk � s

� �

F s; usð Þds !

ðt0

0
AαR t0 � sð ÞF s; usð Þds:

This implies that Aα
Ð t
0 R t� sð ÞF s; usð Þds : t ∈ 0, bφ

� �� �

is relatively compact.
Now using Banach-Steinhaus’ theorem, we deduce that

R hð Þ � Ið ÞAα

ðt

0
R t� sð ÞF s; usð Þds ! 0

uniformly when h ! 0 with respect to t ∈ 0; bφ
� �

. Moreover we have

∥

ðtþh

t
R tþ h� sð ÞF s; usð Þds∥α ≤ N2Nα

ðh

0

ds

sα
:

Consequently u tþ hð Þ � u tð Þk kα ! 0 as h ! 0 uniformly in t ∈ 0; bφ
� �

. If
h≤ 0, that is, for t≤ t0, we have

u tð Þ � u t0ð Þ ¼ R tð Þ � R t0ð Þð Þφ 0ð Þ �

ðt

0
R t0 � sð Þ � R t0 � tð ÞR t� sð Þð ÞF s; usð Þds

� R t0 � tð Þ � Ið Þ

ðt

0
R t� sð ÞF s; usð Þds�

ðt0

t
R t0 � sð ÞF s; usð Þds,

one can show similar results by using the same reasoning. This implies that
u :;φð Þ is uniformly continuous. Therefore limt!b�φ

u t;φð Þ exists in Yα: And conse-

quently, u :;φð Þ can be extended to bφ which contradicts the maximality of 0; bφ
� �

.
The next result gives the global existence of the mild solutions under weak

conditions of F. To achieve our goal, we introduce a following necessary result
which is a consequence of Lemma 7.1.1 given in ([21], p. 197, Exo 4).

Lemma 4.4. [21] Let α, a, b≥0, β, 1 and 0, d,∞: Also assume that v is
nonnegative and locally integrable on 0; d½ Þ with

v tð Þ≤
a

tα
þ b

ðt

0

v sð Þ

t� sð Þβ
ds for t ∈ 0; dð Þ:

Then there exists a constant M2 ¼ M2 a; b; α; β; dð Þ,∞ such that v tð Þ≤ M2=t
α

on 0; dð Þ:
Theorem 4.5. Assume that (V1)–(V3), (H0), and (H2) hold and F is a

completely continuous function on Rþ � Cα. Moreover suppose that there exist
continuous nonnegative functions f 1 and f 2 such that F t;φð Þk k≤ f 1 tð Þ φk kα þ f 2 tð Þ
for φ ∈ Cα and t≥0: Then Eq. (1) has a mild solution which is defined for t≥0.
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Proof. Let 0; bφ
� �

be the maximal interval of existence of a mild solution u :;φð Þ.

Assume that bφ,þ∞: By Theorem 4.3 we have limt!t�φ u t;φð Þk kα ¼ þ∞. Recall

that the solution of Eq. (1) is given by u0 ¼ φ and

u t;φð Þ ¼ R tð Þφ 0ð Þ þ

ðt

0
R t� sð ÞF s; us :;φð Þð Þ ds for t ∈ 0; bφ

� �

:

Then taking the α�norm, we obtain

u t;φð Þk kα ≤ R tð Þk k φ 0ð Þk kα þ k2Nα

ðbφ

0

ds

sα
dsþ k1Nα

ðt

0

1

t� sð Þα
us :;φð Þk kαds,

where k1 ¼ max0≤ t≤ bφ ∣ f 1 tð Þ∣ and k2 ¼ max0≤ t≤ bφ ∣ f 2 tð Þ∣. Then we deduce that

u t;φð Þk kα ≤ N φ 0ð Þk kα þ k1Nα

ðt

0

1

t� sð Þα
sup

�r≤ τ≤ s
u τ;φð Þk kα dsþ k2Nα

ðbφ

0

ds

sα
: (15)

Now we claim that the function

t !

ðt

0

1

t� sð Þα
sup

�r≤ τ≤ s
u τ;φð Þk kαds,

is nondecreasing. In fact, let 0≤ t1 ≤ t2. Then

ðt1

0

1

t1 � sð Þα
sup

�r≤ τ≤ s
u τ;φð Þk kαds ¼

ðt1

0

1

sα
sup

�r≤ τ≤ t1�s
u τ;φð Þk kαds

≤

ðt2

0

1

sα
sup

�r≤ τ≤ t2�s
u τ;φð Þk kαds

¼

ðt2

0

1

t2 � sð Þα
sup

�r≤ τ≤ s
u τ;φð Þk kαds

which yields the result. Then it follows from Eq. (15) that

sup
�r≤ s≤ t

u s;φð Þk kα ≤ N φ 0ð Þk kα þ k2Nα

ðbφ

0

ds

sα
dsþ k1Nα

ðt

0

1

t� sð Þα
sup

�r≤ τ≤ s
u τ;φð Þk kαds:

Then using Lemma 4.4, we deduce that u :;φð Þ is bounded in 0; bφ
� �

. Then we

obtain that limt!b�φ
u t;φð Þk kα,∞, which contradicts our hypothesis. Then the mild

solution is global.
We focus now to the compactness of the flow defined by the mild solutions.
Theorem 4.6. Assume that (V1)–(V3) and (H0)–(H2) hold. Then the flow U tð Þ

defined from Cα to Cα by U tð Þφ ¼ ut :;φð Þ is compact for t. r, where ut :;φð Þ denotes
the mild solution starting from φ.

Proof.We use Ascoli-Arzela’s theorem. Let E ¼ φγ : γ ∈ Γ
� �

be a bounded subset

of Cα and let t. r be fixed, but arbitrary. We will prove that U tð ÞE is compact. It
follows from (H1) and inequality Eq. (7) that there exists N5 such that

F t; ut φγ

� �� �










≤ N2 ut φγ

� �






�

k þ ∥F t;0ð Þ∥ ¼ N5 for γ ∈ Γ:
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For each γ ∈ Γ, we define f γ ∈ Cα by f γ ¼ ut :;φγ

� �

. We show now that for fixed

θ ∈ �r;0½ �, the set f γ θð Þ : γ ∈ Γ

n o

is precompact in Yα. For any γ ∈ Γ, we have

f γ θð Þ ¼ R tþ θð Þφγ 0ð Þ þ

ðtþθ

0
R tþ θ � sð ÞF s; us :;φð Þð Þds:

As R tð Þ is compact for t.0, we need only to prove that the set

ðtþθ

0
R tþ θ � sð ÞF s; us :;φγ

� �� �

ds : γ ∈ Γ

� 


is compact. Also we have

μ R εð Þ

ðtþθ�ε

0
R tþ θ � ε� sð ÞF s; us :;φγ

� �� �

ds : γ ∈ Γ

� 
� �

¼ 0,

where μ is the measure of non-compactness. Moreover, using Theorem 4.1, we
have

Aα

ðtþθ�ε

0
R tþ θ � ε� sð Þ � R εð ÞR tþ θ � ε� sð ÞFðs; usð:;φγÞÞds

� �























≤

ðtþθ�ε

0
R tþ θ � sð Þ � R εð ÞR tþ θ � ε� sð Þð ÞFðs; usð:;φÞÞk kα ds

≤ N5M

ðε

0

ds

sα
! 0 as ε ! 0:

We deduce that

μ

ðtþθ�ε

0
R tþ θ � sð ÞF s; us :;φγ

� �� �

ds : γ ∈ Γ

� 
� �

¼ 0:

On the other hand, for 0, α≤ β, 1, we have

Aβ

ðtþθ

tþθ�ε

R tþ θ � sð ÞFðs; usð:;φγÞÞds

























≤

ðtþθ

tþθ�ε

R tþ θ � sð ÞFðs; usð:;φγÞÞ












β
ds

≤ NβN5

ðtþθ

tþθ�ε

ds

tþ θ � sð Þβ

¼ NβN5

ðε

0

ds

sβ
! 0 as ε ! 0:

Thus Aβ

ðtþθ

tþθ�ε

R tþ θ � sð ÞF s; us :;φγ

� �� �

ds : γ ∈ Γ

� 


is a bounded subset of X.

The precompactness in Yα now follows from the compactness of A�β : X ! Yα.
Then the set U tð ÞEð Þ θð Þ : �r≤ θ≤ 0f g is precompacted in Yα. We prove that the

family f γ : γ ∈ Γ

n o

is equicontinuous. Let γ in Γ, 0, ε, t� r, and �r≤ θ̂ ≤ θ≤ 0

with θ̂ be fixed and h ¼ θ � θ̂. Then

13

Existence, Regularity, and Compactness Properties in the α-Norm for Some…
DOI: http://dx.doi.org/10.5772/intechopen.88090



Aα f γ hþ θ̂
� �

� f γ θ̂
� �

� 	
















≤ R tþ θ̂ þ h
� �

� R tþ θ̂
� �

φγ 0ð Þ












α

þ

ðtþθ̂

0
Aα R tþ θ̂ þ h� s

� �

� R hð ÞR tþ θ̂ � s
� �� �

Fðs; us :;φγ

� �










ds

þ R hð Þ � Ið ÞAα

ðtþθ̂

0
R tþ θ̂ � s
� �

Fðs; usð:;φγÞÞ ds































þ

ðtþθ̂þh

tþθ̂

AαR tþ θ̂ þ h� s
� �

Fðs; usð:;φγÞÞ










 ds:

Then it follows that

Aα f γ hþ θ̂
� �

� f γ θ̂
� �

� 	
















≤ R tþ θ̂ þ h
� �

� R tþ θ̂
� �� �

Aαφγ 0ð Þ










þMN5 tþ θ̂
� �

ðh

0

ds

sα

þ R hð Þ � Ið ÞAα

ðtþθ̂

0
R tþ θ̂ � s
� �

Fðs; usð:;φγÞÞ ds































þN5Nα

ðh

0

ds

sα
:

Using the compactness of the set Aα
Ð tþθ

0 R tþ θ � sð ÞF s; us :;φγ

� �� �

ds : γ ∈ Γ

n o

and the continuity of t ! R tð Þx for x ∈ X, the right side of the above inequality can
be made sufficiently small for h.0 small enough. Then we conclude that

f γ : γ ∈ Γ

n o

is equicontinuous. Consequently, by Ascoli-Arzela’s theorem, we

conclude that the set U tð Þφ : φ ∈ Ef g is compact, which means that the operator
U tð Þ is compact for t. r.

5. Regularity of the mild solutions

We define the set C1α by C
1
α ¼ C1 �r;0½ �;Yαð Þ as the set of continuously differen-

tiable functions from �r;0½ � to Yα. We assume the following hypothesis.
(H3) F is continuously differentiable, and the partial derivatives DtF and DφF

are locally Lipschitz in the classical sense with respect to the second argument.

Theorem 5.1. Assume that (V1)–(V3), (H1), and (H3) hold. Let φ in C
1
α be such

that φ 0ð Þ ∈ Y and _φ 0ð Þ ¼ �Aφ 0ð Þ þ F 0;φð Þ: Then the corresponding mild solution
u becomes a strict solution of Eq. (1).

Proof. Let a.0. Take φ ∈ C
1
α such that φ 0ð Þ ∈ Y and _φ 0ð Þ ¼ �Aφ 0ð Þ þ F 0;φð Þ,

and let u be the mild solution of Eq. (1) which is defined on 0, þ∞½½ . Consider the
following equation:

v tð Þ ¼ R tð Þ _φ 0ð Þ þ

ðt

0
R t� sð Þ DtF s; usð Þ þDφFðs; usÞvs

� �

ds

þ

ðt

0
R t� sð ÞB sð Þφ 0ð Þds for t≥0,

v0 ¼ _φ:

8

>

>

>

>

>

<

>

>

>

>

>

:

(16)

Using the strict contraction principle, we can show that there exists a unique
continuous function v solution in 0; a½ � of Eq. (16). We introduce the function w
defined by
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w tð Þ ¼
φ 0ð Þ þ

ðt

0
v sð Þds if t≥0,

φ tð Þ if � r≤ t≤ 0:

8

<

:

Then it follows

wt ¼ φþ

ðt

0
vs ds for t ∈ 0; a½ �:

Consequently, the maps t ! wt and t !
Ð t
0 R t� sð ÞF s;wsð Þds are continuously

differentiable, and the following formula holds

d

dt

ðt

0
R t� sð ÞF s;wsð Þds ¼ R tð ÞF 0;w0ð Þ þ

ðt

0
R t� sð Þ DtF s;wsð Þ þDφF s;wsð Þvs

� �

ds

¼ R tð ÞF 0;φð Þ þ

ðt

0
R t� sð Þ DtF s;wsð Þ þDφF s;wsð Þvs

� �

ds:

This implies that
ðt

0
R sð ÞF 0;φð Þds ¼

ðt

0
R t� sð ÞF s;wsð Þds�

ðt

0

ðs

0
R s� τð Þ DtF τ;wτð Þ þDφF τ;wτð Þvτ

� �

dτds:

On the other hand, from equality Eq. (4), we have

�

ðt

0
R sð ÞAφ 0ð Þds ¼ R tð Þφ 0ð Þ � φ 0ð Þ �

ðt

0

ðs

0
R s� τð ÞB τð Þφ 0ð Þdτds:

We rewrite w as follows:

w tð Þ ¼ φ 0ð Þ �

ðt

0
R sð ÞAφ 0ð Þdsþ

ðt

0
R sð ÞF 0;φð Þds

þ

ðt

0

ðs

0
R s� τð Þ DtF τ; uτð Þ þDφF τ; uτð Þvτ

� �

dτds

þ

ðt

0

ðs

0
R s� τð ÞB τð Þφ 0ð Þdτds:

Then it follows that

w tð Þ ¼ R tð Þφ 0ð Þ þ

ðt

0
R t� sð ÞF s;wsð Þds

þ

ðt

0

ðs

0
R s� τð Þ ðDτF τ; uτð Þ �DτFðτ;wτÞÞ½ � dτds

þ

ðt

0

ðs

0
DφF τ; uτð Þvτ �DφF τ;wτð Þvτ
� �

dτds:

We deduce, for t ∈ 0; a½ �, that

u tð Þ � w tð Þk kα ≤

ðt

0
AαR t� sð ÞðFðs; usÞ � Fðs;wsÞÞk k ds

þ

ðt

0

ðs

0
AαR s� τð ÞðDτFðτ; uτÞ �DτFðτ;wτÞÞk kdτds

þ

ðt

0

ðs

0
AαR s� τð ÞðDφFðτ; uτÞ �DφFðτ;wτÞÞvτ











dτds:

(17)
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The setH ¼ us;ws : s ∈ 0; a½ �f g is compact in Cα. Since the partial derivatives of F
are locally Lipschitz with respect to the second argument, it is well-known that they
are globally Lipschitz on H. Then we deduce that

u tð Þ � w tð Þk kα ≤ Nαh að Þ

ðt

0

1

t� sð Þα
us � wsk kα ds

≤ Nαh að Þ

ðt

0

1

t� sð Þα
sup

0≤ τ≤ a

u τð Þ �w τð Þk kαds,

where h að Þ ¼ LFNα þ aNαLip DtFð Þ þ aNαLip DφF
� �

, with Lip DφF
� �

and

Lip DtFð Þ the Lipschitz constant of DφF and DtF, respectively, which implies that

u� wk kα ≤ Nαh að Þ

ða

0

ds

sα

� �

u�wk kα:

If we choose a such that

Nαh að Þ

ða

0

ds

sα
, 1,

then u ¼ w in 0; a½ �. Now we will prove that u ¼ w in 0;þ∞½ Þ: Assume that there
exists t0.0 such that u t0ð Þ 6¼ w t0ð Þ. Let t1 ¼ inf t.0 : ∥u tð Þ �w tð Þ∥.0f g: By
continuity, one has u tð Þ ¼ w tð Þ for t≤ t1, and there exists ε.0 such that
∥u tð Þ � w tð Þ∥.0 for t ∈ t1; t1 þ εð Þ. Then it follows that for t ∈ t1; t1 þ εð Þ,

u tð Þ �w tð Þk kα ≤ Nαh εð Þ

ðε

0

ds

sα
sup

ε≤ τ≤ t1þε

u τð Þ � w τð Þk kα:

Now choosing ε such that

Nαh εð Þ

ðε

0

ds

sα
, 1,

then u ¼ w in t1; t1 þ ε½ � which gives a contradiction. Consequently, u tð Þ ¼ w tð Þ
for t≥0. We conclude that t ! ut from 0;þ∞½ Þ to Yα and t ! F t; utð Þ from
0;þ∞½ Þ � Cα to X are continuously differentiable. Thus, we claim that u is a strict
solution of Eq. (1) on 0;þ∞½ Þ [22–31].

6. Application

For illustration, we propose to study the model Eq. (2) given in the Introduction.
We recall that this is defined by

∂

∂t
w t; xð Þ ¼

∂
2

∂x2
w t; xð Þ þ

ðt

0
h t� sð Þ

∂
2

∂x2
w s; xð Þds

þ

ð0

�r

g t;
∂

∂x
w tþ θ; xð Þ

� �

dθ for t≥0 and x ∈ 0; π½ �,

w t;0ð Þ ¼ w t; πð Þ ¼ 0 for t≥0,

w θ; xð Þ ¼ w0 θ; xð Þ for θ ∈ �r;0½ � and x ∈ 0; π½ �,

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

(18)
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where w0 : �r;0½ � � 0; π½ � ! R,  g : Rþ � R ! R and h : Rþ ! Rþ are appropri-

ate functions. To study this equation, we choose X ¼ L2 0; π½ �ð Þ, with its usual norm
:k k. We define the operator A : Y ¼ D Að Þ⊂X ! X by

Aw ¼ �w00 with  domain D Að Þ ¼ H2 0; πð Þ∩H1
0 0; πð Þ,

and B tð Þx ¼ h tð ÞAx ∈ X, for≥0, x ∈ Y: For α ¼ 1=2, we define

Y1=2 ¼ D A1=2
� 	

; �j j1=2

� 	

where xj j1=2 ¼ ∥A1=2x∥ for each x ∈ Y1=2. We define

C1=2 = C �r;0½ �;Y1=2

� �

equipped with norm �j j∞ and the functions u and φ and F

by u tð Þ ¼ w t; xð Þ, φ θð Þ xð Þ ¼ w0 θ; xð Þ for a.e x ∈ 0; π½ � and θ ∈ �r;0½ �, t≥0, and
finally

F t;φð Þ xð Þ ¼

ð0

�r
g t;

∂

∂x
φ θð Þ xð Þ

� �

dθ for a:e x ∈ 0; π½ � and φ ∈ C1=2:

Then Eq. (18) takes the abstract form

du tð Þ

dt
¼ �Au tð Þ þ

ðt

0
B t� sð Þu sð Þdsþ F t; utð Þ for t≥0,

u0 ¼ φ ∈ C1=2 ¼ C �r;0½ �;D A1=2
� 	

�
� 	

,

8

>

<

>

:

(19)

The �A is a closed operator and generates an analytic compact semigroup
T tð Þð Þt≥0 on X. Thus, there exists δ in 0; π=2ð Þ and M≥0 such that

Λ ¼ λ ∈ C : argλj j, π
2 þ δ

� �

∪ 0f g is contained in ρ �Að Þ, the resolvent set of �A,

and R λ;�Að Þk k,M= λj j for λ ∈ Λ. The operator B tð Þ is closed and for x ∈ Y,
B tð Þxk k≤ h tð Þ xk k

Y
. The operator A has a discrete spectrum, the eigenvalues are n2,

and the corresponding normalized eigenvectors are en xð Þ ¼
ffiffi

2
π

q

sin nxð Þ, n ¼ 1, 2,⋯.

Moreover the following formula holds:

i.Au ¼
P∞

n¼1 n
2 u; enh ien u ∈ D Að Þ.

ii.A�1=2u ¼
P∞

n¼1
1
n u; enh ien for u ∈ X.

iii.A1=2u ¼
P∞

n¼1 n u; enh ien for u ∈ D A1=2
� 	

¼ u ∈ X :
P∞

n¼1
1
n u; enh ien ∈ X

� �

:

One also has the following result.

Lemma 6.1 [16] Let φ ∈ Y1=2: Then φ is absolutely continuous, φ
0
∈ X and

∥φ
0

∥ ¼ ∥A
1
2φ∥:

We assume the following assumptions.

(H4) The scalar function h :ð Þ ∈ L1 0;∞ð Þ and satisfies g1 λð Þ ¼ 1þ h ∗
λð Þ 6¼ 0

h ∗ð the Laplace transform of h) and λg�1
1 λð Þ ∈ Λ for λ ∈ Λ. Further, h ∗

λð Þ ! 0 as

λj j ! ∞, for λ ∈ Λ and h ∗
λð Þð Þ

�1
¼ ∘ λj jnð Þ.

(H5) The function g : Rþ � R ! R is continuous and Lipschitz with respect to
the second variable.

By assumption (H4), the operator

ρ λð Þ ¼ λI þ g1 λð ÞA
� ��1

¼ g�1
1 λð Þ λg�1

1 λð ÞI þ A
� ��1

exists as a bounded operator on X,
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which is analytic in Λ and satisfies ρ λð Þk k,M= λj j: On the other hand, for x ∈ X, we
have

Aρ λð Þx ¼ A λI þ g1 λð ÞA
� ��1

x

¼ Aþ λg�1
1 λð ÞI � λg�1

1 λð ÞI
� �

λI þ g1 λð ÞA
� ��1

x

¼ g�1
1 λð Þ I � λg�1

1 λð Þ λg�1
1 λð ÞI þ A

� ��1
h i

x:

Since λg�1
1 λð Þ λg�1

1 λð ÞI þ A
� ��1

is bounded because g�1
1 λð Þ ∈ Λ, then Aρ λð Þxk k has

the growth properties of g�1
1 λð Þ which tends to 1 if ∣λ∣ goes to infinity. Then we

deduce that Aρ λð Þ ∈ L Xð Þ. Moreover, it is analytic from Λ to L Xð Þ. Now, for x ∈ Y,
one has

Aρ λð Þx ¼ g�1
1 λð Þ λg�1

1 λð ÞI þ A
� ��1

Ax and B ∗ λð Þρ λð Þx ¼ h ∗
λð Þρ λð ÞAx:

Then it follows that

Aρ λð Þxk k≤ M=∣λ∣ xk k
Y
and B ∗ λð Þρ λð Þk k≤ M=∣λ∣ xk k

Y
:

We deduce that Aρ λð Þ ∈ L Y;Xð Þ, B ∗ λð Þ ¼ h ∗
λð ÞA ∈ L Y;Xð Þ, and

B ∗ λð Þρ λð Þ ∈ L Y;Xð Þ: Considering D ¼ C∞
0 0; π½ �ð Þ, we see that the conditions

(V1)–(V3) and (H0) are verified. Hence the homogeneous linear equation of
Eq. (18) has an analytic compact resolvent operator R tð Þð Þt≥0. The function F is

continuous in the first variable from the fact that g is continuous in the first
variable. Moreover from Lemma 6.1 and the continuity of g, we deduce that F is
continuous with respect to the second argument. This yields the continuity of F in
Rþ � C1=2. In addition, by assumption (H5) we deduce that

∥F t;φ1ð Þ � F t;φ2ð Þ∥≤ rLf∥φ1 � φ2∥C1=2 :

Then F is a continuous globally Lipschitz function with respect to the second
argument. We obtain the following important result.

Proposition 6.2. Suppose that the assumptions (H4)–(H5) hold. Then Eq. (19)
has a mild solution which is defined for t≥0.
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