
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

1

Chapter

Software Design Considerations
for Mathematics in Mobile Games
Katherine Smith, Yuzhong Shen and Anthony Dean

Abstract

A software system has been designed and developed to allow for the display,
symbolic manipulation, and player entry of mathematics expressions in mobile
games. Display, manipulation, and entry of mathematical expressions are tradi-
tionally difficult tasks. Increased limitations on screen space and user input when
developing for mobile devices only exacerbate these difficulties. The developed
software system balances considerations for ease of use and user interaction with
the desire for players to be able to enter answers in a way that is more flexible and
interactive than multiple choice, which is the dominant method of interactions in
serious games. The software system uses a modular design to separate symbolic
math software components from math display components to facilitate reuse of the
software system. Additionally, the system displays mathematical expression in a
way that is consistent with textbook and handwritten notations to ease the transi-
tion between the game and the classroom. Finally, the system provides affordances
for natural user interaction to promote usability and engagement. This system has
been used to develop a mobile game designed to help students master introductory
calculus and physics at the undergraduate level.

Keywords: game design, serious games, user interaction, STEM education,
human factors

1. Introduction

There are many interventions in higher education that can be implemented
through mobile games. Presenting these interventions using mobile applications is
supported by the fact that 92% of higher education students own at least two mobile
devices [1]. Further, characteristics of mobile technology are converging with
well-known pedagogical principles as they simultaneously evolve to become more
personalized, learner centered, and ubiquitous [2]. Research into mobile learning
effectiveness shows positive results. Additionally, incorporating mobile devices into
mathematics courses specifically leads to enhanced student perception of learn-
ing mathematics [3], which has been shown to be a stronger indicator of positive
outcomes than previous academic success [4].

Traditionally, individuals needed to learn systems with unique languages, such
as LaTeX or MathML, in order to produce readable mathematical content electroni-
cally. Further, text input on mobile devices is difficult and cumbersome [5] and
students identify hindrances typing or entering answers on mobile devices [6].
For mobile games in mathematics and most other STEM courses, it is necessary to
display and manipulate mathematical expressions and formulas. In mathematics,

Game Design and Intelligent Interaction

2

even entering a simple expression can require many more screen taps than one
would expect which can lead to student frustration [7]. This is an issue that must
be overcome as student perception of the ease of use and usefulness of mobile
learning is correlated with the likelihood that they will use it in their coursework
[8]. Particularly in mathematics, difficulties include display, manipulation and
user input of mathematical expressions and use of symbolic methods to determine
whether or not an answer is correct [9]. Complicating this further is the difficulty
of balancing the limited interface with small screen size in order to provide a posi-
tive user experience [10].

Finally, there have been many concerns raised by educators and instructional
designers that indicate the importance of focusing on curricular goals as the pri-
mary focus during the development of applications for mathematics education
[11, 12]. Focusing on the curriculum means not only teaching the right content but
teaching and displaying the content in the right way so that the knowledge students
obtain from a mobile application translates into the classroom. One way this can be
facilitated is by using a system that allows for the correct display, manipulation, and
input of mathematical expressions and objects. While there are many computer-
aided algebra systems available, many of these are either proprietary or require
some method of coding the input to get the desired result making them difficult to
embed in mobile applications or difficult for students to use [13].

To embed mathematics directly into mobile games, the authors have created
a modular system that focuses on allowing students to easily, but freely, input
expressions that are comparable with expressions in their textbooks while keeping
the number of screen taps low. This software system incorporates simplicity and
interactivity which have been identified as key contributors to overall usability in
user interface design [10]. In addition, the system is implemented in two modules.
The first is a set of classes that allow for symbolic manipulation. The second is a set
of classes that aid in the manipulation and display of the expressions inside a game
engine. By incorporating these classes in a game engine, other mobile applications
developed in the same game engine can incorporate the work relatively easily. By
keeping the symbolic classes separate, the system can be ported to a different game
engine by only modifying the display classes.

The remainder of this chapter is organized as follows: Section 2 explores related
work, Section 3 details the methods used to develop the system, Section 4 provides
results from implementing the system in an educational STEM game, and Section 5
concludes the chapter and discusses recommendations for future work.

2. Related work

There are several examples of mobile applications that help students practice
mathematical concepts up to calculus. While most of these are not games, review-
ing them shows what has been accomplished in mobile mathematics display.

One example of a mobile application with practice problems in math including
topics up to differential equations and multivariable calculus is Khan Academy
[14]. Khan Academy is a free repository for content but has been adding questions
to their website and mobile application. Another example is IXL Math [15]. This
application, which requires a paid subscription, includes practice problems up to
calculus. Additionally, there are numerous examples of mathematics in games for
content at and below the level of basic algebra.

The previously mentioned applications tend to limit the keyboard input by
problem type. If a problem does not require trigonometric functions, then these
input keys will not be available. Recently, Nakamura and Nakahara developed an

3

Software Design Considerations for Mathematics in Mobile Games
DOI: http://dx.doi.org/10.5772/intechopen.88177

interface for mathematics input that limits the number of screen taps [7]. They
accomplished this by opening a submenu when a key is touched. The user then
flicks up, down, left or right to insert the corresponding symbol.

The only game to the best of our knowledge that incorporates math beyond
algebra is a game previously developed by the authors to cover topics in precalcu-
lus [13]. This game employed external Python libraries to generate images of the
expressions needed in the game. When this communication was done at run time,
there was a noticeable delay between the function call and display of the expres-
sion. Additionally, interaction was limited because the expressions were generated
as images and it is almost impossible to detect user interactions with mathematical
symbols embedded in images. Finally, it was necessary to distribute the core compo-
nents of a Python installation with the game which increased the package size, mak-
ing mobile deployment infeasible. Generating the images in advance eliminated the
delay and decreased the package size but removed the ability to randomly generate
problems in real time.

3. Methods

The purpose for developing this software system is to create a solution that
allows for display, symbolic computation, and answer entry for introductory,
undergraduate STEM courses including first courses in calculus and physics.
Typical introductory calculus problems include derivatives and integrals of various
functions such as polynomial, rational, and trigonometric functions. By knowing
the most prevalent types of functions, templates were created for the terms of
each function type. The template functions can be added by the player and then
modified to construct a complete answer to a problem. While this system does not
address every problem type in undergraduate STEM courses, the methodology pro-
vides a flexible model that can handle a range of common problems. Additionally,
the model can be extended by developers to cover additional problem types as
needed.

The modular system developed has the following characteristics:

1. Using a consistent software design that supports both expression display and
symbolic manipulation and comparison.

2. Controlling spacing and sizing to optimize both overall size, for readability,
and relative size of expression components, for understandability.

3. Providing affordances to support natural user interaction. That is, displaying
objects in the interface in a way that makes it clear how a user can interact with
them.

For this system, a major goal was to provide a user experience that allowed for
more variability in question answer formatting than multiple choice or matching.
To accomplish this, it was necessary to develop a system that could display a prob-
lem, perform symbolic manipulations to automatically generate the correct answer,
read in the user’s answer, and compare it to the correct answer.

3.1 Software design for manipulation and display

Two parallel sets of classes were developed. Since the current mobile applica-
tion was developed in Unity [16, 17], the classes handling the display needed to be

Game Design and Intelligent Interaction

4

closely linked to game objects and their properties. However, the classes handling
the symbolic mathematics are only dependent on mathematics itself. Therefore, the
symbolic math classes could be well separated from the display classes to facilitate
reuse of the symbolic classes on different development platforms.

3.1.1 Development of symbolic math classes

Since many operations in mathematics are binary operations, mathematical
expressions can be represented as a binary expression tree (Figure 1a). Because the
operations of multiplication and addition are both associative, limiting those opera-
tions to two children was not necessary. This restriction was eliminated to make
checking of expressions easier by allowing more than two terms that are added or
multiplied to be stored in a list (Figure 1b). There are two types of nodes. Internal
nodes are operations while leaf nodes are single terms. To emulate this in code, a set
of three abstract classes was developed (Figure 2). These three classes are inten-
tionally kept very general. Abstract classes allow methods to be defined without
implementation. Every MathObject can be simplified, differentiated, and inte-
grated, but the process for each operation varies for different types of mathematical
objects and therefore must be defined in the classes derived from MathObject.
Therefore, the MathObject class only provides these common functions that are
applicable to expressions and their individual terms. The MathTerm class assumes
that each term has a lead coefficient, exponent, and argument coefficient and that
there is some convention for sorting these terms which will assist with symbolic
comparison of two expressions. The expression class assumes that an expression is
a list of MathObjects (either Expressions or MathTerms) that will be associated by
some binary mathematical operation.

An example of a class deriving from MathTerm would be a TrigTerm. A generic
trigonometric term can be written as follows:

 a sin b (cx) (1)

Figure 1.
(a) Traditional binary expression tree with equivalent mathematical expression. (b) Modified expression tree
used in this work.

5

Software Design Considerations for Mathematics in Mobile Games
DOI: http://dx.doi.org/10.5772/intechopen.88177

In Eq. (1), a corresponds to the leadCoefficient, b corresponds to the exponent,
and c corresponds to the argCoefficient. Additionally, an enumerated variable listing
the allowable trigonometric functions is required.

Using just those four variables, methods to simplify, differentiate, and integrate
a TrigTerm can be defined. For example, the differentiate function has a switch
statement in which each case is determined by the trigonometric function type. The
result of the differentiate method is an expression that is equivalent to the deriva-
tive of the term. Other examples of classes deriving from the MathTerm class are
polynomial, rational, logarithmic, exponential, and so on.

An example of a class that can be derived from the expression class is a sum
class. This class includes methods for simplifying sums by combining terms that
are considered like terms. Polymorphism is utilized to allow use of various methods
to determine which terms are like based on the type of each term. Additionally,
the class includes overloaded operators that allow addition and multiplication of
two sums or a sum and an individual term. This allows the developer to use more
common notation to combine expressions. Since many mathematical expressions
are handled through individual MathTerm objects, the only other expression class
required so far has been a product class. Of course, differences and quotients can be
represented using sums and products, so these are naturally included.

In addition to being able to express longer equations by combining individual
terms through sums (differences) and products (quotients), the next level of com-
plexity would be composite functions, i.e., functions formed by substituting one
function into another function. While these are not handled in the current imple-
mentation, they would be an easy extension. Once the actual function substitution
is handled, derivatives can be expressed as a product using the chain rule. Since the
chain rule is recursive, only a few additional functions would need to be defined to
achieve a complete implementation for composite functions.

3.1.2 Development of display classes

Once the issue of symbolic storage and manipulation is handled, the next step is
to determine a way for the expressions to be displayed to the user in a manner that is
consistent with textbook and handwritten notation. To preserve flexibility, a set of
paired classes was designed for each class derived from MathTerm (Figure 3). This
way if the code is ported to a different tool, the symbolic part can be easily reused.

Figure 2.
Class diagram for abstract MathObject class and two derived classes, which have derived classes that are not
shown in this class diagram.

Game Design and Intelligent Interaction

6

The symbolic classes could be reused directly while the display classes would need
to be rewritten for the target game engine.

An abstract TermController class was designed to handle the connection
between the symbolic MathTerm class and the rendered game object. The
TermController assumes that each term is composed of a list of component game
objects that each have an assigned type, such as coefficient, variable, exponent,
parenthesis, and so on. Additionally, each term is a part of a list of MathTerms and
has an operator that connects it to other elements in the list as well as a button to
delete the term. Finally, the TermController contains a list of modifiable compo-
nents. This is a subset of the list of component game objects and indicates which
components can be modified by the player. When the term is used for player input,
each of the item in this list can be modified. For example, operators can be changed
from plus to minus or times. Additionally, coefficient values can be changed. When
the term is fixed as part of a problem statement, these objects are fixed as well and
cannot be modified.

The TermController also provides virtual functions for updating the term values
and controlling the spacing for display. These functions should be overridden by
each subclass to handle cases for each term type. Since each TermController is
associated with a MathTerm of a given type, a generic class inheriting from the
TermController class is used as a bridge between the abstract term controller class
and the derived classes. Generic classes have one or more type parameters. The
generic class inheriting from the abstract TermController class has a single type
parameter that must be a derived class of MathTerm. For clarity, we will refer to
this class as TermController<T>. This type parameter is used to declare the myTerm
variable which indicates the MathTerm that is associated with the TermController.
This also allows for additional methods that are required for all TermController
objects regardless of the type of the associated MathTerm, such as setting whether
the term can be modified and deleting the term.

Like the derived classes from the MathTerm class, derived classes of the
TermController<T> class specified were developed for each function type to handle
unique aspects of display associated with that function type. An example of one of

Figure 3.
Class diagram showing symbolic and display class.

7

Software Design Considerations for Mathematics in Mobile Games
DOI: http://dx.doi.org/10.5772/intechopen.88177

these derived classes is TrigTermController which is associated with a TrigTerm by
inheriting from TermController<TrigTerm>. This class has Text component vari-
ables for the lead coefficient, argument coefficient, and exponent and a DropDown
component variable for the trigonometric function. These are modifiable com-
ponents. Additionally, the TrigTermController class provides methods to control
spacing within the term based on space available and methods for visually updating
the modifiable components as well as updating the associated TrigTerm. Similar
classes derived from the TermController<T> class have been developed for each
class derived from MathTerm.

3.2 Adaptive sizing for display

On mobile devices, screen size is limited and therefore sizing and positioning
for maximum readability without losing information is important. In mathemati-
cal expressions, this has implications at two levels. At the individual term level,
the sizing and placement of parts of the expression convey meaning. The simplest
examples include exponents and fractions such as y 6 and 1 _

4
 , respectively. At the

expression level, keeping sizing consistent for parts of terms, rather than just terms,
enhances readability and understandability. For example, in an expression contain-
ing a trigonometric term with an exponent and a polynomial term, the exponents
should be approximately the same size.

Methods for screen space sizing and positioning make it easy to control the
sizing of terms relative to each other and the sizing of their parts relative to term
size. This means that it is easy to make a trigonometric term and a polynomial
term the same size overall. However, that means that their corresponding parts
will not be the same size. To address this, custom methods were developed at the
TermController level as well as the overall expression level to ensure consistency.

At the individual term level, it was important to establish a consistent rule for
the sizing relationship between components. A static dictionary was created at
the TermController level to dictate the relative widths of coefficients, variables,
exponents, and so on. Another static variable was created and used to set the aspect
ratio of each character. The aspect ratio allowed for the height of any character to
be calculated given its width, or vice versa. These values were manipulated by the
developers to come up with constant values that resulted in the display and adaptive
sizing being visually consistent with a textbook presentation.

To size components adaptively based on the space available, the width of a term
was calculated by summing the theoretical widths of all its components, consider-
ing that numeric terms have more than one digit. This overall term width is used
to calculate a standard unit of width by dividing the maximum space the term can
occupy by the overall width. Next, the height of the term is calculated by dividing
the width unit by the character aspect ratio. Finally, it is determined whether the
width or height is the limiting factor and the entire term is scaled accordingly by
redefining the width unit if necessary. All calculations are based in screen space and
it is assumed that each term can occupy a box with a given width and height. This
overall box will be sized to control the ratio of the size of this term to other terms in
the expression.

Once all terms are sized individually, they need to be scaled relative to other
terms in the same expression. To accomplish this, the width units for the control-
lers are compared to find the controller that is using the smallest width. This width
is then used as the standard width to resize each term based on its overall length
and the available space. As a result, each term is scaled by the ratio of the standard
width for the entire expression divided by the width unit for the individual term. To
control vertical position, the height of the term with the smallest height is used as

Game Design and Intelligent Interaction

8

the height unit for all terms. The result is an expression that scales to fill the avail-
able space as terms of different types are added and removed.

3.3 Affordances for interaction

To keep the focus on the content being presented, interactions need to be intui-
tive and unencumbered. As previously mentioned, any input on a mobile device can
frustrate the user if not well implemented. In the present case, this was handled by
trading off between flexibility and ease of interaction. There are only certain parts
of the terms and expressions that the user can modify. For example, in a polynomial
term with a single variable such as 3 x 5 , it does not matter whether the variable is
an x or a y. The meaning of the term is the same if the coefficient and the exponent
are the same. This means that instead of having three parts to modify, the user only
has two. In the display, parts that can be modified are shown using a different color,
while static pieces are shown in black.

Another example of limiting flexibility to ease interactivity is in the use of pre-
defined derived classes of MathTerm. This makes sense since mathematics instruction
is usually broken down by function type. For example, it is common in calculus to learn
polynomial differentiation and then move on to other function types. In the current
implementation of the input system, the user is provided with buttons that allow them
to add whole terms of a variety of types to their expressions. Then, they can tap various
parts of the expression to modify their values. If we consider the entry of the term
 3 cos 2 (4x) using a traditional input system on a mobile device it would take at least 14
screen taps including switching between text, numeric, and symbolic keyboards at
least four times. In the present system, entry of this term would take nine screen taps
and require no switching between keyboards as a tap on the 3 will bring up a numeric
only keyboard and a tap on the cosine functions will bring up a list of trigonometric
functions. By knowing which part of the expression is being edited, the number of
options can be greatly reduced from a full keyboard layout with ~30 key options to a
smaller keyboard with ~10 options. Limiting the number of options reduces the time
the user spends searching for the right key.

4. Results

The system developed has been implemented in a mobile game for calculus
and physics. This game covers topics including derivatives, integrals, and function
behavior. All problems are randomly generated at run time. In addition, the answer
is determined and then compared to the user’s answer.

Figure 4 shows how a player would complete a problem asking them to find the
derivative of a polynomial function. In Figure 4a, the initial problem is shown, and
the user can use any of the three buttons to insert a polynomial, rational, or trigo-
nometric term, respectively. In Figure 4b, the player has inserted two polynomial
terms using the polynomial term button. Initially, the coefficients and exponents
are not set to values and the player can tap to edit them. Finally, in Figure 4c, the
player has entered the correct coefficients and exponents and tapped to change
the middle operator to a minus. Once the player taps submit, their answer will be
checked symbolically. They will be told whether they are correct and be shown the
correct answer to the question.

Figure 5 shows (a) an integration problem and (b) an example of how different
types of terms scale together so that the sizing of all components is consistent. In
Figure 5a, the player is asked to find the integral of an expression containing two

9

Software Design Considerations for Mathematics in Mobile Games
DOI: http://dx.doi.org/10.5772/intechopen.88177

polynomial terms. The player has entered two polynomial terms and a constant as their
answer. The lead coefficient is converted from a whole number to a fraction by tapping
and holding. Then the numerator and denominator can be manipulated individually.

Figure 4.
Derivative problem showing (a) problem statement, (b) after player tapped to include a polynomial term, and
(c) after player tapped to add additional term, change a sign and enter coefficients and exponents.

Figure 5.
More examples. (a) Integral question with fractional coefficients and (b) derivative question showing terms
scaled as additional terms are added.

Game Design and Intelligent Interaction

10

5. Conclusions and future work

A system has been designed and developed that allows mathematical expressions
to be embedded in mobile games. This system uses a consistent software design to
support symbolic manipulation and display of expressions. This design facilitates
reuse even if a different game engine is used by clearly separating the classes used
for manipulation from those that implement display. Additionally, spacing and
sizing of expression components are controlled to enhance readability and under-
standing. Finally, affordances are provided to support user interaction. Expressions
are constructed by combining template terms and manipulating the components of
those terms to provide balance between the desire for players to have the freedom
to enter a variety of answers and the complexity, in both manipulation and user
interaction, introduced by allowing answer entry to be truly freeform.

There are several directions that can be addressed in future work. First, addi-
tional classes can be developed to provide the ability to solve problems with differ-
ent function types. Also, when the player is presented with a question, the question
is on a separate panel which removes the player from game play. It would be better
to incorporate the problems more diegetically and incorporate them directly
into the scene of the game. Finally, additional affordances for interaction can be
included that make interactions even more natural. For example, some players may
not find it intuitive to tap and hold to convert a whole number to a fraction. It would
be interesting to study this mode of interaction with alternatives, such as swiping
up or down, to determine which is most intuitive and provides the best outcomes.

Acknowledgements

This work was made possible through the Office of Naval Research STEM under
ONR GRANT11899718.

Conflict of interest

The authors declare no conflict of interest.

Author details

Katherine Smith*, Yuzhong Shen and Anthony Dean
Old Dominion University, Norfolk, Virginia, United States of America

*Address all correspondence to: k3smith@odu.edu

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

11

Software Design Considerations for Mathematics in Mobile Games
DOI: http://dx.doi.org/10.5772/intechopen.88177

[1] Brooks DC. ECAR Study of
Undergraduate Students and
Information Technology. Louisville, CO:
EDUCASE; 2016

[2] Sharples M, Taylor J, Vavoula G.
Towards a theory of mobile learning. In:
Proceedings of mLearn. 2005

[3] Baya’a NF, Wajeeh DM. Learning
mathematics in an authentic mobile
environment: The perceptions of students.
International Journal of Interactive Mobile
Technologies. 2009;3:6-14

[4] Lizzio A, Wilson K, Simons R.
University students’ perceptions of the
learning environment and academic
outcomes: Implications for theory and
practice. Studies in Higher Education.
2002;27(1):27-52

[5] Elias T. Universal instructional
design principles for mobile learning.
The International Review of Research
in Open and Distributed Learning.
2011;12(2):143-156

[6] Gikas J, Grant MM. Mobile
computing devices in higher education:
Student perspectives on learning
with cellphones, smartphones and
social media. The Internet and Higher
Education. 2013;19:18-26

[7] Nakamura Y, Nakahara T. A new
mathematics input interface with flick
operation for mobile devices. MSOR
Connections. 2016;15(2):76-82

[8] Cheon J, Lee S, Crooks S, Song J.
An investigation of mobile learning
readiness in higher education based on the
theory of planned behavior. Computers &
Education. 2012;3:1054-1064

[9] Watson J, Angus SD. Does regular
online testing enhance student
learning? Evidence from a large first-
year quantitative methods course. In:
The Quantitative Analysis of Teaching

and Learning in Higher Education in
Business, Economics and Commerce:
Forum Proceedings. Parkville, VIC,
Australia: University of Melbourne; 2008

[10] Lee D, Moon J, Kim YJ, Mun YY.
Antecedents and consequences of
mobile phone usability: Linking
simplicity and interactivity to
satisfaction, trust, and brand loyalty.
Information and Management.
2015;52(3):295-304

[11] Rubin A. Technology Meets Math
Education: Envisioning a Practical Future
Forum on the Future of Technology in
Education. Technical Education Research
Centers (TERC); 1999

[12] Williams DL, Boone R, Kingley
KV. Eacher beliefs about educational
software: A delphi study. Journal of
Research on Technology in Education.
2004;36(3):213-229

[13] Smith K, Shull J, Dean A, Shen Y,
Michaeli J. SiGMA: A software
framework for integrating advanced
mathematical capabilities in serious
game development. Advances in
Engineering Software. 2016;100:319-325

[14] IXL Learning. IXL Math Online
Math Practice [Online]. 2019. Available
from: https://www.ixl.com/math
[Accessed: 20 May 2019]

[15] Khan Academy. Khan Academy
[Online]. 2019. Available from: https://
www.khanacademy.org [Accessed: 20
May 2019]

[16] Unity Technologies. Unity [Online].
2019. Available from: https://unity.com/
[Accessed: 20 May 2019]

[17] Wu W-H, Wu Y-CJ, Chen C-Y, Kao
H-Y, Lin C-H, Huang S-H. Review of
trends from mobile learning studies: A
meta-analysis. Computers & Education.
2012;59(2):817-827

References

