
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter

Stueckelberg-Horwitz-Piron
Canonical Quantum Theory in
General Relativity and Bekenstein-
Sanders Gauge Fields for TeVeS
Lawrence P. Horwitz

Abstract

A consistent (off-shell) canonical classical and quantum dynamics in the frame-
work of special relativity was formulated by Stueckelberg in 1941 and generalized to
many-body theory by Horwitz and Piron in 1973 (SHP). This theory has been
embedded into the framework of general relativity (GR), here denoted by SHPGR.
The canonical Poisson brackets of the SHP theory remain valid (invariant under
local coordinate transformations) on the manifold of GR and provide the basis for
formulating a canonical quantum theory. The relation between representations
based on coordinates and momenta is given by Fourier transform; a proof is given
here for this functional relation on a manifold. The potential which may occur in the
SHP theory emerges as a spacetime scalar mass distribution in GR. Gauge fields,
both Abelian and non-Abelian on the quantum mechanical SHPGR Hilbert space in
both the single particle and many-body theory, may be generated by phase trans-
formations. Application to the construction of Bekenstein and Sanders in their
solution to the lensing problem in TeVeS is discussed.

Keywords: relativistic dynamics, general relativity, quantum theory on curved space,
non-Abelian gauge fields, Bekenstein-Sanders field, TeVeS

1. Introduction

The relativistic canonical Hamiltonian dynamics of Stueckelberg, Horwitz, and
Piron (SHP) [1] with scalar potential and gauge field interactions for single- and
many-body theories can, by local coordinate transformation, be embedded into the
framework of general relativity (GR). This embedding provides a basis for the work
of Horwitz et al. [2, 3] in their discussion of the origin of the field introduced by
Bekenstein and Sanders [4] to explain gravitational lensing in the TeVeS formula-
tion of modified Newtonian dynamic (MOND) theories [5–10].

The theory was originally formulated for a single particle by Stueckelberg in
[11–13]. Stueckelberg envisaged the motion of a particle along a world line in
spacetime that can curve and turn to flow backward in time, resulting in the phe-
nomenon of pair annihilation in classical dynamics. The world line was then
described by an invariant monotonic parameter τ. The theory was generalized by
Horwitz and Piron in [14] (see also [15, 16]) to be applicable to many-body systems
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by assuming that the parameter τ is universal (as for Newtonian time, enabling them
to solve the two-body problem classically, and later, a quantum solution was found by
Arshansky and Horwitz [17–19], both for bound states and scattering theory).

Performing a coordinate transformation to general coordinates, along with the
corresponding transformation of the momenta (the cotangent space of the original
Minkowski manifold), one obtains [20] the SHP theory in a curved space of general
coordinates and momenta with a canonical Hamilton-Lagrange (symplectic) struc-
ture. We shall refer to this generalization as SHPGR. We discuss the extension of
the Abelian gauge theory described in Ref. [20] to the non-Abelian gauge discussed
in [2, 3].

The invariance of the Poisson bracket under local coordinate transformations
provides a basis for the canonical quantization of the theory, for which the evolu-
tion under τ is determined by the covariant form of the Stueckelberg-Schrödinger
equation [1].

In this chapter, we assume a τ-independent background gravitational field; the
local coordinate transformations from the flat Minkowski space to the curved space
are taken to be independent of τ, consistently with an energy momentum tensor
that is τ independent. In a more dynamical setting, when the energy momentum
tensor depends on τ, the spacetime is evolved nontrivially [20, 21].

2. Embedding of single particle dynamics with external potential in GR

We write the SHP Hamiltonian [1, 11–13] as

K ¼ 1

2M
ημνπμπν þ V ξð Þ (1)

where ημν is the flat Minkowski metric �þþþð Þ and πμ, ξ
μ are the spacetime

canonical momenta and coordinates in the local tangent space of a general manifold,
following Einstein’s use of the equivalence principle.

The existence of a potential term (which we assume to be a Lorentz scalar),
representing nongravitational forces, implies that the “free fall” condition is
replaced by a local dynamics carried along by the free falling system (an additional
force acting on the particle within the “elevator” according to the coordinates in the
tangent space).

The canonical equations are

_ξμ ¼ ∂K

∂πμ
_πμ ¼ � ∂K

∂ξμ
¼ � ∂V

∂ξμ
, (2)

where the dot here indicates d
dτ, with τ the invariant universal “world time.”

Since then

_ξμ ¼ 1

M
ημνπν,

or πν ¼ ηνμM _ξμ,

(3)

the Hamiltonian can then be written as

K ¼ M

2
ημν

_ξμ _ξν þ V ξð Þ: (4)

2

Progress in Relativity



It is important to note that, as clear from (3), that _ξ0 ¼ dt
dτ has a sign opposite to π0

which lies in the cotangent space of the manifold, as we shall see in the Poisson
bracket relations below. The energy of the particle for a normal timelike particle
should be positive (negative energy would correspond to an antiparticle [1, 11–13]).
The physical momenta and energy therefore correspond to the mapping

πμ ¼ ημνπμ, (5)

back to the tangent space. Thus, equivalently, from (2), _ξμ ¼ 1=Mð Þπμ. This sim-
ple observation will be important in the discussion below of the dynamics of a particle
in the framework of general relativity, for which the metric tensor is nontrivial.

We now transform the local coordinates (contravariantly) according to the
diffeomorphism

dξμ ¼ ∂ξμ

∂xλ
dxλ (6)

to attach small changes in ξ to the corresponding small changes in the
coordinates x on the curved space, so that

_ξμ ¼ ∂ξμ

∂xλ
_xλ: (7)

The Hamiltonian then becomes

K ¼ M

2
gμν _x

μ
_xν þ V xð Þ, (8)

where V xð Þ is the potential at the point ξ corresponding to the point x
(a function of ξ in a small neighborhood of the point x) and

gμν ¼ ηλσ
∂ξλ

∂xμ
∂ξσ

∂xν
(9)

Since V has significance as the source of a force in the local frame only through
its derivatives, we can make this pointwise correspondence with a globally defined
scalar function V xð Þ.1

The corresponding Lagrangian is then

L ¼ M

2
gμν _x

μ
_xν � V xð Þ, (10)

In the locally flat coordinates in the neighborhood of xμ, the symplectic structure
of Hamiltonian mechanics implies that the momentum2 πμ, lying in the cotangent
space of the manifold ξμf g, transforms covariantly under the local transformation
(5), that is, as does ∂

∂ξμ
, so that we may define

1 Since V xð Þ has the dimension of mass, one can think of this function as a scalar mass field, reflecting

forces acting in the local tangent space at each point. It may play the role of “dark energy” [2, 3]. If

V ¼ 0, our discussion reduces to that of the usual general relativity, but with a well-defined canonical

momentum variable.
2 We shall call the quantity πμ in the cotangent space as canonical momentum, although it must be

understood that its map back to the tangent space πμ corresponds to the actual physically measureable

momentum.
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pμ ¼
∂ξλ

∂xμ
πλ: (11)

This definition is consistent with the transformation properties of the momen-
tum defined by the Lagrangian (10):

pμ ¼
∂L x; _xð Þ

∂ _xμ
, (12)

yielding

pμ ¼ Mgμν _x
ν: (13)

The second factor in the definition (9) of gμν in (13) acts on _xν; with (7) we then

have (as in (11))

pμ ¼ Mηλσ
∂ξλ

∂xμ
_ξσ

¼ ∂ξλ

∂xμ
πλ:

(14)

As we have remarked above for the locally flat space in (5), the physical energy
and momenta are given, according to the mapping,

pμ ¼ gμνpν ¼ M _xν (15)

back to the tangent space of the manifold, which also follows directly from the
local coordinate transformation of (3) and (5).

It is therefore evident from (15) that

_pμ ¼ M€xμ: (16)

We see that _pμ, which should be interpreted as the force acting on the particle, is
proportional to the acceleration along the orbit of motion (a covariant derivative plus a
gradient of the potential), as described by the geodesic-type relation. This
Newtonian-type relation in the general manifold reduces in the limit of a flat
Minkowski space to the corresponding SHP dynamics and in the nonrelativistic
limit, to the classical Newton law.We remark that this result does not require taking
a post-Newtonian limit, the usual method of obtaining Newton’s law from GR.

We now discuss the geodesic equation obtained by studying the condition

€ξμ ¼ � 1

M
_πμ ¼ � 1

M
ημν

∂V ξð Þ
∂ξν

: (17)

To do this, we compute

€ξμ ¼ d

dτ

∂ξμ

∂xλ
_xλ

� �

¼ ∂
2ξμ

∂xλ∂xγ
_xγ
_xλ

þ ∂ξμ

∂xλ
€xλ ¼ � 1

M
ημν

∂xλ

∂ξν
∂V xð Þ
∂xλ

,

(18)

so that, after multiplying by ∂xσ

∂ξμ
and summing over μ, we obtain
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€xσ ¼ � ∂xσ

∂ξμ
∂
2ξμ

∂xλ∂xγ
_xγ
_xλ

� 1

M
ημν

∂xλ

∂ξν
∂xσ

∂ξμ
∂V xð Þ
∂xλ

:

(19)

Finally, with (9) and the usual definition of the connection

Γ
σ
λγ ¼

∂xσ

∂ξμ
∂
2ξμ

∂xλ∂xγ
(20)

we obtain the modified geodesic-type equation

€xσ ¼ �Γ
σ
λγ _x

γ
_xλ � 1

M
gσλ

∂V xð Þ
∂xλ

, (21)

from which we see that the derivative of the potential V ξð Þ is mapped, under
this coordinate transformation into a force resulting in a modification of the accel-
eration along the geodesic-like curves, that is, (16) now reads

_pμ ¼ M€xν ¼ �MΓ
σ
λγ _x

γ
_xλ � gσλ

∂V xð Þ
∂xλ

(22)

The procedure that we have carried out here provides a canonical dynamical
structure for motion in the curvilinear coordinates. We now remark that the
Poisson bracket remains valid for the coordinates x; pf g. In the local coordinates
ξ; πf g, the τ derivative of a function F ξ; πð Þ is

dF ξ; πð Þ
dτ

¼ ∂F ξ; πð Þ
∂ξμ

_ξμ þ ∂F ξ; πð Þ
∂πν

_πμ

¼ ∂F ξ; πð Þ
∂ξμ

∂K

∂πμ
� ∂F ξ; πð Þ

∂πμ

∂K

∂ξν

� F;K½ �PB ξ; πð Þ:

(23)

If we replace in this formula

∂

∂ξμ
¼ ∂xλ

∂ξμ
∂

∂xλ

∂

∂πμ
¼ ∂ξμ

∂xλ
∂

∂pλ
,

(24)

we immediately (as assured by the invariance of the Poisson bracket under local
coordinate transformations) obtain

dF ξ; πð Þ
dτ

¼ ∂F

∂xμ
∂K

∂pμ
� ∂F

∂pμ

∂K

∂xν
� F;K½ �PB x; pð Þ (25)

In this definition of Poisson bracket, we have, as for the ξμ, πν relation,

xμ; pν
� �

PB
x; pð Þ ¼ δμν: (26)
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The Poisson bracket of xμ with the (physical energy momentum) tangent space
variable pμ has then the tensor form

xμ; pν½ �PB x; pð Þ ¼ gμν: (27)

In the flat space limit, this relation reduces to the SHP bracket,

ξμ; πν½ �PB ξ; πð Þ ¼ ημν: (28)

Continuing our analysis with pμ (we drop the x; pð Þ label on the Poisson bracket

henceforth),

pμ;F xð Þ
h i

PB
¼ � ∂F

∂xμ
, (29)

so that pμ acts infinitesimally as the generator of translation along the coordinate

curves and

xμ;F pð Þ½ �PB ¼ ∂F pð Þ
∂pμ

, (30)

so that xμ is the generator of translations in pμ. In the classical case, if F pð Þ is a
general function of pμ, we can write at some point x,3

xμ;F pð Þ½ �PB ¼ gμν xð Þ ∂F pð Þ
∂pν

: (31)

This structure clearly provides a phase space which could serve as the basis for
the construction of a canonical quantum theory on the curved spacetime.

We now turn to a discussion of the dynamics introduced into the curved space
by the procedure outlined above.

We may also write (22) in terms of the full connection form by noting that
with (9),

∂gλγ
∂xμ

¼ ηαβ
∂
2ξα

∂xλ∂xμ
∂ξβ

∂xγ
þ ∂ξα

∂xλ
∂
2ξβ

∂xγ∂xμ

� �

: (32)

Multiplying by _xγ
_xλ, the two terms combine to give a factor of two. We then

return to the original definition of Γ in (20) in the form

∂
2ξα

∂xλ∂xμ
¼ ∂ξα

∂xσ
Γ
σ
λμ, (33)

so we can write

∂gλγ
∂xμ

_xγ
_xλ ¼ 2ηαβ

∂ξα

∂xσ
∂ξβ

∂xγ
Γ
σ
λμ _x

γ
_xλ

¼ 2gσγΓ
σ
λμ _x

γ
_xλ:

(34)

3 In the quantized form, the factor gμν xð Þ cannot be factored out from polynomials, so, as for Dirac’s

quantization procedure [22–25], some care is required.
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We therefore have

_pμ ¼ � ∂V xð Þ
∂xμ

þMgσγΓ
σ
λμ _x

γ
_xλ: (35)

3. Quantum theory on the curved space

The Poisson bracket formulas (25) and (26) can be considered as a basis for
defining a quantum theory with canonical commutation relations

xμ; pν
� �

¼ iℏδμν, (36)

so that

pμ;F xð Þ
h i

¼ �iℏ
∂F

∂xμ
, (37)

and

xμ;F pð Þ½ � ¼ iℏ
∂F pð Þ
∂pμ

: (38)

The transcription of the Stueckelberg-Schrödinger equation for a wave function
ψ τ xð Þ can be taken to be (see also [26–28])

i
∂

∂τ
ψ τ xð Þ ¼ Kψ τ xð Þ, (39)

where the operator valued Hamiltonian can be taken to be the Hermitian form
(42), written below, on a Hilbert space defined with scalar product (with invariant
measure; we write g ¼ �det gμνf g),

ψ ; χð Þ ¼
ð

d4x
ffiffiffi

g
p

ψ ∗
τ xð Þχτ xð Þ: (40)

To construct a Hermitian Hamiltonian, we first study the properties of the
canonical momentum in coordinate representation. Clearly, in coordinate repre-
sentation, �i ∂

∂xμ is not Hermitian due to the presence of the factor
ffiffiffi

g
p

in the

integrand of the scalar product. The problem is somewhat analogous to that of
Newton and Wigner [29] in their treatment of the Klein-Gordon equation in
momentum space. It is easily seen that the operator

pμ ¼ �i
∂

∂xμ
� i

2

1
ffiffiffiffiffiffiffiffiffi

g xð Þ
p

∂

∂xμ

ffiffiffiffiffiffiffiffiffi

g xð Þ
q

(41)

is essentially self-adjoint in the scalar product (40), satisfying as well as the
commutation relations (36).4

4 The physically observable momentum can be defined, as in (15), as 1
2 gμν; pν
� �

, with commutation

relations of the form (27). This operator can be transformed, as for the Newton-Wigner operator [29], to

the form �i ∂

∂xμ by the Foldy-Wouthuysen transformation [30] g xð Þð Þ14pμ g xð Þð Þ�1
4.
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Since pμ is Hermitian in the scalar product (41), we can write the Hermitian

Hamiltonian as

K ¼ 1

2M
pμ g

μνpν þ V xð Þ, (42)

consistent with the local coordinate transformation of (1). The integration (40)
must be considered as a total volume sum with invariant measure on the whole
space, consistent with the notion of Lebesgue measure and the idea that the norm is
the sum of probability measures on every subset contained. We return to this point
in our discussion of the Fourier transform below.

4. Canonical quantum theory and the Fourier transform

To complete the construction of a canonical quantum theory on the curved space

of GR, we discuss first the formulation of the Fourier transform f xð Þ ! ~f pð Þ for a
scalar function f xð Þ (we shall use xμ and the canonically conjugate pμ in this

discussion). Let us define (g � �detgμν)

~f pð Þ ¼
ð

d4x
ffiffiffiffiffiffiffiffiffi

g xð Þ
q

eipμx
μ

f xð Þ: (43)

The inverse is given by

ð

e�ipμx
μ
~f pð Þd4p ¼

ð

d4pe�ipμ xμ�x0μð Þf x0ð Þ
ffiffiffiffiffiffiffiffiffiffi

g x0ð Þ
q

d4x0 ¼ 2πð Þ4f xð Þ
ffiffiffiffiffiffiffiffiffi

g xð Þ
q

(44)

so that

~f 0 pð Þ ¼ 1

2πð Þ4
ffiffiffiffiffiffiffiffiffi

g xð Þ
p

ð

e�ipμx
μ
~f pð Þd4p: (45)

One sees immediately that under diffeomorphisms, for which with the scalar

property f xð Þ ¼ f 0 x0ð Þ, ~f pð Þ ! ~f 0 pð Þ. The Fourier transform of f 0 x0ð Þ is

~f 0 pð Þ ¼
ð

d4x0
ffiffiffiffiffiffiffiffiffiffi

g x0ð Þ
q

eipμx0
μ

f 0 x0ð Þ, (46)

By change of integration variables, we have

~f 0 pð Þ ¼
ð

d4x
ffiffiffiffiffiffiffiffiffi

g xð Þ
q

eipμx
μ

f 0 xð Þ, (47)

In Dirac notation,

f xð Þ ¼ < x∣f>, (48)

and we write as well

~f pð Þ ¼ < p∣f>: (49)

For
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< x∣p> ¼ 1

2πð Þ4
ffiffiffiffiffiffiffiffiffi

g xð Þ
p e�ipμx

μ

< p∣x> ¼
ffiffiffiffiffiffiffiffiffi

g xð Þ
q

eipμx
μ

,

(50)

we have, for example, the usual action of transformation functions

ð

< x∣p>< p∣f>d4p ¼ < x∣f>, (51)

where we have used

Ð

< x∣p>< p∣x0>d4p ¼ 1

2πð Þ4
ffiffiffiffiffiffiffiffiffi

g xð Þ
p

ð

d4pe�ipμx
μ

eipμx0
μ

ffiffiffiffiffiffiffiffiffiffi

g x0ð Þ
q

¼ δ4 x� x0ð Þ:
(52)

Note that the transformation functions < x∣p> and < p∣x> are not simple com-

plex conjugates of each other, but require nontrivial factors of
ffiffiffiffiffiffiffiffiffi

g xð Þ
p

and its inverse
to satisfy the necessary transformation laws on the manifold. Conversely (the

factors
ffiffiffiffiffiffiffiffiffi

g xð Þ
p

and its inverse cancel), we should obtain

ð

< p0∣x>< x∣p>d4x ¼ δ4 p0 � pð Þ: (53)

The validity of (53) is not obvious on a curved space. We therefore provide a
simple, but not trivial, proof of (53). For

ð

d4peipμ xμ�x0μð Þ ¼ 2πð Þ4 δ
4 x� x0ð Þ

ffiffiffi

g
p (54)

we must have

~f pð Þ ¼ 1

2πð Þ4
ð

d4x

ð

d4p0ei pμ�p0μð Þxmu~f p0ð Þ, (55)

that is, exchanging the order of integrations, on the set ~f pð Þg
n

,

Δ p� p0ð Þ ¼ 1

2πð Þ4
ð

d4xei pμ�p0μð Þxμ ¼ δ4 p� p0ð Þ: (56)

We now represent the integral as a sum over small boxes around the set of points
xBf g that cover the space and eventually take the limit as for a Riemann integral.5 In

each small box, the coordinatization arises from an invertible transformation from
the local tangent space in that neighborhood. We write

xμ ¼ xB
μ þ ημ ∈ box B (57)

where

5 We follow here essentially the method discussed in Reed and Simon [31] in their discussion of the

Lebesgue integral.
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ημ ¼ ∂xμ

∂ξλ
ξλ (58)

and ξλ is in the flat local tangent space at xB.
We now write the integral (56) as

Δ p� p0ð Þ ¼ 1

2πð Þ4
ΣB

ð

B
d4ηei pμ�p0μð Þ xB

μþημð Þ

¼ 1

2πð Þ4
ΣBe

i pμ�p0μð ÞxBμ
ð

B
d4ηei pμ�p0μð Þημ :

(59)

Let us call

IB ¼
ð

B
d4ηei pμ�p0μð Þημ : (60)

In this neighborhood, call

∂xμ

∂ξλ
¼ aμλ Bð Þ, (61)

which we assume a constant matrix (Lorentz transformation) in each box. In
(60), we then have

IB ¼
ð

B

d4ξ
ffiffiffiffiffiffiffiffiffiffi

deta
p ei pμ�p0μð Þaμλ Bð Þξλ : (62)

However, we can make a change of variables; we are left with

IB0 ¼
ð

B
d4ξei pμ�p0μð Þξμ : (63)

in each box.
However, the transformations aμλ Bð Þ in the neighborhood of each point B may

be different, and therefore the set of transformed boxes may not cover (boundary
deficits) the full domain of spacetime coordinates (one can easily estimate that the
deficit from an arbitrarily selected set can be infinite in the limit).

We may avoid this problem by assuming geodesic completeness of the manifold
and taking the covering set of boxes, constructed of parallel transported edges,
along geodesic curves. Parallel transport of the tangent space boxes then fills the
space in the neighborhood of the geodesic curve we are following, and each infini-
tesimal box may carry an invariant volume (Liouville-type flow) transported along
a geodesic curve. For successive boxes along the geodesic curve, since the bound-
aries are determined by parallel transport (rectilinear shift in the succession of local
tangent spaces), there is no volume deficit between adjacent boxes.

We may furthermore translate a geodesic curve to an adjacent geodesic by the
mechanism discussed in [32], so that boxes associated with adjacent geodesics are
also related by parallel transport. In this way, we may fill the entire geodesically
accessible spacetime volume.

Let us assign a measure to each point B:

Δμ B; p� p0ð Þ � IB: (64)

10

Progress in Relativity



We may then write (59) as

Δ p� p0ð Þ ¼ 1

2πð Þ4
ΣBe

i pμ�p0μð ÞxBμΔμ B; p� p0ð Þ, (65)

Our construction has so far been based on elements constructed in the tangent
space in the neighborhood of each point B. Relating all points along a geodesic to the
corresponding tangent spaces and putting each patch in correspondence by conti-
nuity, we may consider the set xBf g to be in correspondence with an extended flat
space ξf g, for which xB � ξB to obtain6

Δ p� p0ð Þ ¼ 1

2πð Þ4
ΣBe

i pμ�p0μð ÞξBμΔμ ξB; p� p0ð Þ, (66)

In the limit of vanishing spacetime box volume, this approaches the Lebesgue-
type integral on a flat space:

Δ p� p0ð Þ ¼ 1

2πð Þ4
ð

ei pμ�p0μð Þξμdμ ξ; p� p0ð Þ: (67)

If the measure is differentiable, we could write

dμ ξ; p� p0ð Þ ¼ m ξ; p� p0ð Þd4ξ: (68)

Since the kernel Δ p� p0ð Þ is to act on elements of a Hilbert space ~f pð Þ
n o

, the

support for p0 ! ∞ vanishes, so that p� p0 is essentially bounded, as we discuss
below. In the small box, say, size ϵ,

Ð

ϵ=2
�ϵ=2 dξ

0dξ1dξ2dξ3ei pμ�p0μð Þξμ ¼ 2ið Þ4Πj¼3
j¼0

sin pj � p0j
	 


ϵ

2

pj � p0j
	 


! ϵ
4 � d4ξ,

(69)

so that m ξ; p� p0ð Þ ¼ 1, and we have

Δ p� p0ð Þ ¼ 1

2πð Þ4
ð

ei pμ�p0μð Þξμd4ξ, (70)

or7

Δ p� p0ð Þ ¼ δ4 p� p0ð Þ: (71)

It is clear that the assertion (69) requires some discussion. For ϵ ! 0 we must
be sure that p0 does not become too large, so that our local measure is equivalent to

d4ξ. In one of the dimensions, what we want to find are conditions for which

sinpϵ

p
! ϵ (72)

6 Similar to the method followed in the simpler case of constant curvature by Georgiev [33].
7 Note that Abraham et al. [34] apply the formal Fourier transform on a manifold in three dimensions

without proof.
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for ϵ ! 0, where we have written p for p� p0. As a distribution, on functions
g pð Þ, the left member of (72) acts as

G ϵð Þ �
ð∞

�∞

sinpϵ

p
g pð Þ: (73)

The functionG ϵð Þ is analytic in the neighborhood of ϵ ¼ 0 if png pð Þ has a Fourier
transform for all n and the series is convergent in this neighborhood, since G 0ð Þ is
identically zero and successive derivatives correspond to the Fourier transforms of
png pð Þ (differentiating under the integral). This implies that if the (usual) Fourier
transform of g pð Þ is a C∞ function (as a simple sufficient condition) in the local
tangent space ξf g and we have appropriate convergence properties, we can reliably
use the first order term in the Taylor expansion;

d

dϵ
G ϵð Þ ϵ¼0 ¼

ð

cos ϵp g pð Þ
�

�

�

�

�

�

�

�

ϵ¼0

(74)

so that, for ϵ ! 0,

G ϵð Þ ! ϵ~g 0ð Þ, (75)

where ~g ξð Þ is the Fourier transform of g pð Þ. As a distribution on such functions
g pð Þ, the assertion (3.39) then follows.

5. Application to the Bekenstein-Sanders fields

We have discussed the construction of a canonical quantum theory in terms of
an embedding of the SHP relativistic classical and quantum theory into general
relativity. We show in this section that this systematic embedding provides a
framework for the method developed by Bekenstein and Milgrom for understand-
ing the MOND [5–10] that appeared necessary to explain the galactic rotation
curves [35].

The remarkable development of observational equipment and power of compu-
tation has resulted in the discovery that Newtonian gravitational physics leads to a
prediction for the dynamics of stars in galaxies that is not consistent with observa-
tion. It was proposed that there should be a matter present which does not radiate
light which would resolve this difficulty, but so far no firm evidence of the exis-
tence of such matter has emerged. Milgrom [5–10] proposed a modification of
Newton’s law (MOND) which could resolve the problem. However, since Newton’s
law of gravitation emerges in the “post-Newtonian approximation” to the geodesic
motion in Einstein’s theory of gravity [35], the modification of Newton’s law must
involve a modification of Einstein’s theory.8 Such a modification was proposed by
Bekenstein and Milgrom [5–10] in terms of a conformal factor multiplying the usual
Einstein metric.

The origin of such a conformal factor can be found in the potential term of the
special relativistic SHP theory. The embedding of this theory in GR [20] brings this
potential term as a world scalar. The Hamiltonian for the general relativistic case
then has the form (8). It was shown by Horwitz et al. [37] that a very sensitive test

8 Yahalom [36] has proposed an alternative view involving the retardation effects associated with

gravitational waves, presently being tested and developed. We do not discuss this approach further here.
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by geodesic deviation can be formulated by to study stability by transforming a
standard nonrelativistic Hamiltonian of the form

H ¼ p2

2M
þ V rð Þ (76)

to the form

H ¼ 1

2M
pig

ij rð Þpj, (77)

with

gij rð Þ ¼ ϕ rð Þ E

E� V
δij, (78)

that is, a conformal factor on the original metric. Applying the same idea to the
Hamiltonian (8), with the gμν xð Þ of Einstein replaced by the conformal form

~gμν xð Þ ¼ ϕ xð Þgμν xð Þ (79)

where

ϕ xð Þ ¼ k

k� V xð Þ , (80)

with k a point in the spectrum of K, so that

H ¼ 1

2M
pμ~gμν xð Þpν: (81)

We see that we can in this way achieve the structure proposed by Bekenstein
and Milgrom [5–10] systematically. Moreover, in addition to providing a mecha-
nism for achieving a realization of the MOND theory, in the original form (8), the
world scalar term V xð Þ could represent the so-called dark energy [2, 3], establishing
a relation between the MOND picture and the anomalous expansion of the universe,
a question presently under study.

The theory proposed by Bekenstein and Milgrom [5–10] did not, however,
account for the lensing of light observed when light passes a galaxy. To solve this
problem, Bekenstein and Sanders [4] proposed the introduction of a vector field
nμ xð Þ, satisfying the normalization constraint

nμnμ ¼ �1, (82)

so that the vector is timelike.
This vector field can then be used to construct a modified meric of the form

~gμνT ¼ ϕ gμν xð Þ þ nμ xð Þnν xð Þð Þ þ ϕ�1nμ xð Þnν xð Þ: (83)

With this modification, Bekenstein and Sanders [4] could explain the lensing
effect. In the following, we show that this new field may arise from a non-Abelian
gauge transformation [38, 39] on the quantum theory that we have discussed in
Section 3. Although Contaldi et al. [40] point out that a gauge field in this context
can have caustic singularities due to the presence of a massive system, Horwitz et al.
[2, 3] show that in the limit in which the gauge field approaches the Abelian limit, as
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required by Bekenstein and Sanders [4], there is a residual term that can cancel the
caustic singularities.

To preserve the normalization condition (83), it is clear that we have the possi-
bility of moving the n field on a hyperbola with a Lorentz transformation, which we
can perform by a gauge transformation.

A Lorentz transformation on nμ is noncommutative, and therefore the gauge
field is non-Abelian [21].

An analogy can be drawn to the usual Yang-Mills gauge on SU 2ð Þ, where there
is a two-valued index for the wave function ψα xð Þ. The gauge transformation is a
two-by-two matrix function of x and acts only on the indices α. The condition of
invariant absolute square (probability) is

X

α

X

β

Uαβψβ

�

�

�

�

�

�

�

�

�

�

2

¼
X

ψαj j2 (84)

Generalizing this structure, one can take the indices α to be infinite
dimensional, and even continuous, so that (84) becomes (in the spectral
representation for nμ)

ð

dnð Þ
ð

dn0ð ÞU n; n0ð Þψ n0; xð Þ
�

�

�

�

�

�

�

�

2

¼
ð

dnð Þ ψ n; xð Þj j2, (85)

implying that U n; n0ð Þ (at each point x) is a unitary operator on a Hilbert space

L2 dnð Þ. Since we are assuming that nμ lies on a hyperbola determined by (83), the
measure is

dnð Þ ¼ d3n

n0
, (86)

that is, a three-dimensional Lorentz invariant integration measure.
We now examine the gauge condition:

pμ � ϵn0μð ÞUψ ¼ U pμ � ϵnμð Þψ (87)

Since the Hermitian operator pμ acts as a derivative under commutation rela-

tions, we obtain

n0μ ¼ UnμU
�1 � i

ϵ

∂U

∂xμ
U�1, (88)

in the same form as the Yang-Mills theory [38, 39]. It is evident in the Yang-
Mills theory, due to the operator nature of the second term, the field will be algebra-
valued, and thus we have the usual structure of the Yang-Mills non-Abelian gauge
theory. Here, if the transformation U is a Lorentz transformation, the numerical-
valued field nμ would be carried, at least in the first term, to a new value on a

hyperbola. However, the second term is operator valued on L2 dnð Þ, and thus, as in
the Yang-Mills theory, n0μ would become operator valued. Therefore, in general, the
gauge field nμ is operator valued.

It follows from (87) that the “field strengths”

f μν ¼ ∂nμ

∂xν
� ∂nν

∂xμ
þ iϵ nμ; nν½ �: (89)
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Under a gauge transformation nμ ! n0μ, the new fields create field strengths in
the transformed form

f 0μν ¼ ∂n0μ

∂xν
� ∂n0ν

∂xμ
þ iϵ n0μ; n0ν½ � (90)

according to

f 0μν xð Þ ¼ Uf μν xð ÞU�1, (91)

just as in the finite-dimensional Yang-Mills theories.
For

U ffi 1þ iG, (92)

where G is infinitesimal, (87) becomes

n0μ ¼ nμ þ i G; nμ½ � þ 1

ϵ

∂G

∂xμ
þO G2

� 

: (93)

Then,

n0μn0μ ffi nμnμ þ i nμ G; nμ
� �

þ G; nμ½ �
� 

nμ

þ 1

ϵ

∂G

∂xμ
nμ þ nμ

∂G

∂xμ

� �

:
(94)

Let us take

G ¼ � iϵ

2

X

ωλγ n; xð Þ; nλ
∂

∂nγ
� nγ

∂

∂nλ

� �� �

� ϵ

2

X

ωλγ n; xð Þ;Nλγ
� �

(95)

where symmetrization is required since ωλγ is a function of n as well as x and

Nλγ ¼ �i nλ
∂

∂nγ
� nγ

∂

∂nλ

� �

: (96)

Our investigation in the following will be concerned with a study of the infini-
tesimal gauge neighborhood of the Abelian limit, where the components of nμ do
not commute and therefore still constitute a Yang-Mills-type field. We shall show in
the limit that the corresponding field equations acquire nonlinear terms and may
therefore nullify the difficulty found by Contaldi et al. [40] demonstrating a
dynamical instability for an Abelian vector-type TeVeS gauge field. They found that

nonlinear terms associated with a non-Maxwellian-type action, such as divnð Þ2,
could nullify this caustic singularity, so that the nonlinear terms we find as a residue
of the Yang-Mills structure induced by our gauge transformation might achieve this
effect in a natural way.

Now, the second term of (94), which is the commutator of G with nμnμ, van-
ishes, since this product is Lorentz invariant (the symmetrization in G does not
affect this result).

We now consider the third term in (94).
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1

ϵ

∂G

∂xμ
nμ þ nμ

∂G

∂xμ
¼ 1

2

∂ωλγ

∂xμ
;Nλγ

� �

nμ þ nμ
∂ωλγ

∂xμ
;Nλγ

� �

¼ 1

2
Nλγ ∂ωλγ

∂xμ
nμ þ

∂ωλγ

∂xμ
Nλγnμ þ nμN

λγ ∂ωλγ

∂xμ
þ nμ

∂ωλγ

∂xμ
Nλγ

(97)

There are two terms proportional to

∂ωλγ

∂xμ
nμ:

If we take

ωλγ n; xð Þ ¼ ωλγ kνxνð Þ, (98)

where kνnν ¼ 0, then

∂ωλγ

∂xμ
nμ ¼ kμnμω

0
λγ ¼ 0: (99)

For the remaining two terms,

nμN
λγ ∂ωλγ

∂xμ
þ ∂ωλγ

∂xμ
Nλγnμ

¼ Nλγnμ
∂ωλγ

∂xμ

þ nμ;N
λγ

� � ∂ωλγ

∂xμ
þ ∂ωλγ

∂xμ
nμN

λγ

þ ∂ωλγ

∂xμ
Nλγ; nμ
� �

:

(100)

The commutators contain only terms linear in nμ and they cancel; the remaining
terms are zero, and therefore the condition nμnμ ¼ �1 is invariant under this gauge
transformation. It involves the coefficient ωλγ which is a function of the projection
of xμ onto a hyperplane orthogonal the nμ. The vector kμ of course depends on nμ.
We take, for definiteness, kμ ¼ nμ n � bð Þ þ bμ, for some bμ 6¼ 0.

We now consider the derivation of field equations from a Lagrangian
constructed with the ψ s and f μνf μν. We take the Lagrangian to be of the form

L ¼ Lf þ Lm, (101)

where

Lf ¼ � 1

4
f μνf μν (102)

and

Lm ¼ ψ ∗ i
∂

∂τ
� 1

2M
pμ � ϵnμð Þ pμ � ϵnμ

	 


�Φ

� �

ψ þ c:c: (103)

In carrying out the variation of Lm, the contributions of varying the ψs with
respect to n vanish due to the field equations (Stueckelberg-Schrödinger equation)
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obtained by varying ψ ∗ (or ψ), and therefore in the variation with respect to n, only
the explicit presence of n in (103) need be taken into account.

Note that for the general case of n generally operator valued, we can write

ψ ∗ pμ � ϵnμð Þ pμ � ϵnμ
	 


ψ ¼ pμ � ϵnμð Þψð Þ ∗ pμ � ϵnμ
	 


ψ , (104)

since the Lagrangian density (108) contains an integration over dn0ð Þ dn00ð Þ (in
spectral representation, considered in lowest order, as well as an integration over

dxð Þ
ffiffiffiffiffiffiffiffiffi

g xð Þ
p

in the action). In the limit in which n is evaluated in the spectral repre-
sentation, and noting that pμ is represented by an imaginary differential operator,

we can write this as

ψ ∗ pμ � ϵnμð Þ pμ � ϵnμ
	 


ψ ¼ � pμ þ ϵnμð ÞÞψ ∗ pμ � ϵnμ
	 


ψ , (105)

that is, replacing explicitly pμ by �i ∂=∂xμð Þ � �i∂μ (since it acts by commutator

with the fields); we have

δnLm ¼ �iϵ

2M
ψ ∗

∂μ � iϵnμ
� 

ψ � ∂μ þ iϵnμ
� 

ψ ∗
� 

ψ
� �

δnμ, (106)

or

δnLm ¼ jμ n; xð Þδnμ, (107)

where jμ has the usual form of a gauge invariant current.

For the calculation of the variation of Lf , we note that the commutator term in

(89) is, in lowest order, a c-number function.
Calling

ω0
λ
μ
nλ � vμ, (108)

we compute the variation of

n0μ; n0ν½ � ¼ 2i kνvμ � kμvνð Þ (109)

Then, for

δn n
0μ; n0ν½ � ¼ δnγ

∂

∂nγ
n0μ; n0ν½ �, (110)

we compute

∂

∂nγ
n0μ; n0ν½ � ¼ 2i

∂kν

∂nγ
vμ þ kν

∂vμ

∂nγ
� μ $ νð Þ

� �

: (111)

With our choice of kν ¼ nν n � bð Þ þ bν,

∂kν

∂nγ
¼ δνγ n � bð Þ þ nνbγ, (112)

so that
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∂

∂nγ
n0μ; n0ν½ � ¼ 2ið δνγ n � bð Þ þ nνbγ

� 

vμ

þ kν
∂vμ

∂nγ
� μ $ νð ÞÞ:

(113)

Here,

∂vμ

∂nγ
¼ ω0μγ þ ω00

λ
μ
nλ

∂kσ
∂nγ

xσ,

so we see that

∂

∂nγ
n0μ; n0ν½ � � Oγ

μν, (114)

where the quantity Oγ
μνδnγ depends on the first and second derivatives of ωμ

λ , in
general, nonlinear in nμ. We therefore have

δn n
0μ; n0ν½ � ¼ Oγ

μνδnγ (115)

In the limit that ω ! 0, its derivative and higher derivatives which appear in
Oγ

μν may not vanish (somewhat analogous to the case in gravitational theory when
the connection form vanishes, but the curvature does not), so that this term can
contribute in the limit of the an Abelian gauge.

Returning to the variation of Lf , we see that

δLf ¼ � 1

4
ð ∂

μδnν � ∂
νδnμ þ iϵδ nμ; nμ½ �

� 

f μν

þ f μν ∂μδnν � ∂νδnμ þ iϵδ nμ; nμ
� �� 

Þ
¼ �∂

νf μνδn
μ þ 2if μνδ n

μ; nν½ �,

(116)

where we have taken into account the fact that nμ; nμ
� �

is a c-number function

and integrated by parts the derivatives of δn. We then obtain

δLf ¼ �∂
νf μνδn

μ þ 2iϵf λσO
λσ

μδn
μ (117)

Since the coefficient of δnμ must vanish, we obtain the Yang-Mills equations for
the fields given the source currents:

∂
νf μν ¼ jμ � 2iϵf λσO

λσ
μ, (118)

which is nonlinear in the fields nμ, as we have seen, even in the Abelian limit,
where, from (106),

jμ ¼ �i
ϵ

2M
ψ ∗

∂μ � iϵnμ
� 

ψ � ∂μ þ iϵnμ
� 

ψ ∗
� 

ψ
� �

: (119)

6. Summary

In this chapter, we have shown that the formulation of MOND theory by
Bekenstein and Milgrom [5–10] can have a systematic origin within the framework
of the embedding of the SHP [1] theory into general relativity [20]. The SHP
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formalism admits a scalar potential term that appears both in the conformal factor
giving rise to the MOND functions in the galaxy and, in the original form of the
Hamiltonian, to a possible candidate for “dark energy.” The solution of the lensing
problem by Bekenstein and Sanders [4] by introduction of a local vector field was
also shown to arise in a natural way in terms of a non-Abelian gauge field, for
which, in the Abelian limit, there is a residual term that can cancel the caustic
singularity found by Contaldi et al. [40] which can arise in a purely Abelian gauge
theory.
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