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Chapter

Adipose Tissue Complexities in 
Dyslipidemias
Deborah R. Gustafson

Abstract

Adipose tissue is the largest organ in the human body and, in excess, contributes 
to dyslipidemias and the dysregulation of other vascular and metabolic processes. 
Adipose tissue is heterogeneous, comprised of several cell types based on morphol-
ogy, cellular age, and endocrine and paracrine function. Adipose tissue depots 
are also regional, primarily due to sex differences and genetic variation. Adipose 
tissue is also characterized as subcutaneous vs. visceral. In addition, fatty deposits 
exist outside of adipose tissue, such as those surrounding the heart, or as infiltra-
tion of skeletal muscle. This review focuses on adipose tissue and its contribution 
to dyslipidemias. Dyslipidemias are defined as circulating blood lipid levels that 
are too high or altered. Lipids include both traditional and nontraditional species. 
Leaving aside traditional definitions, adipose tissue contributes to dyslipidemias in 
a myriad of ways. To address a small portion of this topic, we reviewed (a) adipose 
tissue location and cell types, (b) body composition, (c) endocrine adipose, (d) the 
fat-brain axis, and (e) genetic susceptibility. The influence of these complex aspects 
of adipose tissue on dyslipidemias and human health, illustrating that, once again, 
that adipose tissue is a quintessential, multifunctional tissue of the human body, 
will be summarized.

Keywords: adipose tissue, adipocyte, body weight, body mass index, lipidomics, 
obesity, leptin, APOE, endocrine, brain

1. Introduction

The World Health Organization (WHO) reports that by 2050, 20% of the world’s 
population will be age 60 years and older [1]. Correspondingly, cardio- and cerebro-
vascular diseases are the top 10 most common causes of death [2]. Ischemic heart 
disease is first, followed by stroke (second); Alzheimer’s disease (fifth), the disease 
of the latest life; and type 2 diabetes (T2D, sixth). Vascular diseases comprise four 
of the top 10 causes of death because of their association with pandemic obesity [2].

Adipose tissue (AT) is the largest organ in the human body. Adiposity (amount 
of AT) is often classified as overweight and obese using body mass index (BMI, 
kg/m2) or Waist Circumference (WC). Over the life course and with aging, BMI is 
dynamic and evolves in relation to physical growth, puberty, reproductive status, as 
well as nutritional health and adequacy. The life course evolution of BMI represents 
an evolutionary metabolism. As such, potential relationships between BMI and 
accompanying vascular risk factors, such as blood lipid levels, change over the life 
course and in association with disease. BMI and central adiposity cut points for 
overweight and obesity as well as for hyperlipidemias (the most common form of 
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clinical dyslipidemia) are those associated with mortality and later-life outcomes. 
See Tables 1 and 2 for common definitions of these cut points.

Epidemiologic studies exploring the natural history of vascular phenotypes 
show that levels of body weight, BMI, and blood lipids increase throughout adult 
life and decline with aging and later-life diseases [3–6]. This is practically illustrated 
by comparing mid- versus later-life risk scores for late-onset dementia. Obesity 
and hyperlipidemia are components of mid-life risk scores, but not of later-life risk 
scores [7–10]. This is often referred to as the “obesity paradox.” This contradictory 
combination of higher disease risk associated with higher mid-life vascular risk and 
declining vascular phenotypes in the years immediately preceding and at the time of 
later-onset diseases and death requires further understanding but has very practical 
implications (Figure 1). Lower blood lipid levels and/or rigorous control of blood 
lipid levels may not be advantageous during the latest life [11]. In addition, genetic 

mg/dl Interpretation

LDL cholesterol

<100 Optimal

100–129 Near optimal/above normal

130–159 Borderline high

160–189 High

≥190 Very high

Total cholesterol

<200 Desirable

200–239 Borderline high

≥240 High

HDL cholesterol

<40 Low

≥60 High

The National Cholesterol Education Program ATP III Guidelines [112].

Table 2. 
Lipid cut points for adults based on blood levels of traditionally measured lipids.

Disease risk* relative to normal BMI and WC

BMI 

(kg/m2)

Obesity 

class

Women 

≤88 cm

Women 

>88 cm+

Men  

≤102 cm

Men  

>102 cm+

Underweight <18.5

Normal 18.5–24.9

Overweight 25.0–29.9 Increased High Increased High

Obesity 30.0–34.9 1 High Very high High Very high

35.0–39.9 2 Very high Very high Very high Very high

Extreme 

obesity

≥40 3 Extremely 

high

Extremely 

high

Extremely 

high

Extremely 

high

*Disease risk for T2D, hypertension, and cardiovascular disease.
+Increased Waist Circumference is a marker for increased risk, even in adults of normal weight.

Table 1. 
Classification of overweight and obesity by Body Mass Index and Waist Circumference and disease* risk based 
on anthropometric estimates of adipose tissue [108–111].
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background related to vascular risk such as APOEε4 allele possession, which encodes 
for a protein on the surface of lipoproteins and influences lipid metabolism and vas-
cular health, has also been associated with late-onset dementia and mortality [12].

The vascular and metabolic complexity and ubiquity of AT demand a more 
expansive definition of dyslipidemia. Herein the multiple potential contributions 
of a complex, heterogeneous AT to dyslipidemia phenotypes and human health are 
described. Dyslipidemias are considered expansively and defined as circulating 
blood lipid levels that are too high or too low, where lipids refer to more than those 
listed in Table 2. AT contributions to dyslipidemia phenotypes relate to (a) AT 
location and cell types, (b) body composition, (c) endocrine adipose,  
(d) the fat-brain axis, and (e) genetic susceptibility (Figure 2). This review illus-
trates that AT is a quintessential, multifunctional tissue of the human body.

Figure 1. 
The biological declines that accompany dyslipidemias.

Figure 2. 
The heterogeneity of adipose tissue and its dynamic state due to different and evolving cell populations, 
proportions of WAT/BAT, energetics, and dyslipidemias.
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2. Adipose tissue location and cell types

AT consists of multiple cell types exhibiting multiple cellular phenotypes 
depending on parent cell type and location of deposition [13]. In mammals, body fat 
compartments include total fat, subcutaneous fat, and internal fat, which is com-
prised of visceral (within chest, abdomen, and pelvis), nonvisceral (intramuscular, 
perimuscular), and other fat (e.g., lipomas) [14]. In addition, extra-adipose fatty 
acid deposits, such as those surrounding the internal organs, including the heart, 
have profound effects on disease susceptibility and occurrence [15]. Triglyceride 
deposits in the pancreas have been linked to alterations in insulin secretion; and 
epicardial fat has been linked to coronary heart disease [15]. While obese levels of 
BMI are correlated with the amount of these extra-adipose fatty acid deposits, BMI 
is not a sensitive indicator of their influence on human health and disease, part of 
which is local alterations in lipid metabolism [15].

AT cells, adipocytes, originate from multipotent mesenchymal stem cell 
populations (MSCs) in the bone marrow [16]. After initial determination steps, 
differentiation into a variety of cell types including osteoblasts, myocytes, and 
chondrocytes may occur [17]. AT-derived stem cells (ADSCs) also differentiate 
into non-mesenchymal cells (hepatocytes, neurons, pancreatic cells, endothelial 
cells, and cardiomyocytes) [18]. Characterization of diverse adipocyte populations 
enhances the understanding of the role of AT in lipid metabolism. Adipocytes dif-
ferentially secrete hormones and cytokines based on the location of AT or triglyc-
eride deposits; thus location is important for function [19, 20]. The ubiquity of AT 
and triglyceride deposits throughout the mammalian body and the corresponding 
autocrine, paracrine, and endocrine effects evidence the importance of the regula-
tory roles of AT.

AT quality and functionality may be more relevant for vascular and cardiometa-
bolic risk than the total amount of AT [21]. In response to energy surplus, there 
may be a maladaptive AT expansion in consequent obesity. The significance of this 
expansion is local and systemic. In response to local excess, hypoxia, dysregulated 
adipokine secretion, and impaired mitochondrial function may occur. Overtaxed 
adipocytes release fatty acids and pro-inflammatory factors into the circulation. 
Subsequent systemic effects include leptin and insulin resistance, altered lipid and 
glucose metabolism, hypertension, end-organ fat accumulation (e.g., nonalcoholic 
fatty liver disease), the metabolic syndrome, pro-inflammatory and pro-thrombotic 
states, and endothelial dysfunction, all of which provide mechanisms for observed 
associations between obesity and cardio- and cerebrovascular diseases [21, 22]. 
Specific associations have been observed for dyslipidemias. For example, hypercho-
lesterolemia has been associated with pro-inflammatory macrophage subpopula-
tions in visceral adipose tissue (VAT), while BMI had a prominent effect in white 
adipose tissue (WAT) only [23].

2.1 White adipose tissue versus brown adipose tissue

There are generally two visual presentations of AT - WAT and brown adipose 
tissue (BAT) [17, 24]. WAT is characterized by its “white” color, due to a large, 
lipid-filled cell body. BAT, filled with mitochondria, presents as brown. Several 
later-onset diseases are characterized by mitochondrial/respiratory chain dys-
function, which emphasizes the potential importance of BAT. Brain and skeletal 
muscles are the tissues most affected by mitochondrial disorders because they 
exhibit the highest rates of aerobic metabolism [27, 28]. For example, mitochondria 
accumulate amyloid-beta, a key protein in Alzheimer’s disease [25] that in the brain 
leads to cellular dysfunction. Brain is comprised of 60% fat [26], yet not AT.  
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In addition, while not typically containing a large amount of fat, with aging, 
mitochondria-rich skeletal muscle is infiltrated with extra-AT and triglyceride 
deposits, leading to a condition called sarcopenia, and contributing to a type of 
dyslipidemia [29].

WAT and BAT originate from two different stem cell populations in bone marrow. 
BAT plays an important role, not only in neonatal but in human adult physiology [30].

2.1.1 White adipose tissue

WAT is the predominant AT in mammals. During embryonic development, it 
arises from lateral plate mesoderm, which forms the underlying stroma or sup-
portive connective tissue. The stroma is highly vascularized and contains progenitor 
cells that give rise to mature adipocytes. Preadipocytes are immature fat cells that 
have not yet accumulated lipid. Fully differentiated adipocytes contain lipid in the 
form of triglyceride when provided with the appropriate nutrients (e.g., glucose) 
and hormones (e.g., insulin and leptin) [31]. WAT is a storage tissue for fatty acids 
and other compounds, for example, fat-soluble vitamins [32] and organochlorine 
pesticides [33].

Not all WAT cells are the same. “Healthy” WAT adipocytes are relatively small 
and have a high capacity for mitochondrial oxidative phosphorylation, which gener-
ates ATP, the cell’s aerobic currency. They are also characterized by more efficient 
cycling of triacylglycerol molecules and fatty acids and de novo lipogenesis. These 
intrinsic metabolic features of healthy WAT benefit locally and systemically [34].

Unhealthy WAT is attributed to excess or insufficient lipid storage in WAT drop-
lets, which is associated with dyslipidemia, insulin resistance, and increased risk 
for T2D [35]. WAT adipocyte proteins control adipocyte lipid storage and limit lipid 
spillover and lipotoxic effects thought to contribute to disease [35]. For example, 
Caspase-2 is a WAT protein that is associated with abdominal fat accumulation, 
dyslipidemia, hyperproliferation, and “browning” of adipose [22]. “Overworked” 
adipocytes are more likely to release fatty acids and pro-inflammatory factors into 
the circulation that promote organ fat accumulation, insulin resistance, and the 
metabolic syndrome. Obesity is associated with both hypertrophy and hyperplasia 
of adipocytes, AT inflammation, impaired extracellular matrix remodeling, fibrosis, 
and altered secretion of adipokines [36]. These observations illustrate the potential 
for tissue or regional level dyslipidemias as a result of the changes in the structural, 
molecular, and metabolic integrity of the adipocyte.

2.1.2 Brown adipose tissue

In contrast to the developmental origins of WAT, mesenchymal stem cells from 
the paraxial mesoderm give rise to BAT. BAT is identifiable because it expresses the 
uncoupling protein 1 (UCP1). Myocytes (skeletal muscle cells) are also derived 
from paraxial mesoderm. Both UCP1-expressing BAT and myocytes express Myf5 
(Myf5+) [17], thus further differentiating them from WAT, which are Myf5−. It 
has been traditionally thought that most BAT disappears fairly quickly with aging; 
however a significant amount of BAT is present in adults, particularly in paracervi-
cal and supraclavicular AT [37], as well as surrounding the kidney and along large 
blood vessels [38]. At least two types of BAT exist. Myf5+ brown fat is classical 
brown fat and exists in the aforementioned locations. Myf5− BAT is interspersed in 
WAT and may sometimes be referred to as “beige” adipose [17, 39].

A notable feature of BAT is an uncoupling of oxidative phosphorylation in 
response to cold temperatures and other factors that activate the sympathetic 
nervous system [40]. Free fatty acids are transferred to the mitochondria where 
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they are broken down by two carbon units and undergo β-oxidation. However, 
UCP1 uncouples oxidation and phosphorylation, leading to futile cycling, adaptive 
thermogenesis, and the release of energy as heat (instead of ATP) [28].

Using 18F-FDG-PET/CT, it has been observed that women have more BAT mass 
and activity [41] and that there is proportionately more BAT among older women. 
However, parallel to later-life body weight and BMI decline, both BAT mass and 
activity decrease with age, perhaps to a greater extent among men [41]. Seemingly 
paradoxical, yet as expected, is that amount of BAT is inversely related to BMI 
during adulthood [42]. Both mass and glucose uptake activity of 18F-FDG-PET/
CT-detected BAT decrease with increasing outdoor temperature, age, and BMI [42]. 
BAT is suggested to be protective for obesity due to its role in adaptive adrenergic 
thermogenesis [30].

2.1.3 White adipose tissue and brown adipose tissue in aging

Questions that remain are: How are WAT and BAT related to usual aging and 
aging-related dyslipidemias? How do WAT and BAT relate to observed declines in 
BMI and blood cholesterol levels with aging? Mitochondrial disorders are common 
among aging-related diseases [21, 43] and may be exacerbated by BAT. Aging is 
also associated with a decrease in subcutaneous fat and increase in VAT (located 
around internal organs). The ratio of BAT to WAT also appears to increase, such 
that the amount of BAT is inversely correlated with BMI in the elderly [44]. 
Perhaps there is an evolving proportion of BAT/WAT over the life course that 
favors anti-obesity and anti-dyslipidemias in mid-life and, among some, acceler-
ated BMI decline in late life, as a result of dysregulated adaptive thermogenesis. 
There is a paucity of literature linking AT directly to the variety of dyslipidemias 
that occur with usual aging.

Some data suggest that specific dietary fatty acids are protective for atypical 
accumulations of body fat, systemic low-grade inflammation, dyslipidemias, and 
insulin resistance [34]. For example, “healthy adipocytes” are induced in the WAT 
of obese mice in response to dietary omega-3 polyunsaturated fatty acids (omega-3 
PUFAs), especially when combined with other “lifestyle” interventions, for exam-
ple, moderate calorie restriction. It is unclear whether this relies on the activation of 
BAT and/or the induction of brite/beige adipocytes in WAT [34].

3. Adipose tissue and body composition

Sex-specific changes in body composition over the life course may lead to 
profound changes in metabolic feedback loops between the brain and AT, gut, and 
other peripheral locations. Altered metabolic states may occur as compensatory or 
to promote or accelerate other aging processes.

With aging, the proportion of fat-to-fat free mass (FFM) increases. Sometimes 
these changes are accompanied by changes in body weight or BMI, but not neces-
sarily. FFM represents the mass of the organism without fat and is comprised of 
chemical components, amino acids, water, and minerals. FFM includes the meta-
bolically active mass of cellular elements in the body, which is primarily muscle, 
organ tissue, and other tissue cells. Resting metabolism occurs in the FFM, which 
varies by tissue; and FFM depletion occurs in conditions such as cancer, HIV/AIDS, 
and dementia as well as with age. While there is a decrease in resting metabolic rate 
(RMR) with decreasing FFM as one ages [45], this decrease does not correspond to 
changes in body composition nor does it reflect in which body tissues this decrease 
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occurs. It has been hypothesized that a reduction in RMR is due to a combination 
of decreases in mass and cellular fractions of organs and tissues. It has been shown 
that increasing age is related to decreasing mass of the brain, kidney, liver, and 
spleen [46].

4. Endocrine adipose tissue

As aforementioned, AT is measured clinically in several ways. Common clini-
cal and epidemiologic measures include anthropometry, such as BMI, WC, and 
Waist-to-Hip Ratio (WHR). In addition, are whole and regional body imaging. 
While the imaging gold standard is Magnetic Resonance Imaging (MRI) or 
Computed Tomography (CT), Dual X-Ray Absorptiometry (DXA) is also used, 
as is Bioelectrical Impedance Analysis (BIA). However, given the higher costs of 
body imaging techniques, peripheral blood-based biomarkers, such as adipokines 
including leptin, and free fatty acids, measured using lipidomics technologies, are 
of increasing importance.

Over 600 secretory proteins are attributed to AT [47]. AT is the source of a 
variety of hormones and cytokines, such as leptin, adiponectin, pro-inflam-
matory cytokines, and components of complement and the renin-angiotensin 
system (RAS) [48–50]. A classic example of the endocrine function of AT is its 
role in female reproductive health. Hypotheses related to a critical percentage 
of body adiposity for the initiation of menarche in females, such as the Frisch 
hypothesis, were first reported in 1973 [51]. In addition, AT is the primary 
source of bioactive estrogen (as estrone, E1) in postmenopausal women via 
aromatase [52]. AT-derived sex hormones also link adiposity and changes in 
adiposity to the occurrence of dyslipidemias. For example, aromatase knockout 
mice exhibit elevated circulating levels of leptin and cholesterol concomitant 
with lower estrogen levels than wild-type controls [53]. The metabolic implica-
tions of AT are wide ranging, and knowledge related to this phenomenon is far 
from complete.

Changes in body composition over the adult life and corresponding influ-
ences on dyslipidemias are not yet fully characterized. Declines in both BMI and 
blood cholesterol levels [3, 54] occur with aging; however there is a relative lack of 
published studies on changes over time, across populations and with lipid-lowering 
treatments. One may speculate that the changes in adiposity observed in aging cor-
respond directly to changes in blood levels of AT metabolites, including FFA, and 
traditionally measured lipids [33]. There may be important temporal, acute changes 
occurring that are not easily understood when using cross-sectional analyses 
depending on chronological and biological age. The complexity of AT endocrinol-
ogy and related systems is well-illustrated by the range of medications used for 
vascular diseases of old age. Several of these medications differentially influence 
body weight [11, 55] and subsequent blood lipid levels. In addition, studies of adults 
with cerebral small vessel disease or HIV-related adiposity syndromes allow contin-
ued evaluation of the aforementioned, co-occurring factors and partitioning out of 
different adiposity pathways [49, 56, 57]. AT contributions to dyslipidemias may be 
apparent across any body weight or BMI, with or without the use of lipid-lowering 
agents.

Hormones and cytokines produced by AT such as leptin and adiponectin are 
involved in the regulation and dysregulation of nutrient utilization, as well as 
inflammation, endothelial dysfunction, hypertension, and atherogenesis [58]. In 
addition, combinations of hormones, such as insulin and leptin, interact in various 
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processes such as nutrient utilization to augment effects. Two AT hormones, 
leptin and adiponectin, are described here as well as a discussion of lipidomics 
approaches. Table 3 contains several selected examples of adipokines that may be 
associated with dyslipidemias.

4.1 Leptin

Leptin is a 16 kDa protein hormone discovered in 1994. While deemed to 
be the putative obesity hormone in the mid-1990s [59], with effects possibly 
mediated by an impaired BBB [60], it did not become the answer to the current 
obesity epidemic as originally hoped. The amount of AT is positively related 
to blood leptin levels, as AT is the major source of this hormone [61, 62]. The 
Prospective Study of Women in Gothenburg, Sweden, shows mid-life correla-
tions of r = 0.67 and late-life correlations of r = 0.61 between BMI and blood 
leptin levels [6]. Similar BMI-leptin correlations are also observed in “at-risk” 
populations such as women with HIV infection and cerebral small vessel disease 
(unpublished observations).

Adipose tissue 

secretory product

Function

Adiponectin Insulin sensitizer; circulating levels inversely correlated to dyslipidemias, 

insulin resistance, metabolic syndrome, obesity, T2D, and cardiovascular 

diseases [49, 50, 113]

Chemerin Regulates adipogenesis and mature adipocyte metabolism; elevated in obesity, 

dyslipidemia, T2D, and osteoporosis; a marker of inflammation and metabolic 

syndrome [114]

Hepatocyte growth 

factor (HGF)

Angiogenic and mitogenic effects; linked to vascular diseases; elevated in obese 

adults and adolescents [115, 116]

Interleukin (IL)-6 Pro-inflammatory, upregulated in obesity, can exacerbate CVD and metabolic 

syndrome [113]

Leptin Regulates body weight via decreasing appetite and increasing sympathetic 

nervous activity [49, 50, 117, 118]

Neuregulin 4 Regulates energy metabolism; associated with BMI, WHR, triglycerides, and 

other metabolites; secreted from brown/beige AT [119–121]

Nerve growth factor 

(NGF)

Correlated with waist-to-hip ratio (WHR); associated with NGF and leptin, 

T2D, cardiovascular disease, and stroke [122]

Omentin-1 Associated with VAT, dyslipidemia, metabolic syndrome, T2D, and 

cardiovascular disease; inhibits the inflammatory response and improves 

insulin resistance; vasodilatory [123]

Plasminogen activator 

inhibitor-1 (PAI-1)

Associated with central obesity; mediates fibrinolysis; crosses an intact blood-

brain barrier [124, 125]

Progranulin Higher in obesity, insulin resistance, T2D, fatty liver disease; associated with 

inflammation, growth-promotion, and neuroprotection [126]

Resistin Pro-inflammatory; produced in response to pro-inflammatory cytokines 

[113, 127]

Retinol-binding protein 

(RBP)

Elevated in obesity; implicated in insulin resistance; associated with 

triglyceride and small HDL levels [128, 129]

Tumor necrosis factor 

(TNF)-α

Pro-inflammatory; upregulated in obesity; exacerbates cardiovascular disease 

and metabolic syndrome [113]

Table 3. 
Examples of adipose tissue secretory products and their functions that may be disrupted in dyslipidemias.
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Classical functions of leptin include signaling inadequate energy stores through 
the regulation of food intake, regulation of energy expenditure, improving insulin 
sensitivity, facilitating lipolysis, inhibiting lipogenesis, and reducing intracellular 
lipids [63]. In addition, leptin plays a permissive role in neuroendocrine immune 
function [63]. In obesity, there occurs a phenomenon called “leptin resistance.” 
Analogous to insulin resistance, leptin resistance implies decreased tissue sensitivity 
to leptin, which leads to dyslipidemia [64]. In contrast, leptin replacement therapy 
(metreleptin) is used to treat lipodystrophy syndromes characterized by a loss of AT 
that also leads to dyslipidemia [65].

Understanding interactions between leptin and insulin in the brain may weave 
together the interrelationship of adiposity and T2D. T2D is also associated with 
dyslipidemias. Not only leptin, as aforementioned, but insulin interacts directly 
with hypothalamic nuclei, and it appears that both are involved in the manifestation 
of insulin resistance. The pro-opiomelanocortin (POMC) neurons in the hypo-
thalamus express both leptin and insulin receptors and regulate energy balance and 
glucose homeostasis. Experimental mouse models lacking both leptin and insulin 
receptors in POMC neurons display systemic insulin resistance, which is distinct 
from what occurs with the single deletion of either receptor. These mice also show 
alterations in sex hormone levels that reduce fertility. Thus, direct actions of both 
insulin and leptin on POMC neurons appear to be required to maintain normal 
glucose homeostasis and reproductive function [66] and will therefore influence 
blood lipid levels and AT-related FFA metabolism. It has also been proposed that 
cross talk between leptin and insulin occurs within a network of cells rather than 
within individual POMC neurons [67].

In relation to AT, it has been shown in mouse models that leptin regulates body 
weight via decreasing appetite and increasing sympathetic nervous activity. This, in 
turn, increases energy expenditure in interscapular BAT [68], and correspondingly 
there is an increase in BAT temperature. Neurons in the dorsomedial hypothalamus 
appear to mediate this thermogenic response to hyperleptinemia in obese mice, and 
a functional melanocortin system is not required. Because the sympathetic nervous 
system contributes in regulating blood pressure, heart rate, and hepatic glucose 
production, selective leptin resistance may be a crucial mechanism linking adipos-
ity, BAT, and dyslipidemias [64, 69].

4.2 Adiponectin

Adiponectin (also known as ACRP30) is an effective insulin sensitizer; circulat-
ing levels are inversely correlated to dyslipidemias, insulin resistance, metabolic 
syndrome, obesity, T2D, and cardiovascular diseases. These observations, as for 
leptin, appear consistent cross-culturally. Adiponectin exists as complex multimeric 
isoforms comprised of high molecular weight (HMW), hexamers, and trimers [70]. 
HMW adiponectin or HMW adiponectin/total adiponectin may be better indicators 
of insulin sensitivity than total adiponectin in obesity, T2D, and cardiovascular 
disease [70]. Adiponectin is produced not only by AT but by numerous other 
tissues including the brain. BMI is inversely related to circulating adiponectin. The 
Prospective Study of Women in Gothenburg, Sweden, shows late-life correlations 
of r = −0.29, between BMI and blood adiponectin levels (unpublished). Similar 
correlations are observed in women with HIV infection and in adults with cerebral 
small vessel disease (unpublished observations). In addition, since adiponectin is a 
VAT marker and only moderately correlated with BMI, it may not be associated in 
a similar fashion with lipid metabolism when compared to BMI or other anthropo-
metric measures [71]. Interestingly, the adiponectin/leptin ratio has been proposed 
as a better indicator of AT dysfunction and cardiometabolic risk [72].
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4.3 Lipidomics

Lipidomics platforms comprised of mass spectrometry/gas chromatography 
are used to discriminate among levels of obesity and to identify dyslipidemias 
characterized by nontraditional lipid biomarkers. These alternative lipid species 
may be associated with obesity-related chronic diseases as well as for accumula-
tion of excess AT [73–75]. For example, obesity, independent of genetic influ-
ences, has been related to [1] increases in lysophosphatidylcholines and lipids 
observed in pro-inflammatory and pro-atherogenic conditions and [2] decreases 
in other phospholipids, which are known to have antioxidant properties [76]. 
Certain conditions characterized by lipodystrophies and/or higher levels of AT, 
such as HIV infection, facilitate studies of traditionally and nontraditionally 
defined dyslipidemias and altered energy metabolism [77–79]. Nontraditional 
blood lipids of importance may include cardiolipins, sphingomyelins, phosphati-
dylcholines, and nonesterified fatty acids [80]. While the differential bioactivi-
ties of these lipids are unknown, mitochondrial dysfunction may underlie some 
of these differences among disease states and between diseased and healthy states 
[81, 82].

Cardiolipins (CLs) are an example of a class of lipids that may be informative 
for obesity, dyslipidemias, and associated diseases. CLs are diphosphatidylglycerol 
molecules with four acyl groups that can bind four fatty acids. In human circula-
tion, these are usually 18-carbon fatty acids [80% linoleic acid (18:2(n−6))] [83]. 
CLs in the central nervous system contain a wider range of fatty acids including 
palmitic, stearic (18:0), oleic (18:1), arachidonic (20:0), and docosahexaenoic 
acids (22:6) (over 100 molecular species); and lymphoblast CLs contain only 
monoenoic fatty acids. CLs are predominant in the heart (where first discovered), 
liver, and brain [83]. Individuals with obesity, T2D, or heart failure have elevated 
levels of serum free fatty acids [84] that promote lipotoxicity of cardiomyocytes 
[85]; and profound changes in CLs’ composition occur in T2D. Since the brain is 
approximately 60% fat [26] and obesity is associated with later-onset cognitive 
impairments and dementias [50, 55, 86], perhaps the abundance of these circulat-
ing lipid species is of multisystem pathological significance. This multisystem role 
of CL alterations contributing to mitochondrial dysfunction in particular makes 
them especially interesting [87].

CLs are mitochondrial membrane phospholipids present mostly in the inner 
membrane, where they comprise ~20% of the total lipid content [88]. However, CLs 
are also transferred to the outer mitochondrial membrane and can comprise ~25% 
of the lipid content at locations where fission and fusion occur. Inner membrane 
CLs, the site of the electron transport chain, and the electrochemical gradient 
involved in ATP production [89] are evidence of the likely role of CLs in mito-
chondrial bioenergetics. CLs are required for optimal functioning of several inner 
mitochondrial membrane proteins and enzymes [89–94], including those involved 
in electron transport chain-mediated oxidative phosphorylation and coupled 
respiration [95]. CLs appear to be an integral component of these proteins and criti-
cal for folding, structure, and function. CLs are prone to reactive oxygen species-
induced oxidative damage and important during mitochondrial apoptosis [88]. CL 
oxidation is observed in insulin resistance [96], obesity [97], and nonalcoholic fatty 
liver disease [98]. Metabolic dysfunction pertaining to CLs in brain mitochondria 
is suggested in neurodegenerative diseases, including Alzheimer’s disease and 
Parkinson’s disease [99]. In Parkinson’s disease, for example, α-synuclein seems to 
form an oligomer that binds to mitochondrial membrane CLs, thereby disrupting 
integrity and impairing function [100, 101].
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5. The fat-brain axis

Mechanisms whereby AT and its secretory products affect peripheral lipid 
metabolism are centrally coordinated [102]. For example, leptin and adiponec-
tin, peripheral AT signals, interact with hypothalamic nuclei such as the arcuate 
nucleus. These interactions trigger the release of orexigenic and anorectic peptides 
from PMC neurons. These peptides exert peripheral effects, modulating food 
intake, reproduction, water balance, body temperature, and energy balance. In 
addition, leptin and adiponectin have been shown to enhance synaptic plastic-
ity. This is illustrated in studies of Alzheimer neuropathology, where amyloid is 
deposited in the areas of the hypothalamus such as the arcuate nucleus, where it 
potentially interferes with usual physiologic influences of AT and its primary hor-
mones, such as leptin and adiponectin as well as downstream events and feedback 
loops [49, 50]. The influence of Alzheimer pathology on areas of the brain involved 
in homeostatic regulation may explain the decline in levels of blood cholesterol and 
body weight observed in prodromal and overt dementia [11]. In addition, data show 
that leptin exerts control over hepatic lipid metabolism via the central nervous 
system and via peripheral nerves. Central regulation of lipid metabolism in WAT 
and BAT may also contribute to hepatic lipid content indirectly via FFA release and 
changes in lipoprotein clearance. Impairments in these pathways may contribute to 
dyslipidemias [102].

6. Genes related to adipose tissue

Given published associations of adiposity with brain outcomes including 
Alzheimer’s Disease (AD) [refs 1, 5, 6, 11, 48–50, 55, 56, 57, 103, 104], understand-
ing the potential role of adiposity- and lipid-related susceptibility genes in AD may 
provide insights regarding biological underpinnings related to AT. Genes related 
to AD susceptibility may have a modifying effect on the relationship between AT, 
dyslipidemias, and aging. Several genes have been identified that link AT and cor-
responding vascular risk to cognitive decline, AD susceptibility, and pathological 
processes. APOE and FTO are two of them.

The APOE gene encodes for a protein on the surface of lipoproteins that aids in 
lipoprotein metabolism [12]. The APOEε4 allele is a known susceptibility allele for 
dementia. It also modifies the association between BMI decline, often observed to 
a great extent among those developing dementia [55], dementia [103], as well as 
dementia progression [104].

FTO (“fatso”) is an obesity-susceptibility gene and related to T2D. The result-
ing protein product of FTO appears to be a member of the non-heme dioxygenase 
(Fe(II)- and 2-oxoglutarate-dependent dioxygenases) superfamily. FTO mRNA 
is the most abundant in the brain, particularly in hypothalamic nuclei governing 
energy balance. Levels in the arcuate nucleus are regulated by feeding and fasting 
[105], thus potentially integrating AT hormones in the fat-brain axis. The influence 
of lipid type is also modulated by FTO [106].

The existence of susceptibility genes such as APOE and FTO points to the poten-
tial role of developmental origins in the life course trajectories of lipids and anthro-
pometric measures of AT, such as BMI, in relation to brain structure and function as 
well as age- and lipid-related diseases of the brain [107]. Genetic susceptibility and 
gene-environment interactions, especially over the life course, remain largely unex-
plored. Stratification of population samples on the basis of these important genotypes 
lends insight into innate susceptibility-related AT over the life course [103].
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7. In conclusion: adipose, a quintessential multifunctional tissue

Understanding the complexity of AT and its role in dyslipidemia in the periphery 
and its interactions with the brain is paramount to the development of intervention 
strategies focused on obesity-related exposures, correlates, and outcomes. Issues 
related to the epidemiology, adipocyte subpopulations, differential energetics, endocri-
nology, amyloid, and genetics are aspects of adiposity requiring further investigation.

Based on this review, several suggestions can be made for future research. The 
use of simple anthropometric indicators in epidemiologic studies is somewhat 
obsolete, particularly for elderly populations. Anthropometric indicators could 
be replaced by measures reflecting potential biological functions and structures 
of AT. These measures include traditional and nontraditional lipid species as well 
as endocrine metabolites of AT that are measureable in peripheral fluids. Whole 
body imaging is also important. Improving measures of adipocyte subpopulations 
accompanied by improved methods for biopsying and measuring these important 
cells and/or their activities in epidemiologic and clinical studies are needed. As 
adipocytes are produced throughout the life span of mammals, and in response to 
the changing status of the organism, they may prove to be important gauges and 
influencers of metabolic health, not only peripherally but centrally for the brain. 
Therefore, brain imaging measures may be useful as preclinical indicators of 
susceptibility as well as comprising outcomes associated with the adiposity expo-
sure. Enriching future studies for certain genetic or “at-risk” subgroups may lend 
additional insights. In time, our appreciation for AT and its complexity will only 
grow and mature to ultimately improve human health.
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