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Chapter

Radiation and Energy Flux of
Electromagnetic Fields by a Segment
of Relativistic Electron Beam
Moving Uniformly in Vacuum
Sergey Prijmenko and Konstantin Lukin

Abstract

A finite-length segment of filamentous relativistic electron beam (REB),
moving uniformly in vacuum, radiates hybrid electromagnetic waves, compound of
potential and vortex electric fields, as well as a vortex magnetic field. The strengths
of electric and magnetic fields radiated by the segment edges have the opposite
signs. The electromagnetic fields in the wave zone are considered as superposition
of the electromagnetic waves radiated by the beginning and the end of the REB
segment, which, in particular, leads to formation of the field’s interference compo-
nents. In both the near and the intermediate zones, there is a flow of electrical
energy due to the electric potential field and the field of displacement current.

Keywords: relativistic electron beam or REB segment, potential field, vortex field,
radiation of EM waves, near field zone, intermediate zone and far field (wave)
zone, EM energy flux

1. Introduction

The physics of charged particle beam is an area where relativistic effects
manifest themselves substantially. Here, one has to deal with a moving object, so
both a fixed (laboratory) coordinate system and a moving coordinate system are to
be used. A charged particle moves relative to the laboratory coordinate system,
while in the moving coordinate system, it is at rest. Hence, in a laboratory coordi-
nate system, the problem is to be considered as an electrodynamical one, and in a
moving coordinate system, the problem belongs to the area of electrostatics. Thus,
electrostatic phenomena in a charged particle set at rest are transformed into
electrodynamic ones when it moves. Electromagnetic fields in these two inertial
reference systems are tied via the Lorentz transform ([1], p. 79).

In the wave zone, the dynamic component of the electric field strength and the
axially symmetric magnetic field form both a constant flux into a given solid angle,
i.e., electromagnetic radiation, and a flux per time unit directed along the normal to
the conical surface of the solid angle. The potential component of the electric field,
directed along the radius, and the axially symmetric magnetic field form a flux
oriented along the polar direction, i.e., along the normal to the above conical
surface. The fluxes crossing the conical surface do not depend on the distance
between the source point and the observation point. In the wave zone, the
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radiations from the beginning and end of the REB segment are added up, while the
fluxes through the above conical surface caused by dynamic and potential compo-
nents of electric field, are subtracted.

To date, the issue of influence of the finite length of a charged particle beam,
moving uniformly in vacuum on the radiation of electromagnetic fields remains
poorly studied, with an exception of publication [2], where its experimental part
deserves special attention.

This chapter presents the results of our theoretical analysis of the electromag-
netic field radiated by a finite-length segment of filamentous relativistic electron
beam (REB). The REB segment moves uniformly in vacuum along its own axis
which we will address as the longitudinal direction. The stepped varying of the
charge density at the edges of the REB segment creates point-like sources of the
potential electric field; the strength of which is inversely proportional to the dis-
tance between the source point and the observation point. In addition, the time
variation of the REB current density forms at the REB edges the point-like sources
of both potential and vortex electric fields, as well as the vortex magnetic field, with
their strengths being also inversely proportional to the distance between the source
point and the observation point [3].

The filamentary REB edges are considered as relativistic point-like radiators of the
electromagnetic energy propagating to the wave zone. The presence of a potential
electric field in the wave zone is due to the fact that the electric scalar potential in the
wave zone is proportional to the electricmonopolemoment ([4], p. 51), which equals
to the total charge in the selected volume ([5], p. 280). As follows from the Jefimenko’s
generalization of the Coulomb law ([3], p. 246), the potential electric field strength in
the wave zone is proportional to the time derivative of the electric monopole moment.

In the intermediate zone, there is a flow of electrical field energy, due to the
electric potential field and the field of the displacement current. The electrical
energy flux in the intermediate zone is due to the electric potential field and field of
the displacement current. The REB part with a constant charge density between its
edges forms a quasi-static electromagnetic field in the near zone.

Note that a similar problem has been considered in [6], but it was devoted to
similarity of the solutions obtained with the help of two different methods: retarded
field integral and transformation equations of the special theory of relativity. Unlike
our work, it does not contain expressions for scalar and vector potentials, as well
as the electromagnetic energy flux.

2. Formulation of the problem

Consider a filamentary REB segment of length L and electric charge density Q
moving uniformly along its axis direction with velocity ve. Charge density of the
REB segment may be written as follows:

ρ t, r x, y, z
� �� �

L
¼ Q

L
δ xð Þ � δ y

� �

� h z � vetð Þ � h z � vet þ Lð Þð Þ½ � (1)

where h xð Þ is Heaviside step function; δ xð Þ and δ y
� �

are Dirac delta functions of

coordinates. The electric scalar potential ψ t, rð Þ and vector potential A
!

t, rð Þ, taking
into account Eq. (1), satisfy the wave equations [3, 7]:

divgrad� 1

c2
∂
2

∂t2

� �

ψ t, rð Þ ¼ � ρ t, rð Þ
ε0

, (2)
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graddiv� rotrot � 1

c2
∂
2

∂t2

� �

A
!

t, rð Þ ¼ �μ0ρ t, rð Þvek
!
0, (3)

where ε0 and μ0 are the dielectric and magnetic permeability of vacuum,

respectively; and k
!
0 is the unit vector along the REB axis, the Oz axis.

3. Potentials

A potential part of the vector potential A
!
 p t, rð Þ is related to the scalar potential

by the Lorentz calibration [3, 7]:

div A
!
 p t, rð Þ ¼ � 1

c2
∂

∂t
ψ t, rð Þ, (4)

Using the Green’s function for the wave equation ([3], p. 243), we obtain:

ψ t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼

¼ � Q

L4πε0

ð

vet0þL

vet0

dz0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z � z0ð Þ2
q

t0¼t�
r
!� r

!
 0j j

c

�

�

�

, (5)

A
!

t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼

¼ �Q μ0

L4π

ð

vet
0þL

vet0

dz0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z� z0ð Þ2
q

t0¼t�
r
!� r

!
 0j j

c

�

�

�

, (6)

where the hatched coordinates refer to the source point at the time instant t0 of
the field radiation, and the non-hatched coordinates refer to the observation point
at the time instant t.

The formula for the scalar potential can be obtained in the closed form using the
table integral ([8], p. 34):

ψ t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ

¼ Q

L4πε0
ln z� vet

0 þ Lð Þð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z� vet0 þ Lð Þð Þ2
q

�

�

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0þLð Þj j

c

�

�

�

� Q

L4πε0
ln z� vet

0ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z� vet0ð Þ2
q

�

�

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0ð Þj j

c

�

�

�

(7)

where the expressions in the first and second summands refer to the REB
segment end and its beginning, respectively.

4. The electromagnetic field strengths

For estimation of the electric and magnetic fields, we use standard formulas
([7], p. 432):
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E
!

t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼

¼ � ∂A
!

t0, x0 ¼ 0, y0 ¼ 0, vet0, z0, vet
0 þ L; t, r x, y, zð Þð Þ

∂t
�

�gradrψ t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ, (8)

H
!

t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼

¼ 1

μ0

rotrA
!

t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ, (9)

where it is necessary to perform the differentiation over the coordinates of the
observation point, taking into account the retardation effect ([7], p. 432) and ([4],
p. 43) as well as the differentiation of integrals by the integration limits and by the
parameter ([9], p. 58). Using Eqs. (5), (6), and (8), we get:

Ep
x t0, x0 ¼ 0, y0 ¼ 0, vet

0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve
L4πε0c

cos αx z0 ¼ vet
0ð Þ½ �

κ z0 ¼ vet0ð Þ r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0ð Þj j

c

�

�

�

�

� Qve
L4πε0c

cos αx z0 ¼ vet
0 þ Lð Þ½ �

κ z0 ¼ vet0 þ Lð Þ r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0þLð Þj j

c

�

�

�

þ

þ Q

L4πε0

ðvet
0þL

vet0

cos αx z0ð Þ½ �

r
! � r

!
 0 t0, z0ð Þ

�

�

�

�

�

�

2

t0¼t�
r
!� r

!
 0 t0 ,z0ð Þj j
c

�

�

�

, dz0 (10)

Ep
y t0, x0 ¼ 0, y0 ¼ 0, vet

0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve
L4πε0c

cos αy z0 ¼ vet
0ð Þ

� 	

κ z0 ¼ vet0ð Þ r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0ð Þj j

c

�

�

�

�

� Qve
L4πε0c

cos αy z0 ¼ vet
0 þ Lð Þ

� 	

κ z0 ¼ vet0 þ Lð Þ r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0þLð Þj j

c

�

�

�

þ

þ Q

L4πε0

ðvet
0þL

vet0

cos αy z0ð Þ
� 	

r
! � r

!
 0 t0, z0ð Þ

�

�

�

�

�

�

2

t0¼t�
r
!� r

!
 0 t0 ,z0ð Þj j
c

�

�

�

, dz0 (11)

Ez t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve
L4πε0c

cos αz z0 ¼ vet
0ð Þ½ �

κ z0 ¼ vet0ð Þ r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0ð Þj j

c

�

�

�

�

� Qve
L4πε0c

cos αz z0 ¼ vet
0 þ Lð Þ½ �

κ z0 ¼ vet0 þ Lð Þ r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0þLð Þj j

c

�

�

�

�
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�Qμ0ve
2

L4π

1

κ z0 ¼ vet0ð Þ r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0ð Þj j

c

�

�

�

þ

þQμ0ve
2

L4π

1

κ z0 ¼ vet0 þ Lð Þ r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0þLð Þj j

c

�

�

�

þ

þ Q

L4πε0

ðvet
0þL

vet0

cos αz z0ð Þ½ �

r
! � r

!
 0 t0, z0ð Þ

�

�

�

�

�

�

2

t0¼t�
r
!� r

!
 0 t0 ,z0ð Þj j
c

�

�

�

, dz0 (12)

where

cos αx z0 ¼ vet
0ð Þ½ � ¼ x

r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0ð Þj j

c

�

�

�

, (13)

cos αx z0 ¼ vet
0 þ Lð Þ½ � ¼ x

r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0þLð Þj j

c

�

�

�

, (14)

cos αy z0 ¼ vet
0ð Þ

� 	

¼ y

r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0ð Þj j

c

�

�

�

, (15)

cos αy z0 ¼ vet
0 þ Lð Þ

� 	

¼ y

r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0þLð Þj j

c

�

�

�

, (16)

cos αz z0 ¼ vet
0ð Þ½ � ¼ z� vet

0ð Þ
r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0ð Þj j

c

�

�

�

, (17)

cos αz z0 ¼ vet
0 þ Lð Þ½ � ¼ z� vet

0 þ Lð Þð Þ
r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0þLð Þj j

c

�

�

�

, (18)

and

κ z0 ¼ vet
0ð Þ ¼ ½1� ve

c
cos αz z0 ¼ vet

0ð Þ½ �, (19)

κ z0 ¼ vet
0 þ Lð Þ ¼ ½1� ve

c
cos αz z0 ¼ vet

0 þ Lð Þ½ � (20)

are the retardation factors ([3], p. 246).
The transverse components of the electric field strength Ep

x t0, r0 x0, y0, z0 t0ð Þð Þ;ð
 t, r x, y, zð ÞÞ and Ep

y t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ are potential relative to the space

coordinates, and the longitudinal component Ez t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ
consists of both a potential component relative to the space coordinates and a
dynamic component.

The transverse components of the magnetic field strength Hx t0, r0 x0, y0, z0 t0ð Þð Þ;ð
 t, r x, y, zð ÞÞ and Hy t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ, according to the Eq. (6) and (9),
are:
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Hx t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼

¼ �Qve
2

L4πc

cos αy z0 ¼ vet
0ð Þ

� 	

κ z0 ¼ vet0ð Þ r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0ð Þj j

c

�

�

�

þQve
2

L4πc

cos αy z0 ¼ vet
0 þ Lð Þ

� 	

κ z0 ¼ vet0 þ Lð Þ r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0þLð Þj j

c

�

�

�

�Qve
L4π

ðvet
0þL

vet0
dz0

cos αy z0ð Þ
� 	

r
! � r

!
 0 t0, z0ð Þ

�

�

�

�

�

�

2

t0¼t�
r
!� r

!
 0 t0 ,z0ð Þj j
c

�

�

�

(21)

Hy t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve
2

L4πc

cos αx z0 ¼ vet
0ð Þ½ �

κ z0 ¼ vet0ð Þ r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0ð Þj j

c

�

�

�

�

�Qve
2

L4πc

cos αx z0 ¼ vet
0 þ Lð Þ½ �

κ z0 ¼ vet0 þ Lð Þ r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

t0¼t�
r
!� r

!
 0 t0 ,z0¼vet0þLð Þj j

c

�

�

�

þ

þQve
L4π

ðvet
0þL

vet0
dz0

cos αx z0ð Þ½ �

r
! � r

!
 0 t0, z0ð Þ

�

�

�

�

�

�

2

t0¼t�
r
!� r

!
 0 t0 ,z0ð Þj j
c

�

�

�

(22)

The strengths of the electric fields in Eqs. (10)–(12) and magnetic fields with
Eqs. (21) and (22), formed by the ends and the main part of the beam, decrease
inversely proportional to the first and second powers of the distance from the
source point to the observation point.

5. Displacement current

We take into account that the displacement current density j
!

d t, rð Þ ([7],
p. 87):

j
!

d t, rð Þ ¼ ∂

∂t
D
!

d t, rð Þ ¼ ∂

∂t
ε0E

!
t, rð Þ, (23)

where the D
!

d t, rð Þ ¼ ε0E
!

t, rð Þ is the electric displacement vector. Taking into
account the Eqs. (10)–(12) and (23), we get

j
p
dx t0, x0 ¼ 0, y0 ¼ 0, vet

0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve
2

L4πc
cos αx z0 ¼ vet

0ð Þ½ � � cos αz z0 ¼ vet
0ð Þ½ � � 1

κ2 z0 ¼ vet0ð Þ r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

2

þ Qve
3

L4πc2
cos αx z0 ¼ vet

0ð Þ½ �

κ3 z0 ¼ vet0ð Þ r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

3 ½ r! � r
!
 0 t0, z0 ¼ vet

0ð Þ
�

�

�

�

�

�
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� cos αz z0 ¼ vet
0ð Þ½ � z� vet

0ð Þ�þ

þQve
2

L4πc

cos αx z0 ¼ vet
0ð Þ½ � cos αz z0 ¼ vet

0ð Þ½ �

κ2 z0 ¼ vet0ð Þ r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

2 �

� 2Qve
2

L4πc

cos αx z0 ¼ vet
0 þ Lð Þ½ � � cos αz z0 ¼ vet

0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

2 �

� Qve
3

L4πc2
cos αx z0 ¼ vet

0 þ Lð Þ½ �

κ3 z0 ¼ vet0 þ Lð Þ r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

3

� r
! � r

!
 0 t0, z0 ¼ vet

0 þ Lð Þ
�

�

�

�

�

�� cos αz z0 ¼ vet
0 þ Lð Þ½ � � z� vet

0 þ Lð Þð Þ
h i

þ

þQve
L4π

cos αx z0 ¼ vet
0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

2 �

�Qve
L4π

� cos αx z0 ¼ vet
0ð Þ½ �

κ2 z0 ¼ vet0ð Þ r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

2 (24)

j
p
dy t0, x0 ¼ 0, y0 ¼ 0, vet

0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve
2

L4πc
cos αy z0 ¼ vet

0ð Þ
� 	

� cos αz z0 ¼ vet
0ð Þ½ ��

� 1

κ2 z0 ¼ vet0ð Þ r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

2 þ
Qve

3

L4πc2
cos αy z0 ¼ vet

0ð Þ
� 	

κ3 z0 ¼ vet0ð Þ r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

3

r
! � r

!
 0 t0, z0 ¼ vet

0ð Þ
�

�

�

�

�

�� cos αz z0 ¼ vet
0ð Þ½ � z� vet

0ð Þ
h i

þ

þQve
2

L4πc

cos αy z0 ¼ vet
0ð Þ

� 	

cos αz z0 ¼ vet
0ð Þ½ �

κ2 z0 ¼ vet0ð Þ r
!� ¼ vet0Þ� z� vet0ð Þ�ðt0, z0 ¼ vet0Þ
�

�

�

�

�

�

2

� 2Qve
2

L4πc

cos αy z0 ¼ vet
0 þ Lð Þ

� 	

� cos αz z0 ¼ vet
0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

2 � Qve
3

L4πc2

cos αy z0 ¼ vet
0 þ Lð Þ

� 	

κ3 z0 ¼ vet0 þ Lð Þ r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

3 r
! � r

!
 0 t0, z0 ¼ vet

0 þ Lð Þ
�

�

�

�

�

�

h

� cos αz z0 ¼ vet
0 þ Lð Þ½ � � z� vet

0 þ Lð Þð Þ�

þQve
L4π

cos αy z0 ¼ vet
0 þ Lð Þ

� 	

κ2 z0 ¼ vet0 þ Lð Þ r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

2

�Qve
L4π

cos αy z0 ¼ vet
0ð Þ

� 	

κ2 z0 ¼ vet0ð Þ r
! � r

!0 t0, z0 ¼ vet0ð Þ
�

�

�

�

�

�

2 (25)

jdz t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼

¼ �Qve
2

L4πc
sin 2

αz z0 ¼ vet
0ð Þ½ ��
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� 1

κ2 z0 ¼ vet0ð Þ r
! � r

!0 t0, z0 ¼ vet0ð Þ
�

�

�

�

�

�

2 þ
Qve

3

L4πc2
cos αz z0 ¼ vet

0ð Þ½ �

κ3 z0 ¼ vet0ð Þ r
! � r

!0 t0, z0 ¼ vet0ð Þ
�

�

�

�

�

�

3 �

� r
! � r

!
 0 t0, z0 ¼ vet

0ð Þ
�

�

�

�

�

�� cos αz z0 ¼ vet
0ð Þ½ � z� vet

0ð Þ
h i

þ Qve
2

L4πc

cos 2
αz z0 ¼ vet

0ð Þ½ �

κ2 z0 ¼ vet0ð Þ r
! � r

!0 t0, z0 ¼ vet0ð Þ
�

�

�

�

�

�

2

�Qve
2

L4πc

sin 2
αz z0 ¼ vet

0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r
! � r

!0 t0, z0 ¼ vet0 þ Lð Þ
�

�

�

�

�

�

2 þ
Qve

3

L4πc2
�

� cos αz z0 ¼ vet
0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r
! � r

!0 t0, z0 ¼ vet0 þ Lð Þ
�

�

�

�

�

�

3

� ½ r! � r
!0 t0, z0 ¼ vet

0 þ Lð Þ
�

�

�

�

�

�� cos αz z0 ¼ vet
0 þ Lð Þ½ ��

� z� vet
0 þ Lð Þð Þ� þ Qve

2

L4πc

cos 2
αz z0 ¼ vet

0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r
! � r

!
 0 t0, z0 ¼ vet0 þ Lð Þ

�

�

�

�

�

�

2 �

Qve
4

L4πc3
1

κ3 z0 ¼ vet0ð Þ r
! � r

!0 t0, z0 ¼ vet0ð Þ
�

�

�

�

�

�

3 r
! � r

!0 t0, z0 ¼ vet
0ð Þ

�

�

�

�

�

�� cos αz z0 ¼ vet
0ð Þ½ � z� vet

0ð Þ
h i

�

� Qve
3

L4πc2
cos αz z0 ¼ vet

0ð Þ½ �

κ2 z0 ¼ vet0ð Þ r
! � r

!
 0 t0, z0 ¼ vet0ð Þ

�

�

�

�

�

�

2

þ Qve
4

L4πc3
1

κ3 z0 ¼ vet0 þ Lð Þ r
! � r

!0 t0, z0 ¼ vet0 þ Lð Þ
�

�

�

�

�

�

3 �

� r
! � r

!0 t0, z0 ¼ vet
0 þ Lð Þ

�

�

�

�

�

�� cos αz z0 ¼ vet
0 þ Lð Þ½ � z� vet

0 þ Lð Þð Þ
h i

þ

þ Qve
3

L4πc2
cos αz z0 ¼ vet

0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r
! � r

!0 t0, z0 ¼ vet0 þ Lð Þ
�

�

�

�

�

�

2

� Qve
L4π

cos αz z0 ¼ vet
0ð Þ½ �

κ z0 ¼ vet0ð Þ r
! � r

!0 t0, z0 ¼ vet0ð Þ
�

�

�

�

�

�

2 (26)

The transverse components of the displacement current density

j
p
dx t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ and j

p
dy t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ are

potential with respect to space coordinates, and the longitudinal component
jdz t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ consists of potential and dynamic components.
Displacement current densities are decreasing inversely proportional to the second
power of the distance from the source point to the observation point.
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6. Flux of electrical energy

The electrical energy flux density per unit time S
!ψ

t, rð Þ, according to ([10],
p. 125) Eq. (15) and [11] Eqs. (7) and (8), has the form

S
!ψ

t, rð Þ ¼ ψ t, rð Þ � j
!

d t, rð Þ (27)

Taking into account the Eq. (5) or the Eq. (7) and the Eqs. (24)–(26), we can
write

Sψx t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼
¼ ψ t0, x0 ¼ 0, y0 ¼ 0, vet

0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ�
j
p
dx t0, x0 ¼ 0, y0 ¼ 0, vet

0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ (28)

Sψy t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼

¼ ψ t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ�
� jpdy t0, x0 ¼ 0, y0 ¼ 0, vet

0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ (29)

Sψz t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼
¼ ψ t0, x0 ¼ 0, y0 ¼ 0, vet

0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ�
j
p
dz t0, x0 ¼ 0, y0 ¼ 0, vet

0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ (30)

The electrical energy flux density S
!ψ

t, rð Þ decreases inversely proportional to the
third power of the distance from the source point to the observation point. The
electrical energy flux per unit time into a given solid angle decreases inversely
proportional to the first power of the distance from the source point to the obser-
vation point. The flux takes place both in the near and the intermediate zones.

7. Pointing vector

The Poynting vector or the flux density of electromagnetic energy per unit time
is determined by the formula ([3], p. 259)

S
!

t, rð Þ ¼ E
!

t, rð Þ �H
!

t, rð Þ (31)

The Poynting vector along the Ox axis estimated according to Eq. (31) with the
help of Eqs. (12) and (22) may be written as follows:

Sx t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼
¼ �Ez t0, x0 ¼ 0, y0 ¼ 0, vet

0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ�
�Hy t0, x0 ¼ 0, y0 ¼ 0, vet

0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ
¼ �fEp

z z0 ¼ vet
0ð Þ þ Ep

z z0 ¼ vet
0 þ Lð Þ

þE r
z z0 ¼ vet

0ð Þ þ E r
z vet

0
, z0, vet

0 þ Lð Þg�

Hy z0 ¼ vet
0ð Þ þHy z0 ¼ vet

0 þ Lð Þ þ þH c
y vet

0
, z0, vet

0 þ Lð Þ
n o

(32)
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where the summands in curly brackets are defined by Eq. (12) and Eq. (22),
respectively. Rewriting the Eq. (32) in the following form:

Sx t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ
¼ iSx z0 ¼ vet

0, z0 ¼ vet
0 þ Lð Þ þ piSx z0 ¼ vet

0, z0 ¼ vet
0 þ L, vet

0
, z0, vet

0 þ Lð Þ
þ fScx vet

0
, z0, vet

0 þ Lð Þ,
(33)

where the iSx z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ there is a flux of electromagnetic energy

in a unit time that goes into the wave zone, the piSx z0 ¼ vet0, z0 ¼ð vet0 þ
L, vet0, z0, vet0 þ LÞ there is a flux of electromagnetic energy in the intermediate

zone, the fScx vet0, z0, vet0 þ Lð Þ there is a flux of electromagnetic energy in the
near zone. As this takes place

iSx z0 ¼ vet
0, z0 ¼ vet

0 þ Lð Þ ¼ iSx z0 ¼ vet
0ð Þþ

þiSx z0 ¼ vet
0 þ Lð Þ þ iSψAx z0 ¼ vet

0, z0 ¼ vet
0 þ Lð Þ, (34)

iSx z0 ¼ vet
0ð Þ ¼ iSψAx z0 ¼ vet

0ð Þ þ iSAx z0 ¼ vet
0ð Þ ¼

¼ �Ep
z z0 ¼ vet

0ð Þ �Hy z0 ¼ vet
0ð Þ � E r

z z0 ¼ vet
0ð Þ �Hy z0 ¼ vet

0ð Þ, (35)

iSx z0 ¼ vet
0 þ Lð Þ ¼ iSψAx z0 ¼ vet

0 þ Lð Þ þ iSAx z0 ¼ vet
0 þ Lð Þ ¼

�Ep
z z0 ¼ vet

0 þ Lð Þ �Hy z0 ¼ vet
0 þ Lð Þ � E r

z z0 ¼ vet
0 þ Lð Þ �Hy z0 ¼ vet

0 þ Lð Þ, (36)

iSψAx z0 ¼ vet
0, z0 ¼ vet

0 þ Lð Þ ¼ �Ep
z z0 ¼ vet

0ð Þ �Hy z0 ¼ vet
0 þ Lð Þ � Ep

z z0 ¼ vet
0 þ Lð Þ

�Hy z0 ¼ vet
0ð Þ � E r

z z0 ¼ vet
0ð Þ �Hy z0 ¼ vet

0 þ Lð Þ
� E r

z z0 ¼ vet
0 þ Lð Þ �Hy z0 ¼ vet

0ð Þ:
(37)

The energy fluxes, iSx z0 ¼ vet
0ð Þ, iSx z0 ¼ vet

0 þ Lð Þ, iSψAx z0 ¼ vet
0, z0 ¼ vet

0 þ Lð Þ,
are determined by point sources of radiation at the REB segment beginning, the
REB segment end, and the REB segment interference, respectively.

piSx z0 ¼ vet
0, z0 ¼ vet

0 þ L, vet
0
, z0, vet

0 þ Lð Þ ¼
�Ep

z z0 ¼ vet
0ð Þ �H c

y vet
0
, z0, vet

0 þ Lð Þ � Ep
z z0 ¼ vet

0 þ Lð Þ �H c
y vet

0
, z0, vet

0 þ Lð Þ

�E r
z z0 ¼ vet

0ð Þ �H c
y vet

0
, z0, vet

0 þ Lð Þ � E r
z z0 ¼ vet

0ð Þ �H c
y vet

0
, z0, vet

0 þ Lð Þ

E c
z vet

0
, z0, vet

0 þ Lð Þ �Hy z0 ¼ vet
0ð Þ � E c

z vet
0
, z0, vet

0 þ Lð Þ �Hy z0 ¼ vet
0 þ Lð Þ:
(38)

fScx vet
0
, z0, vet

0 þ Lð Þ ¼ �E c
z vet

0
, z0, vet

0 þ Lð Þ �H c
y vet

0
, z0, vet

0 þ Lð Þ: (39)

The Poynting vector along the Oy axis, taking into account Eqs. (12), (21), (31),
similarly to Eqs. (33)–(39), is represented by:

Sy t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼ iSy z0 ¼ vet
0, z0 ¼ vet

0 þ Lð Þþ

þpiSy z0 ¼ vet
0, z0 ¼ vet

0 þ L, vet
0
, z0, vet

0 þ Lð Þ þ fScy vet
0
, z0, vet

0 þ Lð Þ, (40)

iSy z0 ¼ vet
0, z0 ¼ vet

0 þ Lð Þ ¼ iSy z0 ¼ vet
0ð Þ þ iSy z0 ¼ vet

0 þ Lð Þþ

þiSψAy z0 ¼ vet
0, z0 ¼ vet

0 þ Lð Þ (41)
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iSy z0 ¼ vet
0ð Þ ¼ iSψAy z0 ¼ vet

0ð Þ þ iSAy z0 ¼ vet
0ð Þ ¼

¼ Ep
z z0 ¼ vet

0ð Þ �Hx z0 ¼ vet
0ð Þ þ E r

z z0 ¼ vet
0ð Þ �Hx z0 ¼ vet

0ð Þ (42)

iSy z0 ¼ vet
0 þ Lð Þ ¼ iSψAy z0 ¼ vet

0 þ Lð Þ þ iSAy z0 ¼ vet
0 þ Lð Þ ¼

¼ Ep
z z0 ¼ vet

0 þ Lð Þ �Hx z0 ¼ vet
0 þ Lð Þ þ E r

z z0 ¼ vet
0 þ Lð Þ �Hx z0 ¼ vet

0 þ Lð Þ,
(43)

iSψAy z0 ¼ vet
0, z0 ¼ vet

0 þ Lð Þ ¼ Ep
z z0 ¼ vet

0ð Þ �Hx z0 ¼ vet
0 þ Lð Þ þ Ep

z z0 ¼ vet
0 þ Lð Þ�

�Hx z0 ¼ vet
0ð Þ þ E r

z z0 ¼ vet
0ð Þ �Hx z0 ¼ vet

0 þ Lð Þ þ E r
z z0 ¼ vet

0 þ Lð Þ �Hx z0 ¼ vet
0ð Þ,

(44)

piSy z0 ¼ vet
0, z0 ¼ vet

0 þ L, vet
0
, z0, vet

0 þ Lð Þ ¼
Ep
z z0 ¼ vet

0ð Þ �H c
x vet

0
, z0, vet

0 þ Lð Þ þ Ep
z z0 ¼ vet

0 þ Lð Þ �H c
x vet

0
, z0, vet

0 þ Lð Þþ
þE r

z z0 ¼ vet
0ð Þ �H c

x vet
0
, z0, vet

0 þ Lð Þ þ E r
z z0 ¼ vet

0ð Þ �H c
x vet

0
, z0, vet

0 þ Lð Þþ
þE c

z vet
0
, z0, vet

0 þ Lð Þ �Hx z0 ¼ vet
0ð Þ þ E c

z vet
0
, z0, vet

0 þ Lð Þ �Hx z0 ¼ vet
0 þ Lð Þ, (45)

fScy vet
0
, z0, vet

0 þ Lð Þ ¼ �E c
z vet

0
, z0, vet

0 þ Lð Þ �H c
x vet

0
, z0, vet

0 þ Lð Þ: (46)

The Poynting vector along the Oz axis, taking into account Eqs. (10), (11), (21),
(22), and (31), may be written as follows:

Sz t0, x0 ¼ 0, y0 ¼ 0, vet
0
, z0, vet

0 þ L; t, r x, y, zð Þð Þ ¼ iSz z0 ¼ vet
0, z0 ¼ vet

0 þ Lð Þþ

þpiSz z0 ¼ vet
0, z0 ¼ vet

0 þ L, vet
0
, z0, vet

0 þ Lð Þ þ fScz vet
0
, z0, vet

0 þ Lð Þ, (47)

iSz z0 ¼ vet
0, z0 ¼ vet

0 þ Lð Þ ¼ iSz z0 ¼ vet
0ð Þþ

þiSz z0 ¼ vet
0 þ Lð Þ þ iSψAz z0 ¼ vet

0, z0 ¼ vet
0 þ Lð Þ (48)

iSz z0 ¼ vet
0ð Þ ¼ iSψAz z0 ¼ vet

0ð Þ ¼
¼ Ep

x z0 ¼ vet
0ð Þ �Hy z0 ¼ vet

0ð Þ � Ep
y z0 ¼ vet

0ð Þ �Hx z0 ¼ vet
0ð Þ (49)

iSz z0 ¼ vet
0 þ Lð Þ ¼ iSψAz z0 ¼ vet

0 þ Lð Þ ¼
¼ Ep

x z0 ¼ vet
0 þ Lð Þ �Hy z0 ¼ vet

0 þ Lð Þ � Ep
y z0 ¼ vet

0 þ Lð Þ �Hx z0 ¼ vet
0 þ Lð Þ (50)

iSψAz z0 ¼ vet
0, z0 ¼ vet

0 þ Lð Þ ¼ Ep
x z0 ¼ vet

0ð Þ �Hy z0 ¼ vet
0 þ Lð Þþ

þEp
x z0 ¼ vet

0 þ Lð Þ �Hy z0 ¼ vet
0ð Þ � Ep

y z0 ¼ vet
0ð Þ �Hx z0 ¼ vet

0 þ Lð Þ�

�Ep
y z0 ¼ vet

0 þ Lð Þ �Hx z0 ¼ vet
0ð Þ (51)

piSz z0 ¼ vet
0, z0 ¼ vet

0 þ L, vet
0
, z0, vet

0 þ Lð Þ ¼
Ep
x z0 ¼ vet

0ð Þ �H c
y vet

0
, z0, vet

0 þ Lð Þ þ Ep
x z0 ¼ vet

0 þ Lð Þ �H c
y vet

0
, z0, vet

0 þ Lð Þþ

þE c
x vet

0
, z0, vet

0 þ Lð Þ �Hy z0 ¼ vet
0ð Þ þ E c

x vet
0
, z0, vet

0 þ Lð Þ �Hy z0 ¼ vet
0 þ Lð Þ�

�Ep
y z0 ¼ vet

0ð Þ �H c
x vet

0
, z0, vet

0 þ Lð Þ � Ep
y z0 ¼ vet

0 þ Lð Þ �H c
x vet

0
, z0, vet

0 þ Lð Þ�

�E c
y vet

0
, z0, vet

0 þ Lð Þ �Hx z0 ¼ vet
0ð Þ � E c

y vet
0
, z0, vet

0 þ Lð Þ �Hx z0 ¼ vet
0 þ Lð Þ,
(52)

fScz vet
0
, z0, vet

0 þ Lð Þ ¼ E c
x vet

0
, z0, vet

0 þ Lð Þ �H c
y vet

0
, z0, vet

0 þ Lð Þ�

�Ec
e vet

0
, z0, vet

0 þ Lð Þ �H c
x vet

0
, z0, vet

0 þ Lð Þ: (53)
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8. Numerical results

We have considered the filamentary REB of the length L ¼ 3 m, moving along
the Oz axis with velocity ve ¼ 0:94 c ( c is the speed of light) and having overall

charge Q ¼ �1ð Þ � 10�10C.
In the laboratory coordinate system, the dependence of the electric field strength

Ep
x t0 ¼ 0, x0 ¼ 0, y0 ¼ 0, z0 ¼ 0; t, r x, y ¼ 0, z ¼ 0ð Þð Þ, radiated by the beginning of

the REB segment r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ 0ð Þ, on the transverse coordinate x was cal-
culated using Eq. (10), (Figure 1). The signal radiation time t0 was selected equal to
zero t0 ¼ 0. The observation point r x, y ¼ 0, z ¼ 0ð Þwas selected in the cross section

z ¼ 0 at y ¼ 0. The observation time t was determined by the formula t ¼ xj j
c .

The dependence of the potential electric field strength Ep
x t0, x0 ¼ 0, y0 ¼ 0,ð z0 ¼

vet
0; t, r x ¼ 0:3m, y ¼ 0, z ¼ 0ð ÞÞ, radiated by the beginning of the REB segment

r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ vet
0ð Þ, on the signal generation time t0 calculated with the help

of Eq. (10), is represented in Figure 2 where r x ¼ 0:3m,ð y ¼ 0, z ¼ 0Þ is the
observation point coordinates.

The dependence of the magnetic field strength Hy t0 ¼ 0, x0 ¼ 0, y0 ¼ 0,ð z0 ¼
L; t, r x, y ¼ 0, z ¼ 0ð ÞÞ radiated by the REB segment end r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ Lð Þ
on the transverse coordinate x was calculated using Eq. (22) (Figure 3). The signal

Figure 1.
The potential electric field strength Ep

x t0 ¼ 0,x0 ¼ 0, y0 ¼ 0, z0 ¼ 0;t, r x, y ¼ 0, z ¼ 0
� �� �

radiated by the
REB segment beginning.

Figure 2.
The potential electric field strength Ep

x t0, x0 ¼ 0, y0 ¼ 0, z0 ¼ vet
0
;t, r x ¼ 0:3m, y ¼ 0, z ¼ 0

� �� �

radiated by
the REB segment beginning.
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generation time t0 was selected equal to the zero, t0 ¼ 0 where
r x ¼ 0:3m, y ¼ 0, z ¼ 0ð Þ is the observation point coordinates. The observation time

t was determined by the formula t ¼
ffiffiffiffiffiffiffiffiffiffi

x2þL2
p

c :

The dependence of the magnetic field strength Hy t0,x0 ¼ 0, y0 ¼ 0,
�

z0 ¼ vet
0 þ L;t, r x ¼ 0:3m, y ¼ 0, z ¼ 0

� �

Þ, radiated by the REB segment end

r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ vet0 þ L
� �

, on the signal radiation time t0 calculated using
Eq.(22), is represented in Figure 4 where r x ¼ 0:3m,ð y ¼ 0, z ¼ 0Þ is the
observation point coordinates.

The dependence of the electromagnetic energy flux iSz t0 ¼ 0,x0 ¼ 0,ð
y0 ¼ 0, z0 ¼ 0;t, r x, y ¼ 0, z ¼ 0

� �

Þ, radiated by the REB segment beginning

r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ 0
� �

, on the transverse coordinate x was calculated with the
help of Eqs. (49), (10), (11), (21), and (22) (Figure 5). The signal generation time t0

was selected equal to the zero, t0 ¼ 0. The r x, y ¼ 0, z ¼ 0
� �

is the observation point

coordinates. The observation time t was determined by the formula t ¼ xj j
c .

The dependence of the electromagnetic energy flux iSz t0, x0 ¼ 0, y0 ¼ 0,
�

z0 ¼ vet0; t, r x ¼ 0:3m, y ¼ 0, z ¼ 0
� �

Þ, radiated by the REB segment

r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ vet0
� �

, on the signal generation time t0, calculated by Eqs. (49),

Figure 3.
Magnetic field strengthHy t0 ¼ 0,x0 ¼ 0, y0 ¼ 0, z0 ¼ L;t, r x, y ¼ 0, z ¼ 0

� �� �

radiatedby theREB segment end.

Figure 4.
Magnetic field strength Hy t0,x0 ¼ 0, y0 ¼ 0, z0 ¼ vet

0 þ L;t, r x ¼ 0:3m, y ¼ 0, z ¼ 0
� �� �

radiated by the
REB segment end.

13

Radiation and Energy Flux of Electromagnetic Fields by a Segment…
DOI: http://dx.doi.org/10.5772/intechopen.86980



Figure 5.

The electromagnetic energy flux iSz t0 ¼ 0, x0 ¼ 0, y0 ¼ 0, z0 ¼ 0;t, r x, y ¼ 0, z ¼ 0
� �� �

radiated by the REB
segment beginning.

Figure 6.

The electromagnetic energy flux iSz t0, x0 ¼ 0, y0 ¼ 0, z0 ¼ vet
0
;t, r x ¼ 0:3m, y ¼ 0, z ¼ 0

� �� �

radiated by the
REB segment beginning.

Figure 7.

The electromagnetic energy flux iSz t0 ¼ 0, x0 ¼ 0, y0 ¼ 0, z0 ¼ L;t, r x, y ¼ 0, z ¼ 0
� �� �

radiated by the REB
segment end.
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(10), (11), (21), (22), is shown in Figure 6. The observation point coordinate is
r x ¼ 0:3m, y ¼ 0, z ¼ 0
� �

.

The dependence of the electromagnetic energy flux iSz t0 ¼ 0,x0 ¼ 0,ð
y0 ¼ 0, z0 ¼ L; t, r x, y ¼ 0, z ¼ 0

� �

Þ, radiated by the REB segment end

r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ L
� �

, on the transverse coordinate x was calculated with the
help of Eqs. (50), (10), (11), (21), (22) (Figure 7). The signal radiation time t0 was
selected equal to the zero t0 ¼ 0. The r x, y ¼ 0, z ¼ 0

� �

is the observation point

coordinates. The observation time t was determined by the formula t ¼
ffiffiffiffiffiffiffiffiffiffi

x2þL2
p

c :

The dependence of the electromagnetic energy flux iSz t0, x0 ¼ 0, y0 ¼ 0,
�

z0 ¼ vet0 þ L; t, r x ¼ 0:3m, y ¼ 0, z ¼ 0
� �

Þ, radiated by the REB segment end

r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ vet0 þ L
� �

, on the signal radiation time t0, calculated according

to Eqs. (50), (10), (11), (21), (22), is shown in Figure 8 where r x ¼ 0:3m,ð
y ¼ 0, z ¼ 0Þ is the observation point coordinates.

9. Conclusions

The applicability of relativity in the physics of charged particle beams has been
shown from the example of radiation by a filamentary REB segment uniformly
moving in vacuum along a linear direction.

In electrodynamics, in a moving coordinate system, the relative distance
between a charged object and an observer does not change. The phenomenon of
relativity associated with the field dynamics degenerates to electrostatic processes.
In rest, or laboratory, coordinate system, the relative distance is changing with
time, the charge density also varies with the time, and as a result, the retardation
phenomena came to the scene and the Poisson equation is to be substituted by the
wave equation.

The expressions have been obtained to describe the strengths of the electric and
magnetic fields and the electric and electromagnetic energy fluxes in all three zones:
near field zone, intermediate, and wave zones. The filamentary REB edges are
relativistic point-like sources of electromagnetic energy propagating in the wave
zone. The REB edges form a potential component of the electric field strength,
which is inversely proportional to the distance from the source point to the obser-
vation point. In the wave zone, strength of this field is comparable with that of the
dynamic component of the electric field.

Figure 8.

The electromagnetic energy flux iSz t0,x0 ¼ 0, y0 ¼ 0, z0 ¼ vet
0 þ L;t, r x ¼ 0:3m, y ¼ 0, z ¼ 0

� �� �

radiated
by the REB segment end.
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The dynamic component of the electric field strength and the axially symmetric
magnetic field form both a constant flux into the given solid angle, i.e. electromagnetic
radiation, and a flux per time unit directed along the normal to the conical surface of
the above solid angle. The potential component of the electric field, directed along
the radius, and the axially symmetric magnetic field form a flux oriented along the
polar direction, i.e., along the normal to the conical surface. The fluxes crossing the
above conical surface are independent of the distance between the source point and
the observation point. In the wave zone, the radiations from the beginning and end
of the REB segment are added up, while the fluxes through the above conical surface
caused by dynamic and potential components of electric field, are subtracted.

Relativistic point-like sources create in the wave zone the vortex components
of the magnetic field. The REB edges radiate hybrid electromagnetic waves, com-
prising of potential and vortex electric fields, as well as a vortex magnetic field.
The electric and magnetic field strengths radiated by the REB segment edges have
opposite signs. In the wave zone, the radiated electromagnetic field fluxes are
compound of the electromagnetic energy fluxes, produced by both the REB seg-
ment beginning and its end, as well as of their interference components. In the
intermediate zone, the electrical energy flux takes place due to the electric potential
field and the displacement current. The REB segment, between the beam edges,
having a constant charge density, produces a quasi-static electromagnetic field in
the near zone.
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