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Chapter

Quaternion-Based Spacecraft
Dynamic Modeling and
Reorientation Control Using the
Dynamically Equivalent
Manipulator Approach
Elżbieta Jarzębowska and Marcin Kłak

Abstract

The chapter presents modification of a dynamically equivalent manipulator
(DEM) method, which enables dynamic modeling of space robots and manipula-
tors, including free-floating maneuvers, via their suitable substitution by ground-
fixed manipulator models. DEM provides an attractive modeling and control design
tool, since it enables conducting tests and experiments for space vehicles in earth
laboratories. The modification of DEM method relies upon an introduction of
quaternion-based modeling of manipulator attitude. Originally, DEM method was
developed in Euler angles. The basic motivation for the presented DEM modifica-
tion is to make dynamic and kinematic models more suitable for description of
space robots and manipulator motions and their missions like debris removal,
spacecraft servicing, space mining, and on-orbit docking and assemblies. It may also
support control designs. The theoretical development is illustrated by an example of
generation of spacecraft quaternion-based dynamics and simulation studies of its
reorientation maneuvers.

Keywords: dynamically equivalent manipulator, quaternion-based dynamics,
space robot attitude, free-floating maneuvers

1. Introduction

Possibilities of employing space robots and manipulators for variety of rescue,
servicing, and reconnaissance missions have been addressed since the early 1980s
(see, e.g., [1] and references there). A lot of research and theoretical studies address
dynamic control and space missions for various space vehicles, but just a few
experiments have been conducted on the orbit. Examples, from a very incomplete
list, can be maintenance missions for the Hubble Space Telescope and the retrieval
of the Space Flyer Unit as described in [2]. In these missions, however, the space
crews manually operated manipulator arms. Autonomous target capture by an
unmanned space robot can be another example of a challenging operation, first
addressed theoretically through modeling and simulation studies by space robotic
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researchers. A couple of milestones marked the human’s way to autonomous space
robot operations toward service and exploration of the universe. The examples are
the Robot Technology Experiment (ROTEX) developed by the German Aerospace
Center [3]. A multisensory robot was flown on space shuttle COLUMBIA (STS-55) in
1993. Although the robot worked inside a work cell on the shuttle, several key
technologies such as a multisensory gripper, tele-operation from the ground, shared
autonomy, and time delay compensation by a predictive graphic display were suc-
cessfully tested. One more example is the Engineering Test Satellite VII, in the area of
satellite servicing, which is an unmanned spacecraft developed and launched by the
National Space Development Agency of Japan [4]. In 2005, Demonstration of
Autonomous Rendezvous Technology (DART) experimented with rendezvous and
docking to another satellite. The mission failed due to defective autonomous naviga-
tion system, but lessons were learnt, and the next mission Orbital Express in 2007
was a success and demonstrated free-flying capture and refueling by an autonomous
servicing satellite (ASTRO) [5, 6]. Another example of a promising servicing mission
is SMART-OLEV (orbital life extension vehicle) implemented for life extension of
GEO communication satellites [7]. The space debris removal problem is another
instance of a complex task that requires multistage space manipulator (SM) missions
including tracking, capturing, and debris safe removal. The strong need of working
out effective methods of debris removal from the space opened new research areas
and mission planning for space manipulator-based missions that were traditionally
focused on on-orbit servicing of satellites. An intensive review of space debris
removal problems including dynamic modeling and control can be found in [8] and
references there. One more emerging research and future mission area is space
mining, which needs to get frames of the scientific and future mission visions.

Before any experiment can be carried out on the orbit and before any spacecraft
is launched to the orbit, intensive research; theoretical tests in fields of dynamic
modeling, motion control, navigation, sensors, and vision; and related field theories
have to be completed and verified.

This chapter focuses on dynamic modeling and reorientation of free-floating
space manipulators dedicated to servicing tasks. The free-floating operation
assumption requires the spacecraft thrusters to be turned off and the system linear
and angular momentum to be conserved. This means that the spacecraft model is
subjected to two constraints. One, the linear momentum conservation, generates
the holonomic constraint equation, and the second, the angular momentum con-
servation, the nonholonomic constraints. Additionally, the uncontrolled space robot
base makes the system underactuated, which means that there are less control
inputs than degrees of freedom. Therefore, the free-floating space vehicles are
classified as underactuated nonholonomic dynamical systems. The development of
free-floating space manipulator mechanical models is then a complex task due to
dynamic couplings, dynamic singularities, and nonholonomic constraints inherent
to the system. There are many modeling methods, applied to a single spacecraft as
well as to their formations that come from ground robotics and take advantage of
the Lagrange approach and its modifications. However, space vehicles require more
sophisticated modeling methods due to their specific properties and operation
regimes. One of the recent modeling concepts was proposed by Liang et al. [9].
They proposed a new concept of a dynamically equivalent manipulator (DEM). In
this formulation a free-floating space manipulator is substituted by a ground-fixed
manipulator, whose first link is constrained by a spherical bearing. A proper scaling
of physical parameters allows preserving kinematic and dynamic properties of the
original space manipulator. In this original development, the attitude of the first
DEM link is described by the Euler angles. Although this description is intuitive and
well known in aviation, it is not suitable for dynamic modeling and control of space
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systems. Unlike quaternions, Euler angles are subject of gimbal lock and ambiguity.
Considering free space manipulator rotation in space, quaternions are the more
suitable parameters for attitude description. Not only they do not share Euler
angles’ drawbacks, but they are also computationally more efficient. However,
implementation of quaternions reveals other challenges due to complex relations
with respect to space manipulator angular velocities and the constraint equation
they have to satisfy as parameters. Introduction of quaternion parameterization to
the Lagrange-based dynamics modeling can be found in Nikravesh et al. [10].
There, the derivation procedure was developed for ground manipulators subjected
to position constraints only.

This chapter contributes to the modification of DEM method to enable space
manipulators and other spacecraft kinematic and dynamic presentations in quater-
nions. The modification of DEM enables dynamic modeling of space robots and
manipulators, including free-floating maneuvers, via their suitable substitution by
ground-fixed manipulator models. The modified DEM may provide then an attrac-
tive modeling and control design tool, since it enables conducting tests and experi-
ments for space vehicles in earth laboratories. This may contribute to mission
failure reduction and mission cost reductions. The modification of DEM method
relies upon an introduction of quaternion-based modeling of manipulator dynamics
and attitude. The basic motivation for the DEM modification is to make dynamic
and kinematic models more suitable for description of space robots and manipulator
motions and their missions like debris removal, spacecraft servicing, space mining,
and on-orbit docking and assemblies. It may also support control designs. The
novelty of this modeling is in the modification of DEM to enable spacecraft kine-
matic and dynamic presentation in quaternions. The chapter also provides a short
overview of the frequently used spacecraft dynamic modeling methods, advan-
tages, and shortcomings of the resulted models with respect to their applications to
descriptions of new mission scenarios and control demands. The theoretical devel-
opment of the quaternion-based DEM method is illustrated by simulation studies of
an example of space manipulator attitude dynamics. The study, presented for the
first time, is designed as a comparative one with respect to other modeling methods
and provides a confirmation of the right approach from the modeling and simula-
tion point of view. Also, the modeling approach proved its effectiveness when the
space manipulator is added additional links.

2. Dynamic modeling of spacecraft: the existing approaches, modeling
using quaternions, and advantages of the quaternion description

Majority of space robot dynamic models uses the Lagrange approach and its
modifications with the generalized coordinates, joint coordinates, Denavit-
Hartenberg parameters, or others. For example, following the popular derivation of
a space robot dynamics, presented in, e.g., [4, 11, 12] and references there, for a
simple free-floating model that consists of a base and a serial manipulator, the
Lagrange-based dynamics can be presented in the form

Hb Hbm

HT
bm Hm

� �

€xb

€Θ

� �

þ
cb

cm

� �

¼
Fb

τm

� �

(1)

where:
Hm ∈Rn�n is the inertia matrix of the manipulator arms.

Hb ∈R6�6 is the inertia matrix of the base.
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Hbm ∈R6�n is the coupling inertia matrix.

cb ∈R6 is the velocity-dependent term for the base.
cm ∈Rn is the velocity-dependent term for the arms.

Fb ∈R6 is the force and torque vector on the base mass center.
τm ∈Rn is the torque on the manipulator joints.

The linear and angular velocities of the base are equal to _xb ¼ vTb ωT
b

� �T
, the

velocities of the end effector are equal to _xe ¼ vTe ωT
e

� �T
, and the joint vector is

Θ ¼ θ1 : : : θn½ �. Then, the kinematics of the space robot can be presented as

ve

ωe

� �

¼ Jb
vb

ωb

� �

þ Jm _Θ (2)

where Jb and Jm are the Jacobian matrices that depend upon the base and the
manipulator arms, respectively.

If there are no external forces and torques acting on a free-floating space system,
the linear and angular momenta are conserved. If to assume that both of their initial
values are equal to zeros, the momentum conservation equation yields

Hb

vb

ωb

� �

þHbm
_Θ ¼ 0 (3)

Hb is always non-singular, so (3) can be solved for the base velocities as

vb

ωb

� �

¼ �H�1
b Hbm

_Θ ¼ Jbm _Θ (4)

Inserting then Eq. (4) to Eq. (2), one can get the so-called generalized Jacobian

matrix (GJM) of the form _xe ¼ Jm � JbH
�1
b Hbm

� �

_Θ ¼ J ∗ _Θ. It can be used to control
the manipulator end effector by the resolved motion rate in the inertial space.
Notice that the relation (3) is generally non-integrable and its structure is the same
as for the nonholonomic kinematic constraint that comes from the no-slip wheel
condition for wheeled vehicle dynamics and control. This is the reason for which
Eq. (3) is called the nonholonomic constraint equation and the space robots are
sometimes considered nonholonomic control systems and control designs for them
follow nonlinear control technique methods. More details toward control of the
space manipulator can be found in, e.g., [4, 13, 14].

Another modeling method, using the generalized coordinates is adopted in
[13, 14]. It is based upon the generalized programmed motion equations (GPME)
that enable incorporation of holonomic or nonholonomic constraints to the system
dynamics. The GPME yield the smallest system of equations, i.e., the constraint
reaction forces are eliminated during derivation. The GPME enable adding a desired
trajectory for the end effector, written as a position constraint, and get the so-called
reference dynamics that serves as a motion planner for a dynamic control model,
which is also developed using the GPME. For more details about the use of the
GPME for space manipulator dynamics and control, see [15].

Consider, as the GPME application illustrating example, a two-arm plane model
of a space robot, as presented in Figure 1. The robot orientation is denoted by an

angle θ and joint angles by a vector q ¼ q1 q2
� �T

. The joint angles are not inde-

pendent in the sense that they are counted from one link to another, but they do not
add any position constraint equations.

A free-floating operation assumption requires the spacecraft thrusters to be
turned off and the system linear and angular momentum to be zero. The condition
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of zero linear momentum is a holonomic constraint that can be integrated, and it is
satisfied in this example by pinning the spacecraft at its mass center Co. The space
manipulator angular momentum is equal to.

K ¼ M x0 _y0 � _x0y0
� �

þ I0 _θ þm1 x1 _y1 � _x1y1
� �

þ I1 _θ þ _q1
� �

þm2 x2 _y2 � _x2y2
� �

þ I2 _θ þ _q1 þ _q2
� �

:
(5)

This equation is the constraint equation on the space robot motion, and it is
nonholonomic. The second constraint equation may come from a desired trajectory
for the end effector E, e.g.,

Xd ¼
xE tð Þ

yE tð Þ

� �

¼
1:11� 0:3 cos 2πt=15ð Þ

0:032þ 0:3 sin 2πt=15ð Þ

� �

(6)

as it is presented in [14]. The angular velocity of the base _θ can be determined
from Eq. (5) for control purposes. The GPME enable deriving the constrained
dynamics for a space robot subjected to the constraint Eqs. (5) and (6), and the
Lagrange multipliers are eliminated at the equation derivation level. This
constrained dynamics is referred to as the reference dynamics, and it serves as
motion planner for a controller design.

Based upon the GPME, the robot dynamics described in the joint space is of the
form

M q; θð Þq̈ þ C q; θ; _qð Þ ¼ τ

_θ ¼ D q; θð Þ _q
(7)

where the second equation is the transformed angular momentum conservation
Eq. (5). Notice, that the constraint reaction forces, i.e., Lagrange multipliers in the
classical approach, are eliminated from Eq. (7). Eq. (7), being a dynamic control
model, can be applied to design a tracking controller for the space robot, e.g., to
track desired motion by the end effector Eq. (6).

Attitude dynamics of a space robot is of a special interest due to its reorientation
maneuvers inherent to most of its operations. Attitude can be described in various
ways. The most popular representations are rotation matrices, Euler angles, and
quaternions. The quaternion originates in Euler’s rotation theorem, and it describes
attitude as a single rotation about a vector in 3D space.

A unit quaternion consists of four elements constrained by its norm. Thus, a
quaternion has 3 degrees of freedom, and it is not the minimum representation, as,
for instance, in the case of Euler angles. Quaternions come in different conventions,
and in this chapter the Hamilton convention is adopted (see [16] for details).
Specifically, the quaternion is represented as

Figure 1.
Free-floating space manipulator [13].
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q ¼
q0
qv

� �

¼ q0 q1 q2 q3
� �T

(8)

The scalar part of the quaternion is a function of rotation magnitude only. The
latter elements describe direction of the rotation axis, preserving the unit norm.
Describing the rotation magnitude as Θ and the vector of the rotation axis as e, the
formula for the quaternion yields

q ¼

cos
θ

2

� 	

e sin
θ

2

� 	

2

6

6

6

4

3

7

7

7

5

(9)

Quaternions can be easily related to the more intuitive space robot angular
velocity vector ω expressed in its body frame (x,y,z). These relations yield

_q ¼
1

2
q⨂

0

ω

� �

¼
1

2

0 �ωx

ωx 0

�ωy �ωz

ωz �ωy

ωy �ωz

ωz ωy

0 ωx

�ωx 0

2

6

6

6

6

4

3

7

7

7

7

5

q (10)

Eq. (10) applies the quaternion product described with the operator⨂, and zero
is appended to the velocity vector to form the so-called pure quaternion making the
multiplication possible. However, a matrix multiplication form is also applicable.

In comparison to other representations, quaternions possess a couple of advan-
tages:

• They are intuitive, unlike Euler angles where the sequential nature is more
difficult to comprehend than a single rotation.

• The representation is not susceptible to gimbal lock as for the Euler angles.

• Any rotation can be presented as a continuous trajectory of quaternions.

• Quaternion algebra does not use trigonometric functions, just basic operations
on numbers, and thus is usually more computationally efficient than Euler
angles.

• Any rotation represented by quaternions can be linearly interpolated by
efficient methods [16].

• Four elements construct a more compact representation than the nine-element
rotation matrix.

There are also some disadvantages of adopting quaternion description, e.g.,

• The attitude is not represented uniquely; in particular q and �q describe the
same rotation.

• Algebra behind quaternions requires some preprocessing work to start with
this representation.
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3. Spacecraft dynamic modeling using the dynamically equivalent
manipulator approach modified for quaternion description
application

The concept of mapping a free-floating space manipulator into equivalent fixed-
base manipulator has been introduced by Liang, Xu, and Bergerman [9]. The
dynamically equivalent manipulator preserves both kinematic and dynamic prop-
erties of a space manipulator. The method enjoys a couple of advantages. It allows to
model a free-floating space robot with the use of classical modeling methods. Since
reconstruction of space environment is complicated, DEM is also more suitable for
experimental facilitating validation of guidance and control algorithms.

To map a free-floating space manipulator into a fixed-base robotic one, the base
is replaced by another link. To reproduce the underactuated base, the link is fixed
with a passive spherical joint. The latter joints are actuated according to the original
space manipulator design. In Figure 2 modeling structures of the (a) space manip-
ulator (SM) and the (b) dynamically equivalent manipulator are shown. ϕ, θ, and ψ

are Euler’s angles, θi are joint angles, ui is a vector of a rotation axis, Li is a vector
connecting joint Ji to the center of its mass Ci, Ri connects Ci to joint Jiþ1, and Wi is
a vector from Ji to Jiþ1. All variables with a superscript “prime” refer to DEM.

Mass, inertia, and centers of masses of the DEM structure are scaled by trans-
formations provided in [9]. Specifically

m0
1 ¼ m1

m0
i ¼

M2
tmi

Pi�1
k¼1 mk

Pi
k¼1 mk

i ¼ 2,…, nþ 1

I0i ¼ Ii i ¼ 1,…,nþ 1

W1 ¼ r1 (11)

Wi ¼ ri þ li i ¼ 2,…,nþ 1

lc1 ¼ 0

lci ¼

Pi�1
k¼1 mk

Mt
Li i ¼ 2,…,nþ 1

In Eq. (11) Mt ¼
P

imi is a total mass of the space robot.
Equations of motion for a space robot as derived in [9] use Euler’s angles for

attitude representation. Due to the reasons emphasized in prior section, this
description is not the most suitable for a space robot. This is why authors have
introduced the quaternion representation to the DEM approach. Two concepts have

Figure 2.
Model structures of (a) space manipulator and (b) dynamically equivalent manipulator [9].
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been researched. The first attempt was to develop the Lagrange equations using
quaternions and then derive space robot equations of motion. This approach, how-
ever, occurred to be inefficient for an increasing number of manipulator links. Due
to poor scalability, authors decided to model the space robot as a set of links, which
for modeling purposes, are considered separate bodies subjected to position con-
straints. In this formulation each link has 6 degrees of freedom, and its state is
described by the following 13-element state vector (time dependency is omitted for
clarity):

xi ¼ rTi vTi qTi ωT
i

� �T
(12)

where:
ri are global, translational coordinates of the center of mass of a body i.
vi ¼ _ri is global translational velocity:

qi ¼ qi
I
B is a quaternion rotating from the body to the inertial frame according to

the formula:

pI ¼ qIB⨂pB⨂qIB
∗ (13)

ωi is the angular velocity determined in the body frame.
The Lagrange multipliers method is adopted due to the position constraints in

the system. The equations governing DEM composed of b rigid bodies are of the
following form:

M BT

B O

" #

_x

λ

� �

¼
f

μ

� �

(14)

In Eq. (14) M ¼ diag m1 I1 … mb Ib½ � is a mass matrix, and B is a matrix
satisfying the equation

_ϕ ¼ Bwþ ϕt ¼ O, (15)

where:
ϕ represents the position constraint equation.

w ¼ vTi ωT
i

� �T
:

λ is a vector of Lagrange multipliers.
f is a vector of forces and torques.
μ satisfies the equation.

€ϕ ¼ B _w � μ ¼ O (16)

Further details related to the presented derivation can be found in [17].
The links of the space manipulator are connected by a pair of constraints that

simulate a revolute joint. A position constraint of the form

ϕ1 ¼ ri þ sB1i � rj � sB1j ¼ O (17)

is needed to connect extremities of links i and j. sB1 denotes a vector from the
center of mass to the joint location, and it is expressed in the local coordinates.
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Another equation is required to constrain the rotational motion to a single axis.
This equation has the form

ϕ2 ¼ sB2i � sB2j ¼ O (18)

In Eq. (18) the vector sB2k governs the selected joint rotation vectors in their body
frames. Eq. (18) preserves that those axes are parallel.

Constrained mechanical system models, when solved numerically, tend to
exhibit unstable solutions, and instabilities increase with simulation time. To stabi-
lize the solutions, a numerical stabilization method is welcome. One of them is the
Baumgarte numerical stabilization method [18]. It requires that the differentiated
constraint Eq. (16) is augmented as follows:

€ϕ þ 2α _ϕ þ β2ϕ ¼ O (19)

In Eq. (19) α and β are gains which have to be selected. The constraint Eq. (19) is
numerically stable securing the constraint equation satisfaction during the system
model motion. With the Baumgarte method introduced, Eq. (14) turns into

M BT

B O

" #

_x

λ

� �

¼
f

μ� 2α _ϕ � β2ϕ

" #

(20)

Eq. (20) is the final form of the space robot motion equations. They are to be
solved in the numerical simulation study.

4. Example: spacecraft dynamic simulation studies

An experimental simulation study has been performed to verify, evaluate, and
compare the correctness and possible applicability of the modified, quaternion-
based DEM method. An example of a planar manipulator model using the original
DEM method is presented in [9]. However, it is meaningless to verify a quaternion-
based dynamic model on a plane. Thus, a spatial model is prepared for the simula-
tion experiment. A space two-link manipulator model has been selected. Firstly, the
properties of the space manipulator must be mapped to DEM. These are presented
in Tables 1 and 2.

The model of a space manipulator (SM) serving as a reference one has been
developed in MATLAB Simscape. An open-loop torque applied to joints with the
initial angular velocity vector in the direction perpendicular to joints’ axes is sup-
posed to reveal any potential inconsistency. The open-loop torque applied to the
first joint J2 is of the form of a sinusoidal signal of an amplitude of 0.5 Nm and
period of 1 s, while the torque applied to the second joint J3 is sinusoidal of an
amplitude of 0.2 Nm and period of 1 s. The base of the space manipulator is not
actuated and in the case of DEM joint J1 remains passive. In the initial configuration,

Link number Li m½ � Ri m½ � mi kg�½ Ii kg m2�
�

1 — 0.75 4 1 ∗ I3

2 0.75 0.75 1 0:2 ∗ I3

3 0.75 0.75 1 0:2 ∗ I3

Table 1.
Space manipulator properties.
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the manipulator arms are straightened, i.e., all angles as in Figure 1 are equal to
zeros. The angular velocity of 0.1 rad/s is applied around the initial links’ axes. To
verify the correctness of the quaternion-based DEM modified method, joint angles
and the end effector position in the inertial reference frame are compared. The
results are presented in Figures 3 and 4.

In Figure 3(a) the joint angles are compared. The obtained values of the angles
overlap for the space manipulator (SM) and quaternion-based DEM. Both, space

Link number Wi m½ � lci m½ � mi kg�½ Ii kg m2�
�

1 0.5 0 4 1 ∗ I3

2 1.125 0.5 1.8 0:2 ∗ I3

3 1.375 0.625 1.2 0:2 ∗ I3

Table 2.
DEM properties.

Figure 3.
(a) Comparison of joint angles for the space manipulator model and DEM quaternion-based model and
(b) comparison of the quaternions of the space manipulator (SM) base and the equivalent first link of DEM.
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manipulator’s base and the corresponding first link of the DEM model have the
same attitude through the entire simulation. Vector parts of quaternions
representing their attitude are shown in Figure 3(b). The positions in the inertial
frame for both end effectors are presented in Figure 4. The quaternion-based DEM
end effector achieves the same positions as the reference space manipulator one in
the simulation run.

The numerical experiment demonstrated correctness of application of the mod-
ified quaternion-based dynamic DEM method. The base quaternion, joint angles,
and the end effector positions are consistent between the reference (SM) and the
developed (DEM) models. It may be concluded that the quaternion-based modified
DEM is the good modeling tool, it is numerically efficient, and it is promising to be
applied to study guidance algorithms, control systems, and design experimental
setups for free-floating space manipulators.

5. Conclusions and future research prospects

The chapter presents a dynamics modeling method dedicated to free-floating
spacecraft, specifically manipulators, based on a modified method of a dynamically
equivalent manipulator. DEM enables dynamic modeling of space manipulators,
e.g., free-floating maneuvers, via their suitable substitution by ground-fixed
manipulator models. As a result, the space manipulator dynamics is equivalent to
the ground one. This provides attractive modeling and control design tools, since it
enables conducting tests and experiments for space manipulators in earth laborato-
ries. The basic motivation for the DEM modification is to make dynamic and
kinematic models suitable for description of arbitrary space manipulators maneu-
vers and their missions like debris removal, servicing, space mining, and on-orbit
docking and assemblies. It may also support space manipulators attitude controller
designs. The chapter contribution is the modification of DEM to enable space
manipulator kinematic and dynamic representation in quaternions. The modified
DEM method delivers a tool for conducting reliable simulation studies and tests for
various maneuvers and mission scenarios for SM, and it offers a promising control
design tool. The theoretical development of DEM method in quaternions is

Figure 4.
Comparison of end effector positions for SM and DEM models.
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illustrated by a simulation study of a two-link space manipulator model. The space
manipulator attitude dynamics has been compared to the results reported in the
literature. The satisfactory results enhance the next studies to apply the quaternion-
based DEM to design guidance algorithms and control systems for space manipula-
tor missions.
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