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Chapter

Nonenzymatic Exogenous and 
Endogenous Antioxidants
Ziad Moussa, Zaher M.A. Judeh and Saleh A. Ahmed

Abstract

Nonenzymatic exogenous and endogenous antioxidants play an important role 
in human health and act as preservatives for cosmetics, pharmaceuticals, and food 
products. This chapter will discuss the chemical structure and mechanism of action 
of the most important nonenzymatic small exogenous and endogenous organic 
molecules that act as antioxidants. The chapter will focus on the structural features, 
functional groups, properties, biosynthetic origin, and mechanism of action of 
such antioxidants. It also covers damages that free radicals create and the mecha-
nisms by which they are neutralized by the various antioxidants. The scope of this 
chapter will be limited to nonenzymatic exogenous and endogenous antioxidants 
since enzymatic antioxidants have been discussed extensively in several reviews.

Keywords: antioxidants, nonenzymatic, endogenous, exogenous, low-molecular 
weight antioxidants, mechanism

1. Introduction

Antioxidants are structurally diverse group of small organic molecules and large 
enzymes that comprise complex systems of overlapping activities working syner-
gistically to enhance cellular defense and to combat oxidative stress resulting from 
various reactive oxygen species (ROS) and reactive nitrogen species (RNS) [1]. The 
former substances are byproducts of metabolism and are ironically produced from 
oxygen, an indispensable element for life. Many of these reactive species are free 
radicals possessing one or more unpaired electrons and as such rendered highly 
reactive. The reactive species generated in cells include hydrogen peroxide (H2O2), 
hypochlorous acid (HClO), the hydroxyl radical (·OH), the superoxide anion radi-
cal (O2

−), the nitric oxide radical (NO·), and the lipid peroxyl radical (LOO·) [2, 3]. 
The term antioxidants may refer to either industrial chemicals that may be added 
to products to combat oxidation or to natural products that are found in foods and 
tissue. While the former act as preservatives for cosmetics, pharmaceuticals, and 
food products, the latter play an important role in human health as well. There are 
many reactive oxygen species conducting unwanted oxidation reactions in a variety 
of cell and tissue sites [4]. Likewise, each antioxidant targets specific types of ROS 
and provides protection in distinct environments. Antioxidants reduce reactive 
oxygen species which otherwise participate in oxidation reactions that can gener-
ate free radicals and cause damage to cellular components such as DNA, proteins, 
carbohydrates, and lipids [4]. It is noted, however, that reactive oxygen species 
mediate certain cellular functions like redox signaling and gene expression as well 
as defend against pathogens [5, 6]. Thus, the role of antioxidant systems is not to 
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eliminate oxidants completely, but instead maintain them at an optimum level. 
Despite the presence of the antioxidant defense mechanism to counteract oxidative 
stress, damage due to oxidation has a cumulative effect and has been implicated 
in several chronic conditions and disease states such as cancer [7], cardiovascular 
disease [8], and neurodegenerative disorders [9]. Antioxidant compounds and 
antioxidant enzyme systems display synergistic and interdependent effects on one 
another. Antioxidants found in nature can be classified in a number of ways. Based 
on their activity, they can be classified as enzymatic and nonenzymatic antioxi-
dants (phytochemicals and vitamins). While antioxidant enzymes like superoxide 
dismutase (SOD) [10], glutathione peroxidase (GPx) [11], glutathione reductase 
(GSR) [12], peroxiredoxin I-IV and catalases (CAT) [13] are macromolecules, the 
vast majority of the remaining natural antioxidants classified as phytochemicals 
and vitamins are relatively smaller organic molecules with low molecular weights 
[14, 15]. Antioxidants have also been categorized as water-soluble or fat-soluble 
molecules.

This chapter will highlight the chemical structures and mechanism of action of 
important nonenzymatic small exogenous (natural) and endogenous (synthetic/
physiological) organic molecules that act as antioxidants in plants and animals. 
The antioxidants described in this chapter are among the most important, 
although certainly they are not the only ones known. Special focus on the struc-
tural features, functional groups, properties, biosynthetic origin, and mechanism 
of action will be undertaken with special coverage of damages that free radicals 
create and the mechanisms by which they are neutralized by the various antioxi-
dant molecules.

2. Enzymatic versus nonenzymatic antioxidants

Based on their activity, antioxidants are classified as enzymatic and nonenzy-
matic antioxidants. While enzymatic antioxidants [10–13] function by converting 
oxidized metabolic products in a multi-step process to hydrogen peroxide (H2O2) 
and then to water using cofactors such as iron, zinc, copper, and manganese, 
nonenzymatic antioxidants intercept and terminate free radical chain reactions. 
Examples of natural nonenzymatic antioxidants are vitamin E, A, C, flavonoids, 
carotenoids, glutathione, plant polyphenols, uric acid, theaflavin, allyl sulfides, 
curcumin, melatonin, bilirubin, and polyamines [14, 15]. Some of these antioxi-
dants are water-soluble and predominantly found in the cytosol or cytoplasmic 
matrix, while others are liposoluble and are present in cell membranes. The enzy-
matic antioxidants and their mechanism of action have been discussed extensively 
in several review articles [16–18]. The scope of this chapter will be limited to 
nonenzymatic exogenous and endogenous antioxidants.

3. Generation of free radicals in living organisms

The production of ROS in biological systems occurs during oxygen metabo-
lism and plays an important role in homeostasis and cell signaling [5]. However, 
under conditions of environmental stress, the concentration of ROS can increase 
significantly and inflict damage on cell structures. The generation of ROS begins 
with the reduction of molecular oxygen with NADPH to produce the superoxide 
anion radical (O2.−), a precursor to most remaining reactive oxygen and nitrogen 
species (Figure 1). Subsequent dismutation of two molecules of the superoxide 
anion catalyzed by the enzyme superoxide dismutase (SOD) generates oxygen and 
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hydrogen peroxide. The latter in turn may undergo partial reduction to hydroxyl 
radical through the Fenton reaction or alternatively via the Haber-Weiss process 
[19]. While hydrogen peroxide is more damaging to DNA, the hydroxyl radical is 
highly reactive and turns biomolecules into free radicals, thus perpetuating a free 
radical chain reaction. Hydrogen peroxide may also be converted to the potent 
oxidant hypochlorous acid in the presence of the chloride ion, an omnipresent 
species. This transformation is catalyzed by the enzyme myeloperoxidase (MPO). 
Reaction of HOCl with H2O2 regenerates chloride ion and produces singlet oxygen 
as yet another ROS. On the other hand, RNS such as nitric oxide (NO.) are produced 
by the enzyme nitric oxide synthase (NOS) starting from the precursor L-arginine 
[20]. Nitric oxide functions as a superoxide quencher forming peroxynitrite 
(ONOO−), a strong oxidant that reacts indiscriminately with biological targets. 
Further, it may disintegrate into a pair of hydroxyl and nitric dioxide radicals and 
cause damage through such species (Figure 1).

4. Damaging chemical reactions of free radicals in living organisms

4.1 Free radical damage to the deoxyribose moiety of DNA

The highly reactive hydroxyl radical (·OH) reacts with the sugar moiety of DNA 
causing structural modification and strand breaks by a variety of mechanisms [21]. 
The OH radical reacts with the 2′-deoxyribose sugar residue in DNA by abstracting 
H• from all its carbon atoms forming five carbon-centered radicals. The H4′ and 
H5′ atoms are more accessible to H• abstraction by the OH radical than the H1′, H2′, 
and H3′. The C4′ C-centered radical appears to be the major radical generated by 
H• abstraction from 2′-deoxyribose in DNA [22]. These radicals undergo further 
reactions, producing a variety of 2′-deoxyribose oxidative adducts. While some 
products detach from DNA, others remain tethered as end groups of fragmented 
DNA strands [22]. In the absence of oxygen and as depicted in Figure 2, one of the 
byproducts formed from C4′-radical of 2′-deoxyribose as an end group of a severed 
DNA strand is 2,5-dideoxypentose-4-ulose. The product is formed by heterolytic 
cleavage of the phosphate group at C5′ to give a C4′/C5′-radical cation which in turn 
undergoes hydration and subsequent one-electron reduction and base elimination 
(Figure 2). Other products formed from the C4′ radical include 2-deoxypentose-
4-ulose and 2,3-dideoxypentose-4-ulose. However, in the presence of oxygen, rapid 
addition of O2 to the C4′-radical forms a peroxyl radical which undergoes a series 
of fragmentation reactions yielding 3′-phosphoglycolate as an end group [23]. 

Figure 1. 
Generation of ROS and RNS in living species.
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Oxidation of the C1′, C2′, and C5′ radicals yields products such as 2-deoxypentonic 
acid lactone, erythrose, 2-deoxytetradialdose, and 5′ aldehyde [22].

4.2 Free radical damage to DNA bases

Besides reacting with the sugar moiety of DNA, the highly reactive hydroxyl 
radical (·OH) reacts with the heterocyclic bases guanine (Figure 3), thymine, and 
cytosine, causing free radical-induced DNA damage by several different pathways. 
Guanine, however, possesses the lowest reduction potential (1.29 V) among the four 
DNA bases, rendering the motif the best electron donor and prone to preferential 
oxidization [24]. The hydroxyl radical reacts with the C4-, C5-, and C8-positions of 
guanine and to a lesser extent with the C2-position, generating a plethora of prod-
ucts. Interestingly, the HO-adduct radicals generated from the addition reactions 
of HO. may exhibit reducing or oxidizing properties (redox ambivalence), yielding 
the relevant products accordingly. Hence, while the C5-OH– and the C8-OH–adduct 
radicals are reducing, the C4-OH–adduct radical is predominantly oxidizing. The 
last two adduct radicals form in yields of 17% and 65–70%, respectively, whereas 
the yield of the C5-OH– adduct radical is lower than 10% [25]. Although formed in 
relatively lower yields, the C8-OH–adduct radical produces the major byproducts of  
guanine reactions (Figure 3). Thus, as shown in Figure 3 and following reaction 
of the hydroxyl radical with the C-8 position of guanine, one-electron oxidation 
of the resulting C8-OH–adduct radical yields the enol form of 8-hydroxyguanine 
which undergoes tautomerization to generate the predominant keto form [21]. 
The latter may also form via a pathway involving 1,2-hydride-shift and subsequent 
oxidation of the C8-OH–adduct radical. The 1,2-hydride-shift radical product may 
also undergo single electron reduction, followed by ring opening reaction to form 
2,6-diamino-4-hydroxy-5- formamidopyrimidine. The preceding radical damage to 
DNA has been directly correlated to several disease states such as genetic mutation, 
atherosclerosis, Alzheimer’s disease, and the aging process [26, 27].

Figure 2. 
Mechanism of product formation from reactions of the C4′-radical of 2′-deoxyribose, leading to 
2,5-dideoxypentose-4-ulose as an end group of a broken DNA strand.

Figure 3. 
Oxidative and reductive product formation from reactions of the C8-OH–adduct radical of guanine.
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4.3 Free radical damage to polyunsaturated fatty acid groups of cell membranes

While free radicals react with all major classes of biomolecules, peroxidation 
of the polyunsaturated fatty acid groups (PUFA) of cell membranes comprises 
the main target of oxidative damage, resulting in a destructive self-propagating 
chain reaction. The general mechanism of PUFA peroxidation involves abstraction 
of hydrogen from a lipid molecule (LH) by an initiator (R.) to generate a carbon-
based free radical (L.) which reacts rapidly with molecular oxygen to form the 
peroxyl radical (LOO.) known to propagate the chain reaction (Figure 4). As such, 
the peroxyl radical reacts with PUFA moieties, producing lipid hydroperoxides 
(LOOH) and perpetuating the chain reaction. The hydroperoxides can further 
dissociate to dangerous radical species like bioactive aldehydes which inflict damage 
on other cellular components. Lipid hydroperoxidation has been linked to a number 
of physiological conditions and tissue injuries [28].

5.  Regulation of free radicals with nonenzymatic small natural 
exogenous antioxidants

5.1 Vitamins

5.1.1 Vitamin E

Vitamin E is a collection of optically active methylated phenolic compounds 
comprising four tocopherols and four tocotrienols [29] where α-tocopherol is 
the most common and biologically active species (Figure 5) [30]. The structures 
feature two primary parts: a densely substituted polar chromanol aromatic ring 
and a lipophilic long polyprenyl side chain. The main chemical structural differ-
ence between different forms of Vitamin E is that tocotrienols feature unsaturated 
isoprenoid hydrocarbon side chains with three carbon-carbon double bonds versus 
saturated isoprenoid side chains for tocopherols. Within each group, the vitamers are 
differentiated by the number and positions of the methyls in the chromate ring. The 
polyprenyl precursor for the biosynthesis of tocopherols and tocotrienols is phytyl 
pyrophosphate (PPP) and geranylgeranyl pyrophosphate (GGPP), respectively [31]. 
Vitamin E is biosynthesized though the shikimate pathway, and while α-tocopherol 
and α-tocotrienol are considered structurally unique, the remaining compounds in 
each class are constitutional isomers. The presence of three stereogenic centers (posi-
tion C2 of the chromate ring, position C4 and C8 of the phytyl side chain) produces 8 
different stereoisomers (four pairs of enantiomers) depending on the position and 
orientation of the groups in each of the chiral centers. Since the discovery of vitamin 
E in 1920, it has been shown to be the most powerful membrane-bound antioxidant 
utilized by cells to scavenge reactive nitrogen and oxygen species with consequent 
disruption of oxidative damage to cell membrane phospholipids during cellular lipid 
peroxidation of the polyunsaturated fatty acids (PFA) and low-density lipoprotein 
(LDL) [32]. The antioxidant is liposoluble and localized to cell membranes. Vitamin 
E functions by reducing lipid peroxyl radicals (LOO.) by transferring the phenolic 
hydrogen atom of the chroman ring (Figure 5), resulting in a relatively stable and 
unreactive resonance-stabilized tocopheroxyl radical which is unable to trigger 

Figure 4. 
General process of lipid peroxidation.
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further lipid peroxidation itself. The α-tocopherol radical can be reduced back to 
the original active α-tocopherol form by ascorbic acid or coenzyme Q10 [33, 34]. 
Alternatively, it may quench a second peroxyl radical where the resulting tocopheryl 
peroxide eliminates a peroxide leaving group, forms a hemiketal after reacting with 
water, and lastly hydrolyses to the tocopherolquinone. This is an essential foundation 
and benchmark of a good antioxidant. The synergistic antioxidation interactions 
between vitamin E and the ascorbate ion of vitamin C position the former at the 
forefront of the anti-radical defense system. Vitamin E is exogenous and hence is 
essential and must be obtained through diet in small amounts since the organism 
cannot synthesize it. Its biosynthesis is restricted to plants, photosynthetic algae, 
and certain cyanobacteria. Although vitamin A deficiency is rare, the most frequent 
manifestations of its lack comprise a number of disorders and disease states which 
include encephalomalacia, exudative diathesis, muscular dystrophy, and ceroid pig-
mentation. α-Tocopherol exhibits the highest bioactivity (100%), with the relative 
activities of β-, γ-, and δ-tocopherols being 50, 10, and 3%, respectively [35].

5.1.2 Vitamin A

Vitamin A, just like vitamin E, is a term that designates a family of unsaturated 
liposoluble organic compounds that include retinol, retinal, retinoic acid, and retinyl 
palmitate, and many provitamin A carotenoids such as beta-carotene (Figure 6). All 
forms share a beta-ionone ring to which an isoprenoid tether known as retinyl group 
is attached. It is noteworthy that both features are essential for vitamin A activity. The 
common chemical structure is a diterpene (C20H32) where the various molecular forms 
differ by the terminal side chain functional group. Thus, retinol contains a hydroxyl 
group, retinal contains an aldehyde function, retinoic acid has a terminal carboxylic 
acid group, and retinyl palmitate bears an ester moiety. The discovery of the antioxi-
dant activity of vitamin A dates back to 1932 when Schmitt and Monaghan reported 
that vitamin A prevents lipid rancidity [36]. Several reviews outlining the antioxidant 
role and metabolic functions of vitamin A have appeared in the literature [37, 38]. 
Besides eliminating free radicals, it plays a major role in maintaining good vision. 
The aldehyde form of vitamin E is required by the retina to form the light-absorbing 
molecule rhodopsin necessary for both color and scotopic vision [39]. On the other 
hand, the fully irreversibly oxidized form of retinol functions in a very different 
way as a growth factor for epithelial and other types of cells [38]. As an antioxidant, 
vitamin A scavenges lipid peroxyl radicals (LOO.) according to the mechanism shown 
in Figure 6. Thus, by trapping the peroxyl radical through an addition reaction to the 

Figure 5. 
Chemical structures of the tocopherols and tocotrienols that comprise vitamin E and termination of lipid 
peroxidation with α-tocopherol.
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beta-ionone ring of retinol, the resultant tertiary and highly conjugated trans-retinol 
carbon radical intermediate is relatively stable and under normal conditions is not 
reactive enough to induce further lipid peroxidation itself. However, the intermediate 
may continue reacting with lipid peroxyl radicals or molecular oxygen to produce a 
bis-peroxyl adduct or retinol-derived peroxyl radical, respectively. Alternatively, it 
may eliminate LO radical and oxidizes to 5,6-retinol epoxide [15].

5.1.3 Vitamin C

Vitamin C (L-ascorbic acid) is an optically-active hydrosoluble free radical 
scavenger that bears a highly acidic hydroxyl group (pKa = 4.2) known to be 
completely ionized at neutral pH [35, 40]. Thus, the acidic vitamin readily loses a 
proton from the 3-hydroxyl group affording a resonance-stabilized ascorbate anion 
(AscH−) (Figure 7). The unusual acidity of the alcohol is related to the presence 
of two conjugated double bonds which stabilize the deprotonated monoanionic 
conjugate base. Furthermore, these same electronic factors impart stability to the 
radical form of vitamin C when it undergoes one electron oxidation by lipid radicals 
to generate the ascorbate radical (Figure 7), a much less reactive species than most 
other free radicals. As such, vitamin C is able to assume the role of a free-radical 
scavenger. The low standard 1-electron reduction potential (282 mV) renders 
vitamin C an excellent electron donor. As well, at low ascorbate concentrations, 
it may function as a pro-oxidant reducing agent and is able to reduce redox-active 
copper and iron metals. Vitamin C is therefore required as a cofactor for a number 
of metabolic processes that mediate essential biological functions in all animals 
and plants [41]. The structure features a chiral 3,4-dihydroxyfuran-2(5H)-one 
ring and a 1,2-dihydroxyethyl tether containing another stereogenic center. The 
6-carbon ketolactone is structurally related to glucose. Although four stereoisomers 
are expected depending on the position of the substituents around the stereogenic 
centers, only the L-enantiomer exhibits antioxidant capacity in biological systems, 
both in vitro and in vivo. While vitamin C is biosynthesized by nearly all animals, 
humans comprise a notable exception. Consequently, it is an essential nutrient and 
must be obtained through dietary means. In biological species, the vitamin exists 
in the protonated form at low pH, but in media with pH above 5, it is found in the 
dissociated ascorbate form [42]. This species is a 2-electron donor and gets oxidized 
to a molecule of dehydroascorbate (DHA) which does not have any antioxidant 
capacity. However, regeneration of the ascorbate from DHA is possible by the addi-
tion of two electrons and has been proposed to be carried out by oxidoreductase 
[43]. In animals, the biosynthesis of ascorbic acid is carried out by several enzymes 
in the liver from glucose [42], by a synthetic route which initially involves oxida-
tion to D-glucuronic acid via uridine diphosphate (UDP) derivatives. Subsequent 
reduction of the open-chain aldehyde form of D-glucuronic acid to the primary 

Figure 6. 
Chemical structure of vitamin A and termination of lipid peroxidation with retinol.
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Figure 8. 
General skeletal structure of the various flavonoid classes.

alcohol (L-gulonic acid), lactone formation between the carboxyl and 4-hydroxyl 
group, oxidation of the secondary hydroxyl function to a carbonyl, and subsequent 
enolization result in L-ascorbic acid. The latter, specifically in the ascorbate form, 
acts as a reducing agent, donating electrons to lipid radicals in order to terminate 
the lipid peroxidation chain reaction (Figure 7). Another main function of Vitamin 
C as an antioxidant is to regenerate vitamin E (HO-tocopherol) from its oxidized 
form (.O-tocopherol) back to its active state by reducing vitamin E radicals formed 
when vitamin E scavenges oxygen radicals. The recycling of vitamin E is carried 
out in cell membranes in conjunction with glutathione (GSH) or other sacrificial 
reductants [33, 34]. Likewise, vitamin C acts as an antioxidant and reducing agent 
by donating electrons to various enzymatic and nonenzymatic reactions. It reduces 
the transition metal ions of several biosynthetic enzymes, thus preventing biologi-
cal oxidation of macromolecules. In plants, vitamin C is a substrate for the enzyme 
ascorbate peroxidase which catalyzes the reduction of toxic hydrogen peroxide 
(H2O2) to water (H2O) [44]. Currently, this vitamin is the most widely employed 
vitamin in drugs, premedication, and dietary supplements worldwide.

5.2 Flavonoids

Flavonoids are exogenous antioxidants displaying rich structural diversity and 
are ubiquitous in plants and certain photosynthetic organisms. More than 8000 of 
these benzo-γ-pyran derivatives have been identified and characterized [45, 46]. The 
general structure features a C6-C3-C6 15-carbon flavone skeleton, which comprises 
two phenyl rings (A and B) linked by a heterocyclic ring (C) (Figure 8). Flavonoids 
have been classified into flavones, flavanones, flavanols, flavonols, and anthocya-
nins. While flavones have a double bond between C2 and C3, flavanones have a 
saturated C2–C3 bond. Compared to flavones, the corresponding flavonols have an 
additional hydroxyl group at the C3 position while flavonols are C2-C3 saturated 
analogs of flavonols. Flavonoid groups are differentiated based on the number of 
hydroxyl and other substituents on the phenyl rings [47].

Figure 7. 
Biosynthesis, chemical structure, and reduction mechanism of ascorbic acid.



9

Nonenzymatic Exogenous and Endogenous Antioxidants
DOI: http://dx.doi.org/10.5772/intechopen.87778

Quercetin (3,5,7,3′,4′–pentahydroxyflavone) (Figure 9) is the most ubiquitous 
polyphenolic flavonoid known to prevent oxidative damage to DNA oligonucle-
otides brought about by H2O2, HO., and O2

.−. On the other hand, anthocyanidin is 
a strong inhibitor of lipid oxidations. Thus, as shown in Figure 9, the antioxidant 
mechanism of lipid peroxyl radicals scavenging capability of anthocyanidin is 
based on its hydrogen radical donation ability from the p-hydroxyl group of ring 
B to generate a resonance-stabilized anthocyanidin radical incapable of partici-
pating in other radical reactions. In addition, the effectiveness of anthocyanidin 
in inhibiting lipid peroxidation has been correlated to their metal-ion chelating 
power [48, 49]. In particular, the ortho-dihydroxy groups in the B-ring confer 
upon this class of compounds antiperoxidative properties [50]. However, phenolic 
compounds can also act as prooxidants if present in high concentrations with 
metal ions and high pH [47].

5.3 Carotenoids

Carotenoids, also known as tetraterpenoids, are a group of phytonutrients 
produced by plants and algae, as well as some bacteria and fungi [51]. The long 
unsaturated hydrocarbon alkyl chain renders carotenoids highly liposoluble. 
Hence, they play a key role in the protection of lipoproteins and cellular 
membranes from lipid peroxidation and exhibit particularly efficient scaveng-
ing capacity against peroxyl radicals as compared to any other ROS and they 
are known to be the most common lipid-soluble antioxidants [52, 53]. Over 
1100 carotenoids have been identified and classified primarily into two groups: 
the oxygen-containing xanthophylls and those that are purely hydrocarbons, 
carotenes (Figure 10). Biosynthetically, all carotenoids are tetraterpenes 
comprising 40 carbon atoms which are produced from eight isoprene units. The 
structural backbone consists of isoprenoid units biosynthesized either by head-
to-tail or by tail to-tail process. The basic building blocks of carotenoids are 
isopentyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) which 
produce the major carotenoid precursor geranylgeranyl pyrophosphate (GGPP) 
[54]. GGPP undergoes several different reactions within the carotenoid bio-
synthetic pathway to afford carotenes or xanthophylls. Carotenoids reduce 
the peroxyl radicals to form a resonance-stabilized carbon-centered radical 
product. Lycopene and carotene are the most prominent and potent carotenoid 
antioxidants. The former is notably a strong singlet oxygen quencher due to 
the high number of conjugated trans-configuration double bonds present in 
the structure. In general, the extended conjugated system in carotenoids is 
strongly-reducing, facilitating abstraction of hydrogen atoms from the allylic 
positions to this conjugation, as well allowing free-radical addition reactions 
to proceed with ease. Lycopene for instance reduces peroxyl radicals through 
electron transfer to afford an unreactive resonance stabilized carbon-centered 
radical (Figure 10).

Figure 9. 
Structure of quercetin and mechanism of radical scavenging activity of anthocyanidin.
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5.4 Hydroxycinnamic acids

Hydroxycinnamic acids (hydroxycinnamates) are a class of phenylpropanoids 
possessing a C6–C3 skeleton. These compounds are hydroxy derivatives of cinnamic 
acid which is their common biosynthetic precursor. Mechanistically, bimolecular 
elimination of ammonia from the side chain of L-Phenylalanine generates trans-
(E)-cinnamic acid (Figure 11). A subsequent cytochrome P-450-dependent direct 
hydroxylation reaction of cinnamic acid mediated by cinnamate 4-hydroxylase 
enzyme (E2) produces the first member of this class, p-coumaric acid. The sub-
stitution patterns of the remaining cinnamic acids are constructed sequentially 
by further hydroxylation and methylation reactions, which is typical of shikimate 
pathway metabolites. Hence, direct hydroxylation of p-coumaric acid mediated by 
p-coumarate 3-hydroxylase enzyme (E3) generates caffeic acid. Subsequent meth-
ylation of the latter by caffeic acid O-methyltransferase (E4) produces ferulic acid. 
Hydroxylation of ferulic acid by ferulate-5-hydroxylase (E5), a cytochrome P450-
dependent monooxygenase enzyme, followed by methylation with SAM produces 
the last member, sinapic acid. As chain-breaking antioxidants, hydroxycinnamic 
acids prevent oxidation of LDL, although in varying efficiencies, depending on 
their standard one-electron reduction potential, hydrogen or electron donating 
ability, and the capacity to delocalize and stabilize the resulting phenoxyl radical 
within their structural framework [55, 56]. The antioxidant activity of the deriva-
tives is correlated with the methylation and hydoxylation substitution pattern of the 
benzene ring. Thus, the antioxidant efficiency of the hydroxycinnamate conjugates 
on human LDL oxidation has been found to increase in the order of p-coumaric 
acid, ferulic acid, sinapic acid, and caffeic acid [57]. The general mechanism of 
free radical scavenging by which these antioxidants act involves donation of a 
p-hydroxyl hydrogen atom to ROS and generation of resonance stabilized carbon-
based radical. Additionally, the presence of ortho-dihydroxyl groups allows metal-
ion chelation much like flavonoids and enhances their antioxidant capacity against 
lipid peroxidation.

Figure 10. 
Structure and radical scavenging mechanism of some prominent xanthophyll and carotene carotenoids.

Figure 11. 
Structures, biosynthesis, and free radical scavenging mechanism of hydroxycinnamic acids.
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5.5 Other natural exogenous antioxidants (allyl sulfides & curcumin)

Allicin (diallyl thiosulfinate), a compound mainly found in garlic, and 
curcumin are biologically active compounds possessing antioxidative properties. 
The active form responsible for the antioxidant activity of allicin is 2-propene-
sulfenic acid [58], formed via a cope elimination reaction of the former precur-
sor (Figure 12) [59, 60]. The radical-scavenging mechanism of allicin involves 
H-atom abstraction by a peroxyl radical from the sulfenic acid residue [61, 62]. 
The bis-α,β-unsaturated β-diketone, curcumin, is a liposoluble free radical scav-
enger that displays remarkable chain breaking ability similar to that of vitamin 
E [63]. As shown in Figure 11, the methylene group of the β-diketone residue 
and the phenolic hydroxyl (OH) function are sites that can transfer electrons 
or H-atoms to quench free radicals and generate extended resonance-stabilized 
carbon- or oxygen-centered radicals. The phenoxyl radical, which has been 
credited for the antioxidative properties of curcumin [64], generates a quinone 
methide as it moves through the carbon framework and reacts with molecular 
oxygen to produce a peroxyl radical. Subsequent reduction of the peroxyl radical 
and dehydration of the resulting hydroperoxide, followed by rearrangement into 
a spiro-epoxide and hydrolysis, give the final bis-cyclopentadione product.

6.  Regulation of free radicals with nonenzymatic small endogenous 
(synthetic/physiological) antioxidants

6.1 Uric acid

Uric acid (UA) is a hydrophilic antioxidant generated during the metabolism 
of purine nucleotides and accounts nearly for 66% of the total oxygen scavenging 
activity in the blood serum. Mammals and humans are capable of producing UA, 
making it the most predominant aqueous antioxidant present in humans [65, 66] 
with an approximate blood level of 3.5–7.5 mg/dL. UA is a strong electron donor 
and a selective scavenger of peroxynitrite (ONOO−), requiring the participation of 
ascorbic acid and thiols in its cycle for complete scavenging of such species [67, 68]. 
Peroxynitrite is formed by the reaction between nitric oxide (·NO) and superoxide 
radical (O2

.−) (Figure 1) and has been implicated in many pathologies. Besides 
scavenging peroxynitrite, UA reacts with hydroxyl radicals, singlet oxygen, lipid 
peroxides, and hypochlorous acid, itself getting converted to innocuous chemical 
species like urea and allantoin. Furthermore, it has been implicated in scavenging 
carbonate ions (CO3

.−) and nitrogen dioxide (NO2
.) [69], and in complexation with 

copper and iron ions, resulting in the inhibition of deleterious free radical reactions 
like the Fenton and the Haber-Weiss reactions [65]. Some have suggested that UA 

Figure 12. 
Structures and radical-scavenging activities of curcumin and allicin.
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does not directly scavenge peroxynitrite since UA cannot compete for the reaction of 
peroxynitrite with CO2. The antioxidant effect of uric acid may thus be related to the 
scavenging of the radicals CO3·− and NO2. which are formed from the reaction of per-
oxynitrite with CO2 [67]. As shown in Figure 13, UA displays a keto-enol tautomerism 
where the enol form predominantly exists as the monobasic urate anion at physiological 
pH [70]. The complete scavenging of peroxynitrite requires the presence of ascorbic 
acid and thiols whereby the urate anion is regenerated following reduction of the urate 
free radical with ascorbate (AscH−). ESR studies on UA radical production by hydrogen 
atom abstraction provided evidence that the unpaired electron resides primarily on the 
five-membered ring of the purine structure. The radical was described as a delocalized 
π radical as the odd electron showed spin density on all four nitrogen atoms [71].

6.2 Glutathione

Glutathione (GSH) is present in all plant and animal cells and comprises three 
amino acids: glycine, cysteine, and glutamic acid. It is mainly synthesized in the 
liver [72] and exists in several redox forms, among which the most predominant is 
the reduced glutathione. GSH is a hydrosoluble antioxidant present in high cellular 
concentrations (1–10 mM) in the nucleus, mitochondria, and cytoplasm. GSH is 
involved in several lines of defense against ROS. First, the thiol group confers GSH 
with the ability to protect other thiol functions in proteins against oxidative damage 
[73]. Thiol groups (-SH) are widespread and highly reactive chemical entities in 
cells. They complex with metal ions, participate in oxidation reactions by getting 
oxidized themselves to sulfonic acids, and form thiol radicals and disulfides [74]. As 
an antioxidant, GSH reduces ROS during the enzymatic and nonenzymatic reac-
tions. It regenerates other oxidized antioxidants like vitamin C and vitamin E [75] 
and is involved in the repair of lipids damaged in peroxidation processes and in the 
maintenance of sulfhydryl moieties of proteins in the reduced form [76, 77]. GSH 
functions in conjunction with three groups of enzymes to maintain an intracellular 
reducing environment and combat excessive formation of harmful ROS. These 
enzymes are glutathione peroxidase (GSHPx), glutathione reductase (GR), and glu-
tathione oxidase (GOx). Glutathione peroxidase (GSHPx) is a selenium-containing 
enzyme that mediates catalytic reduction of peroxides using GSH as a sacrificial 
reductant [78]. The enzyme is a tetramer featuring a selenocysteine residue in each 
subunit [11]. The oxidation-reduction chemistry of the selenol functional group 
found in each selenocysteine is responsible for the activity of GSHPx, and the 
catalytic cycle is displayed in Figure 14 [79]. In the first step, the selenol functional 
group (EnzSeH) gets oxidized by the peroxide to the corresponding selenenic acid 
(EnzSeOH). The thiophilic acid reacts with GSH to generate a selenenyl sulfide 

Figure 13. 
Chemical structure and radical scavenging mechanism of uric acid.
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intermediate (EnzSeSG) which is highly reactive and is susceptible to nucleophilic 
displacement at the sulfur atom. Thus, attack by a second molecule of GSH at the 
sulfur atom regenerates the original selenol and eliminates oxidized glutathione 
(GSSG) as a byproduct. The latter is recycled back to GSH in an NADPH-dependent 
reduction process mediated by glutathione reductase (GR). GSH is also a substrate 
for glutathione oxidase (GOx) which catalyzes the reduction of oxygen to hydrogen 
peroxide and GSSG.

6.3 Melatonin

Since its discovery in 1993, melatonin’s ability to reduce oxidative stress 
induced in all cells and organs by both oxygen- and nitrogen-based radicals has 
been reported in over one thousand publications. The structure of this endog-
enous antioxidant features an indoleamine and is biosynthesized in animals 
from L-tryptophan, an intermediate product of the shikimate pathway [80]. The 
biosynthetic process includes hydroxylation, decarboxylation, acetylation, and a 
methylation (Figure 15). Melatonin, which is produced mainly by the pineal gland 
in the brain [81], indirectly reduces free radical formation primarily through a 
process known as radical avoidance by stimulating the expression of endogenous 
antioxidant enzymes that metabolize reactive species and maintain redox homeo-
stasis within cells [82]. These include superoxide dismutase (SOD), glutathione 
peroxidase (GSHPx), glutathione reductase, and catalase. In addition, it induces the 
synthesis of the antioxidant glutathione and inhibits certain enzymes that normally 
produce free radicals like nitric oxide synthase (generates NO•). Melatonin can also 
directly scavenge free radicals along with several of its metabolites that are formed 
during radical neutralization [83, 84]. For example, it is a very effective scavenger 
of the hydroxyl radical, singlet oxygen, peroxynitrite anion, and nitric oxide. 
Interestingly, melatonin has been shown to exhibit double the activity of vitamin E 
and ranks among as the most effective lipophilic antioxidant.

Figure 14. 
Structure and role of glutathione (GSH) in the catalytic cycle of glutathione peroxidase (GSHPx), glutathione 
reductase (GR), and glutathione oxidase (GOx).

Figure 15. 
Structure and biosynthesis of melatonin.
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6.4 Bilirubin

Bilirubin (BIL) is an endogenous antioxidant produced from the enzymatic 
degradation of hemoglobin and other heme proteins (Figure 16). The process 
involves oxidative cleavage, catalyzed by the enzyme heme oxygenase, of one 
porphyrin exocyclic double bond of a heme residue of hemoglobin to generate 
biliverdin. Subsequent enzymatic reduction of biliverdin by biliverdin reductase 
yields bilirubin. This process is reversible and the oxidation of bilirubin by lipo-
philic ROS results in the formation of biliverdin. Notable structural features of 
bilirubin include an open chain of four connected pyrrole rings and a Z,Z-double 
bond geometry. In biological systems, bilirubin shows potent antioxidant properties 
[85, 86] especially against peroxyl radicals [87].

6.5 Polyamines

Putrescine (H2N-(CH2)4-NH2), spermidine ([H2N-(CH2)3]2-NH), and spermine 
(H2N-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2) are biogenic unbranched polyamines 
(PAs) that exhibit antioxidant activities [88–90]. These amines are present in minute 
quantities in virtually all living species. While putrescine (1,4-diaminobutane) bears 
two primary amine groups at both terminal carbons, spermidine (triamine) and 
spermine (tetraamine) contain one and two additional secondary amine moieties, 
respectively. As antioxidants, PAs mediate protection of DNA against oxidative 
damage induced by hydrogen peroxide [90], scavenge free radicals [88], and reduce 
oxidative haemolysis of erythrocytes [90]. The amines also function as positive 
modulators of antioxidant genes under conditions of strong oxidative stress [88]. The 
protective effect of PAs is related to the stabilization of polyunsaturated phospho-
lipids in cell membranes from peroxyl radicals, superoxides, and hydrogen peroxide 
[89]. In regard to their role in DNA protection against ROS, PAs are positively charged 
at physiological pH, enabling them to remain in proximity to negatively charged mac-
romolecules, thus protecting them against oxidative damage [90]. Biosynthetically, 
the three polyamines are biosynthesized from L-ornithine, known to supply C4N 
building block, and L-methionine [91]. In animals, L-ornithine undergoes a pyridoxal 
phosphate (PLP)-dependent decarboxylation to generate putrescine. Thereafter, 
aminopropylation of putrescine by the enzyme spermidine synthase and decarboxy-
S-adenosyl methionine produces spermidine. Repetition of the same sequence of 
reactions in the presence of the enzyme spermine synthase generates spermine.

7. Conclusions

In addition to the oxidative damage that reactive oxygen and nitrogen species 
inflict on macromolecules, they also participate in damage caused by microbial 

Figure 16. 
Enzymatic degradation of hemoglobin heme to bilirubin.
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infections, tumor progression, and neurodegenerative diseases. In response to such 
oxidative injuries, tissues protect themselves by expressing genes encoding antioxi-
dant enzymes and endogenous antioxidants to maintain oxidants at harmless levels. 
Oxidants themselves mediate certain cellular functions and cannot be eliminated 
completely. This fact emphasizes the significance of the antioxidant defense system 
in maintaining homeostasis and normal physiological processes, and in combating 
diseases and promoting immunity. The regulation of gene expression by employing 
oxidants and antioxidants represents a novel approach with promising therapeutic 
implications. Exogenous antioxidants are also critical for maintaining healthy living 
and longevity and must be obtained through dietary means. However, excessive 
dietary supplementation may disrupt the activation of the endogenous antioxidant 
defense system. Consequently, further research is required to fully elucidate the 
importance of antioxidants in the therapy of several human disease states and 
promotion of health span.
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Abbreviations

AscH− ascorbate
BIL bilirubin
CAT catalase
DHA dehydroascorbate
DNA deoxyribonucleic acid
DMAPP dimethylallyl diphosphate
ESR electron spin resonance
EnzSeSG glutathione peroxidase selenenyl sulfide
EnzSeOH glutathione peroxidase selenenic acid
EnzSeH glutathione peroxidase selenol
GSH glutathione
GSSG glutathione disulfide
GPx or GSHPx glutathione peroxidase
GR glutathione reductase
GOx glutathione oxidase
GSR glutathione reductase
H2O2 hydrogen peroxide
HO· hydroxyl radical
HClO hypochlorous acid
IPP isopentyl diphosphate
LDL low-density lipoprotein
LOOH lipid hydroperoxides
LOO· lipid peroxyl radical
MPO myeloperoxidase
NOS nitric oxide synthase
NADPH nicotinamide adenine dinucleotide phosphate
NO· nitric oxide radical
ONOO− peroxynitrite
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O2.− superoxide anion radical
PLP pyridoxal phosphate
PAs polyamines
PUFA polyunsaturated fatty acids
PPP phytyl pyrophosphate
ROS reactive oxygen species
RNS reactive nitrogen species
SOD superoxide dismutase
SAM S-adenosyl methionine
UA uric acid
UDP uridine diphosphate
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