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Chapter

Confidentiality and Integrity for
IoT/Mobile Networks
Tri Ngo Minh

Abstract

This chapter discusses how to ensure confidentiality and integrity for data flow
in IoT applications. While confidentiality could be assessed by access control, cryp-
tography, or information flow analysis, integrity is still an open challenge. This
chapter proposes to use error-correcting codes to guarantee integrity, i.e., to main-
tain and assure the errorless state of data. Besides errors, many communication
channels also cause erasures, i.e., the receiver cannot decide which symbol the
received waveform represents. The chapter proposes a method that might correct
both errors and erasures together. Our method is efficient in reducing memory
storage as well as decoding complexity.

Keywords: confidentiality, integrity, information flow, erasure, separating matrix,
covering design

1. Introduction

It is estimated that Internet of Things (IoT) will generate billions of dollars in
profit for industries over the next two decades. Many organizations have started to
develop and implement their own IoT strategies. IoT enables devices would gener-
ate and transmit so many data such that security should be a top concern. IoT users
require that communication technologies have to guarantee both efficiency and
security. This chapter discusses how to guarantee two main properties of security,
i.e., confidentiality and integrity, for IoT applications.

1.1 Confidentiality

Securing the data manipulated by information systems has been a challenge in
the past few years. Several methods to limit the information disclosure have been
proposed, such as access control and cryptography. These are useful approaches, i.e.,
they can prevent confidential information from being read or modified by
unauthorized users. However, they still have a fundamental limitation, i.e., they do
not regulate the information propagation after it has been released. For example,
access control prevents unauthorized file access, but is insufficient to control how
the data is used afterwards. Similarly, cryptography provides a shield to exchange
information privately across a nonsecure channel, but no guarantee about the con-
fidentiality of private data is given after it is decrypted. Thus, neither access control
nor encryption provides a complete solution to protect confidentiality for informa-
tion systems.
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To ensure confidentiality for an information system, i.e., IoT system, it is nec-
essary to show that the system as a whole enforces a confidentiality policy, i.e., by
analysing how information flows within the system. The analysis must show that
information controlled by a confidentiality policy cannot flow to a place where that
policy is violated. Thus, the confidentiality policy we wish to enforce is an informa-
tion flow policy, and the method that enforces them is an information flow analysis.

Information flow analysis is a technique that has recently become an active
research topic. In general, the approach of information flow security is based on the
notion of interference [1]. Informally, interference exists inside a system when private
data affect public data, e.g., an attacker might guess private data from observing
public data. Noninterference, i.e., the absence of interference, is often used to prove
that an information system is secured.

Noninterference is required for applications where the users need their private
data strictly protected. However, many practical IoT applications might leak minor
information. Such systems include password checkers, cryptographic operations,
etc. For instance, when an attacker tries to guess the password: even when the
attacker makes a wrong guess, secret information has been leaked, i.e., it reveals
information about what the real password is not. Similarly, there is a flow of
information from the plain-text to the cipher-text, since the cipher-text depends on
the plain-text. These applications are rejected by the definition of noninterference.

However, the insecure property will happen only when it exceeds a specific
threshold, or amount of interference. If the interference in the system is small
enough, e.g., below a threshold given by specific security policy, the system is
considered to be secure. The security analysis that requires to determine how much
information flows from high level, i.e., secret data, to low level, i.e., public output,
is known as quantitative information flow. It concerned with measure the leakage of
information in order to decide if the leakage is tolerable.

Qualitative information flow analysis, i.e., noninterference, aims to determine
whether a program leaks private information or not. Thus, these absolute security
properties always reject a program if it leaks any information. Quantitative infor-
mation flow analysis offers a more general security policy, since it gives a method to
tolerate a minor leakage, i.e., by computing how much information has been leaked
and comparing this with a threshold. By adjusting the threshold, the security policy
can be applied for different applications, and in particular, if the threshold is 0, the
quantitative policy is seen as a qualitative one. The idea of quantitative information
flow analysis has been discussed in details in [2], one of our papers; readers can
refer to it for more information.

1.2 Integrity

Integrity means maintaining and assuring accuracy and completeness of data.
However, during the wireless transmission in IoT applications, messages can be
erroneous due to many reasons, e.g., attenuation, distortion or the addition of noise.
Error means the receiver cannot decode correctly the signal to get the right symbol.
In order to protect data against errors, channel coding, i.e., error-correcting codes
are required. Error-correcting codes ensure proper performance of IoT systems.
They ensure the integrity of communication links in the presence of noise, distor-
tion, and attenuation [3–6]. The use of a parity-bit as an error-detecting mechanism
is one of the simplest and most well-known schemes used in digital communication.
Data is portioned into blocks. To each block, an additional bit is appended to make
the number of bits which are 1 in the block, including the appended bit, an even
number. If a single bit-error occurs, within the block, the number of 1’s becomes
odd. Hence, this allows for detection of single errors [7, 8].
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Error-correcting codes are often applied in telecommunications. Many early
applications of coding were developed for deep-space and satellite communication
systems. For example, signals from satellites and space crafts are sent back to earth.
The channel for such transmission is space and the earth’s atmosphere. These
communication systems not only have limitations on their transmitted power, but
also introduce errors, due to solar activity and atmospheric conditions, into weak
signals. Error-correcting codes are an excellent method to guarantee the integrity
of these communication links. With the applications of error-correcting codes,
most of the data sent could be correctly decoded here on earth. As examples, a
binary (32,6,16) Reed-Muller code was used during the Mariner and Viking mission
to Mars around 1970 or a convolutional code was used on the Pioneer 10 and 11
missions to Jupiter and Saturn in 1972. The (24,12,8) Golay code was used in the
Voyager 1 and Voyager 2 spacecrafts transmitting color pictures of Jupiter and
Saturn in 1979 and 1980. When Voyager 2 went on to Uranus and Neptune, the code
was switched to a concatenated Reed-Solomon code for its substantially more
powerful error correcting capabilities.

The block and convolutional codes are also applied to the global system for
mobile communications (GSM) which is the most popular digital cellular mobile
communication system. Reed Solomon and Viterbi codes have been used for nearly
20 years for the delivery of digital satellite TV. Low-density parity-check codes
(LDPC codes) are now used in many recent high-speed communication standards,
such as Digital video broadcasting-S2 (DVB-S2), WiMAX, 10GBase-T Ethernet [9].

Most error correcting codes, in general, are designed to correct or detect errors.
However, many channels cause erasures, i.e., the demodulator cannot decide
whether the received waveform represents bit 0 or 1, in addition to errors. Basically,
decoding over such channels can be done by: firstly, deleting erased symbols and
then, decoding the resulting vector with respect to the punctured code, i.e., the code
in which all erasures have been removed. For any given linear code and any given
maximum number of correctable erasures, in [7], Abdel-Ghaffar and Weber intro-
duced a parity-check matrix yielding parity-check equations that do not check any
of the erased symbols and which are sufficient to characterize the punctured code.
This allows for the separation of erasures from errors to facilitate decoding. How-
ever, these parity-check matrices have too many redundant rows. To reduce
decoding complexity, parity-check matrices with small number of rows are pre-
ferred. This chapter proposes a method that can build a matrix with a smaller
number of rows.

Organization of the paper: The rest of this chapter is organized as follows.
Section 2 introduces the main ideas of error-correcting codes, errors and erasures.
Section 3 presents methods to construct a parity-check matrix that can correct both
errors and erasures. Section 4 discusses a general solution for the covering design,
which is used in the proposal. Finally, Section 5 concludes the chapter.

2. Codes, errors and erasures

2.1 Linear block codes

Let C be an n; k; d½ � linear block code. It means that C is a k-dimensional subspace
of the n-dimensional vector space. The set of codewords of C can be defined as the
null space of the row space of an r� n parity-check matrix H ¼ hi, j

� �
of rank n� k.

Since a vector x is a codeword of C iff xHT ¼ 0, where the superscript T denotes the
transpose, we can derive r parity-check equations PCE, as follows,
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PCEi :
Xn

j¼1

hi, j xj ¼ 0 for i ¼ 1, 2,…, r: (1)

An equation PCEi(x) is said to check x in position j iff hi, j 6¼ 0.

2.2 Erasures

Sometimes, at the receiver, the demodulator cannot decide which symbol the
received waveform represents. In this case, we declare the received symbol as an
erasure. When the received codeword contains erasures instead of errors, the itera-
tive decoding can be used [8].

Here, we summarize the iterative decoding procedure using an example of the
(7,4,3) binary Hamming code with the following parity-check matrix,

Since a vector x ¼ x1x2x3x4x5x6x7ð Þ is a codeword iff xHT ¼ 0. Hence, every
codeword has to satisfy three parity-check equations as follows.

Assume that the received vector is ∗010 ∗0, where the erased symbol is denoted
by Equation A checks on x1, x3, x4 and x5. If exactly one of these four symbols is
erased, it can be retrieved from this equation. Thus, x1 ¼ 1 since x3 ¼ 0, x4 ¼ 1, and
x5 ¼ 0. Similarly, we can derive that x2 ¼ 1, and x6 ¼ 0 from Equation B and C.
Therefore, the iterative decoding decided that the transmitted codeword is
1101000.

Iterative decoding is successful iff erasures do not fill the positions of a nonempty
stopping set. A stopping set is a set of positions in which there is no parity-check
equation that checks exactly one symbol in these positions. The performance of
iterative decoding techniques for correcting erasures depends on the sizes of the
stopping sets associated with the parity-check matrix representing the code. The
parity-check matrix with redundant rows could benefit the decoding performance,
i.e., reducing the size of stopping sets, while increasing the decoding complexity.
More information on stopping set can be found in [2, 10, 11].

2.3 Separation of errors from erasures

In this part, we discuss how to handle errors together with erasures. In this case,
we can apply an algorithm using trials in which erasures are replaced by 0 or 1; and
the resulting vector is decoded by a decoder which is capable of correcting errors.
For binary code, two trials are sufficient [8, 12].

For example, if C is a binary n; kð Þ-code with a Hamming distance
d ¼ 2tε þ t? þ 1, then C can correct tε errors and t? erasures. In the presence of no
erasures, C is able to correct up to tε þ t?=2b c errors. Let r be a received vector
having at most tε errors and at most t? erasures. Suppose the decoder constructs two
vectors r0 and r1, where ri is obtained by filling all erasure positions in r with the
symbols i, i ¼ 0, 1. Since C is binary, in either r0 or r1, at least half of the erasure
locations has the right symbols. Hence, either r0 or r1 has a distance at most
tε þ t?=2b c from the transmitted codeword. Thus, any standard error correction
technique can be applied. If the correction decodes both r0 and r1 to codewords,
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and these codewords are the same, then this is the transmitted codeword. If they are
different, then there is one, and only one, vector requiring at most tε changes in
nonerasure positions to become the right codeword. More information on this
algorithm can be found in [6].

Abdel-Ghaffar and Weber proposed another way of decoding over such chan-
nels [7]. First, all erasures are deleted from the received message. Errors in the
resulting codeword will be corrected based on the punctured code, i.e., codewords
consist of symbols in positions which are not erased. After all errors have been
corrected, erasures will be recovered by the iterative decoding.

The decoder can compute a parity-check matrix for the punctured code after
receiving the codeword. However, this leads to time delay which is unacceptable
specially in IoT applications. To reduce time delay, we can store parity-check
matrices of all punctured codes corresponding to all erasure patterns. The drawback
of this solution is the requirement of huge memory storage at the decoder.

Abdel-Ghaffar and Weber proposed using a separating matrix with redundant
rows, providing enough parity-check equations which do not check any of the
erased symbols and are sufficient to form a parity-check matrix for the punctured
code obtained by deleting all erasures [7]. Having these parity-check equations not
checking any of the erased symbols lead to the concept of separation of errors from
erasures.

The basic concept of this decoding technique can be illustrated by an example as
follows. We consider an (8,4,4) binary extended Hamming code with the following
parity-check matrix, Figure 1.

A normal parity-check matrix just has only four rows as the first four rows in
this separating matrix. Allowing redundant rows simplifies the decoding of erasures
in addition to errors. Assume that we get a codeword r = 0 ∗011000 with one
erasure in the second position. Applying the decoding technique mentioned above,
firstly we delete the erasure and the resulting vector is r’ = 0011000. This vector r’
can be considered as a codeword of the (7,4,3) punctured code. In H, the first, the
second and the sixth row have zeros in the second position. It means that three
corresponding parity-check equations do not check the erased symbol. Based on
these three rows, we can form a parity-check matrix H’ for the punctured code, as
follows Figure 2.

UsingH’, r’ is decoded into 0011010. Putting back the erasure, we get 0*011010.
The third row of H, which checks the erased symbol, can be used to recover the
erasure. Thus, the decoded codeword corresponding to r is 01011010.

A normal parity-check matrix cannot be used for decoding of both errors and
erasures together. Decoding is feasible when we pay the price of storing a parity-
check matrix with more rows than a normal one. In order to reduce the memory

Figure 1.
A parity check matrix for the code C.
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storage as well as the decoding complexity, a parity-check matrix with small num-
ber of rows is preferred.

Given any linear code and any given maximum number of correctable erasures,
Abdel-Ghaffar and Weber introduced separating matrices yielding parity-check
equations that do not check any of the erased symbols and which are sufficient to
characterize all punctured codes corresponding to this maximum number of era-
sures [7]. This allows for the separation of erasures from errors to facilitate
decoding. However, their proposal yields separating matrices which typically have
too many redundant rows. The following part of this chapter discusses an improved
method to construct such separating matrices, applying covering design, with a
smaller number of rows.

3. How to build an l-separating matrix

3.1 Set separation

Let H ¼ hi, j
� �

of rank n� k be an (r �n) parity-check matrix of C, r≥ n� k. Let

S be a subset of 1; 2;…; nf g and T be a subset of 1; 2;…; rf g, define HT
S ¼ hi, j

� �
with

i∈T and j∈ S, be a T ∨� ∨ S∨ submatrix of H. For the code C with the length n,

define C�S ¼ c�S : c∈Cg
�

be the punctured code consisting of all codewords of C
in which the symbols in positions indexed by S, S ¼ 1; 2;…; nf g Sf are deleted.

Clearly, C�S is a linear code over GF qð Þ of length n’ ¼ �S ∨, dimension k’≤ k, and

Hamming distance d’≤ d� �S∨. Let eS ¼ i : 1≤ i≤ r; hij ¼ 0∀j∈ S
� �

, define

H Sð Þ ¼ H
~S
�S
.

Definition 1 [7]: A parity-check matrix H separates S⊆ 1; 2;…; nf g iff H Sð Þ is a
parity-check matrix of C�S .

Theorem 1 [7]: A parity-check matrix H of an n; k; d½ � linear code C separates a
set S of size Sj j≤ d� 1 iff H Sð Þ has rank n� k� Sj j.

Definition 2 [7]: If H separates all sets S of size l for a fixed
l≤min d; n� kf g � 1, it is l-separating.

If H is an l-separating parity-check matrix of the code C, based on H, we can
construct a parity-check matrix for any code punctured up to a fixed number l of
symbols. H has two features:

• H can separate erasures from errors, since H has enough parity-check equations
that do not check any erased symbols, and are sufficient to characterize the
punctured code. It means that the punctured code, which is formed by deleting
erased symbols, can be corrected errors by a sub-matrix of H.

Figure 2.
A parity check matrix for the punctured code.
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• In case l≤min d; n� kf g � 1, H has no stopping set of size l or less. For any
pattern of l or fewer erasures, not only are there enough parity-check equations
that do not check any of the erased symbols characterize the punctured code,
but also there is a parity-check equation that checks exactly one of the erased
symbols. It means that after all errors have been corrected, erasures can be
recovered by the iterative decoding procedure.

3.2 Separating matrix

Let H’ be a full rank parity-check matrix, Si⊆ 1; 2;…; nf g, in which

i ¼ 1, 2,…,
n

l

� �
, be distinct subsets of 1; 2;…; nf g of size l, For each i, it is trivial

that H0
Si has rank l (l≤min d; n� kf g � 1). By elementary row operations on H’, we

can obtain an n� kð Þ � n matrix H0
i, for each i ¼ 1, 2,…,

n

l

� �
, of rank n� k, such

that its last n� k� l rows have zeros in positions indexed by Si Figure 3.
Let HI be a matrix which rows is the union of sets of the last n� k� l rows in

H0
i, for i ¼ 1, 2,…,

n

l

� �
. HI is an l-separating matrix of the code C, and it has at

most
n

l

� �
n� k� lð Þ rows [7] Figure 4.

Figure 3.
Independent-row separation.

Figure 4.
An l-separating matrix.
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3.3 A more efficient separating matrix

In this section, we propose a method that can construct an l-separating matrix
with a smaller number of rows. This method implements the idea of covering design
[13, 14]. Basically, given 1≤ t≤ u≤ v, a v; u; tð Þ covering design is a collection of
u-element subsets of V ¼ 1; 2;…; vf g, called blocks, such that each t-element subset
of V is contained in at least one block, e.g., 1; 2f g is contained in 1; 2; 3f g.

For our specific situation, consider an n; b; lð Þ covering design. Let B ¼ Bif g be a
set of b-element subsets, 1≤ l≤ b≤min d; n� kf g � 1, such that every l-element
subset Si is contained in at least one member of B. Assign to each Si,

i ¼ 1, 2,…,
n

l

� �
, an element Bj of B such that Si is contained in Bj. H0

Bj
has rank b.

For any Bj, by elementary row operations on H’, we can obtain an n� kð Þ � n-
matrix of rank n� k such that its last n� k� b rows have zeros in positions indexed

by Bj. After arranging columns, we obtain a matrix H1
j with the following format

(Step 1) Figure 5.

Figure 5.
Row separation—Step 1.

Figure 6.
Row separation—Step 2.
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Consider the set Si assigned to Bj, by further elementary row operations, H1
j can

be changed into a matrix such that rows lþ 1, lþ 2, …, b have zeros in positions
indexed by Si, and rows bþ 1, bþ 2, …, n� k have zeros in positions indexed by Bj.
After column arrangement, we obtain a matrix with the following format (Step 2),
Figure 6.

Following this method, if Si and Si0 belong to the same Bj, the last n� k� b rows
in H0

i and H0
i0 are the same. It follows that the matrix which rows is the union of the

last n� k� l rows in H0
j, j ¼ 1, 2,…,∨B∨, and the rows lþ 1, lþ 2, …, b of H0

i,

i ¼ 1, 2,…,
n

l

� �
, is an l-separating parity-check matrix of C. Let B n; b; lð Þ denote

the minimum size of B, i.e., B n; b; lð Þ ¼ min |B|. This matrix has at most

n� k� bð ÞB n; b; lð Þ þ
n

l

� �
b� lð Þ rows. It is obvious to see that the upper bound on

number of rows in Approach 2 is strictly smaller than in Approach 1. In case b ¼ l,
two approaches are the same. For a given l, we can choose an appropriate b to
achieve the best result Figure 7.

4. Covering design

Consider a v; u; tð Þ covering design, where 1≤ t≤ u≤ v.

Example 1: Given that v ¼ 8, u ¼ 3, t ¼ 2. There are
8

2

� �
= 28 subsets of 2-

elements, and
8

3

� �
= 56 subsets of 3-elements of V ¼ f1,2,…,8g. However, we only

need at most 21 subsets of 3-elements, i.e., {{1,2,3}, {1,2,4}, {1,2,5}, {1,2,6}, {1,2,7},
{1,2,8}, {1,3,4}, {1,3,5}, {1,3,6}, {1,3,7}, {1,3,8}, {1,4,5}, {1,4,6}, {1,4,7}, {1,4,8},
{1,5,6}, {1,5,7}, {1,5,8}, {1,6,7}, {1,6,8}, {1,7,8}}, to form all 28 subsets of 2-
elements. For example, based on the subset {1,2,3}, we can form {1,2}, {2,3},
{1,3}. Using 21 subsets of size 3 mentioned above, we can construct all 28 subsets
of size 2.

The covering design problem has been investigated since many years ago.
However, until now, there is no general optimal solution for all triples v; u; tð Þ. In
this section, we propose a covering design valid for all triples v; u; tð Þ. This design is
not optimal but it can give a general solution for the problem.

Figure 7.
A more efficient l-separating matrix.
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4.1 Approach 1

Firstly, we show that with at most
v� u� tð Þ

t

� �
subsets of size u, we can form

all
v

t

� �
subsets of size t.

1. Take the first u� t elements, i.e., 1; 2; ::u� tf g, out of V ¼ 1; 2;…; vf g.

2. The rest of the set is u� tþ 1; u� tþ 2;…; v� 1; vf g. Based on these elements,

form all subsets of size t. The number of subsets is
v� u� tð Þ

t

� �
.

3. Put the first u� t elements into each subset of size t to have subsets of size u.

With these
v� u� tð Þ

t

� �
subsets of size u, it is easy to see that we can form all

v

t

� �
subsets of sizet:

4.2 Approach 2

By modifying Approach 1, we show that some u-element subsets can bemerged to
reduce B∨.

1. Take the first u� t elements, i.e., 1; 2; ::u� tf g, out of V ¼ 1; 2;…; vf g.

2. The rest of the set is u� tþ 1; u� tþ 2;…; v� 1; vf g. Based on these elements,
form all subsets of size t and arrange them into columns based on the following
rules:

• Elements in each subset are arranged in ascending order, e.g., {1,2,3}.

• Subsets are arranged into columns. Subsets are in one column iff their first
t� 1 elements are the same (except the special column mentioned below).
Hence, subsets in one column are different from each other only in the last
element. The subset with the smaller last element will be listed above.

• Special column: In case t≥ 2, we arrange all subsets containing both
element v� 1, v in a column and name it special column. It is easy to see

that there are
v� u� tð Þ � 2

t� 2

� �
subsets in this column.

3. Put the first u� t elements into each subset of size t to have subsets of size u.

4.If the number of subsets in the longest column is greater or equal to three and
the special column exists, we can merge the last two subsets, which contain
either v� 1 or v, in each column (except the special column) into one, i.e., the
merged set, by this rule

• Take the union of two subsets, i.e., the size of the union subset is uþ 1.

• Eliminate the first element of the union subset, i.e., its size is now u.

10
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We can merge the last two subsets in each column (except the special column)
because: (a) the first u� 1 elements in the last two subsets are also in another subset
in the columns. Thus, any subset of size t formed by using these u� 1 elements can
be form by any other subset in the column; (b) any subset of size t containing
1; v� 1f g or 1; vf g can be formed by subsets in the special column.
Example 2: Given that v ¼ 9, u ¼ 5, t ¼ 4. Following the first three steps of

Approach 2, we get:
First, take {1} out of the set. Following Step 2, form all subsets of size 4, and

arrange them into columns. Put {1} back into each subset of size 4 to have subsets of
size 5. We denote subsets in boxes are subsets which can be merged Figure 8.

The merged step (Step 4): For example, consider the first column, two subsets in
the box are {1, 2, 3, 4, 8} and {1, 2, 3,4, 9}. First, take the union of the two, i.e.,
{1, 2, 3, 4, 8, 9}, and then eliminate the first element; thus, this results in {2, 3,4, 8, 9}.

Therefore, Step 4 of Approach 2 gives the following result. It is easy to see that
any subset of size 4 can be formed by subsets in Figure 9.

Figure 8.
The first three steps of Approach 2.
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The number of reduced subsets is equal to the number of subsets that contain

the elements v� 1 or v. Thus, the number of reduced subsets is
v� u� tð Þ � 2

t� 1

� �
.

Therefore, with at most
v� u� tð Þ

t

� �
�

v� u� tð Þ � 2

t� 1

� �
subsets of size u, we

can form all
v

t

� �
subsets of size t.

5. Conclusions

This chapter discusses how to ensure confidentiality and integrity for data in IoT
systems. The chapter focuses more on integrity which can be ensured via the
implementation of error-correcting codes. Separating parity-check matrices are
useful for decoding over channels causing both errors and erasures. We propose a

Figure 9.
The last step of Approach 2.
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way to build a separating parity-check matrix with a smaller set of rows. This
method reduces both decoding complexity and memory storage. Besides, we also
present a covering design. This design is not optimal but it gives a general solution
for all triple v; u; tð Þ.
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