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Chapter

Platelets in the Newborn
Ijeoma Esiaba, Iman Mousselli, Giulia M. Faison,  

Danilyn M. Angeles and Danilo S. Boskovic

Abstract

Platelets were first described in the mid-nineteenth century. Since then, their 
roles were identified in hemostasis and thrombosis, inflammation, leukocyte 
interactions, angiogenesis, and cancer growth. But there is little information about 
such platelet functions in the newborn. Several studies highlighted some platelet 
differences between newborns and adults. Yet, in spite of these differences, healthy 
newborns appear to be adequately protected. A number of factors, however, were 
reported to negatively affect neonatal platelets. These include maternal hyperten-
sive disorders or infections, neonatal asphyxia or respiratory distress, therapies 
such as ampicillin or indomethacin, and treatment modalities such as ventilators, 
nitric oxide, or extracorporeal membrane oxygenation (ECMO). Their effects on 
newborn platelets are usually transitory, lasting from several hours to a few days 
or weeks. If these effects are well characterized, they could serve as reporters for 
diagnosis and monitoring during therapy. Careful studies of neonatal platelets are 
needed to improve the understanding of basic physiology and pathophysiology in 
this cohort and to identify possible targets for intervention and therapy.

Keywords: platelet function, hemostasis, prematurity, platelet transfusion,  
newborn, sepsis, ECMO

1. Introduction

Platelets are small discoid cellular particles, produced by megakaryocytes, and 
best known for their role in thrombus or platelet plug formation. Since their initial 
description in the mid-nineteenth century, further details have emerged about 
their structure and function. More recently, their roles in processes as wide rang-
ing as tissue repair and wound healing, angiogenesis, tumor killing, tumor growth 
and metastasis, inflammation, and host defense have come to light [1, 2]. Platelets 
perform these varied functions and diverse interactions because of several receptors 
and ligands on their surface, and a store of over 300 proteins within their cytoplasm 
and granules. With newer technological advances, more platelet functions were 
discovered and the mechanisms for some of them are now clearer.

Platelets mediate primary hemostasis, a dynamic process involving several 
reactions resulting in thrombus formation. Initially, platelets aggregate to form a 
platelet plug at the site of injury [3, 4]. In secondary hemostasis, thrombin is gener-
ated after a cascade of enzymatic reactions. The generated thrombin subsequently 
cleaves fibrinogen to fibrin [5]. Fibrin spontaneously polymerizes forming a fibrous 
network which stabilizes the platelet plug [6]. The process of tertiary hemostasis, 
or fibrinolysis, restricts clot formation to the site of injury, dissolves clots after the 
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damaged endothelium has been repaired, and prevents the formation of patho-
logic thrombi [7, 8]. These reactions are tightly regulated to minimize the risk of 
either bleeding or thrombosis. Components of the hemostatic system are usually 
preformed and circulate in their respective inactive forms. Apart from their role in 
hemostasis, some of these factors also play a role in other physiological processes 
such as embryonic development, angiogenesis, or immunity [9].

Most of the information about platelets is based on studies conducted in adults 
or in animal models. Despite recognized roles of platelets in processes as wide 
ranging as inflammation and angiogenesis, information about these roles of neo-
natal platelets is limited. However, clinical observations suggest that there likely 
are some functional differences between neonatal and adult platelets. Newborns 
are at greater risk of contracting infections and may not cope adequately with 
inflammatory stresses [10]. New blood vessels are formed to meet the demands of 
rapidly growing tissues. The roles of platelets in these processes and reactions in 
the newborn are not yet well described. Additionally, certain prematurity-related 
morbidities such as intraventricular hemorrhage, retinopathy of prematurity, and 
necrotizing enterocolitis are associated with bleeding and inflammation [11, 12]. 
Platelets or their functional deficits are believed to be involved in these disorders. 
Studying platelet function in the newborn is difficult, but emerging methodological 
approaches requiring small volumes of newborn’s blood are making such studies 
feasible. Following a general description of platelet structure and functions, this 
review will highlight documented differences in the newborn.

2. Platelet structure and functions

Platelets mediate primary hemostasis and play roles in procoagulant and fibri-
nolytic processes [13]. They are nonnucleated fragments derived from bone marrow 
megakaryocytes. The adult human produces about 1011 platelets daily, rising by 
more than 20-fold during increased need [14]. In the fetus and neonate, platelets are 
produced largely in the liver and spleen [15, 16]. Thrombopoietin maintains platelet 
homeostasis by regulating thrombopoiesis [17, 18]. The resting platelet is disk shaped 
with a diameter of about 1.5 μm and a lifespan of 7–10 days [19]. Its surface does not 
promote coagulation or aggregation. In circulation, the platelets’ resting state is fur-
ther supported by the release of prostacyclin and nitric oxide from endothelial cells, by 
the expression of CD39 (an ADPase) on the endothelial surface, and by the inability of 
normal plasma vWF to bind spontaneously to the platelet surface [20].

Platelets have a complex internal structure with a series of organelles. Lacking 
a nucleus, they nevertheless contain some nucleic acid in the form of ribonucleic 
acid (RNA), which is used for synthesis of new proteins, especially during or after 
platelet activation [21]. The secretory granules comprise the α-granules and dense 
or δ-granules. The α-granules contain adhesion molecules important for platelet 
interactions with other platelets and blood cells, angiogenic and mitogenic factors, 
plasma proteins, and several factors relevant for coagulation and fibrinolysis [22]. 
The dense- or δ-granules contain non-protein molecules such as adenosine diphos-
phate (ADP), adenosine triphosphate (ATP), calcium and serotonin [22]. These 
play central roles in amplification of platelet activation and aggregation and in 
modulation of vascular endothelium and leukocyte functions. Within lysosomes are 
membrane proteins and acid hydrolases that digest the material in platelet aggre-
gates through hydrolytic degradation [23]. Over 300 proteins are secreted from 
these granules during activation [24]. In the unstimulated platelets, the granule 
contents remain internalized. When stimulated, however, platelets release such 
contents through an open canalicular system [25].
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A number of factors and agonists can stimulate platelets. These include shear 
stress during blood flow, agonists such as thrombin, collagen, or ADP, and recogni-
tion of and interaction with viruses, bacteria, or damaged vascular endothelium 
[26, 27]. Typically, platelet activation is triggered when there is a break in the 
vascular endothelium. The activated platelets first adhere to the damaged endo-
thelium by binding to von Willebrand factor (vWF) through its surface membrane 
glycoprotein Ib (GPIb). Further interactions of platelet glycoprotein VI (GPVI) 
with fibrillary collagen and platelet β1 integrin with laminin, collagen, and fibro-
nectin maintain platelet adhesion to exposed extracellular matrix [8].

Following activation, platelet membrane phospholipid distribution changes to 
include exposure of phosphatidylserine on the outer surface, thus promoting the con-
densation of vitamin K-dependent coagulation factors on this surface, and inducing 
the activation of the procoagulant cascade [28]. Additionally, a rearrangement of the 
cytoskeleton leads to a change in platelet structure [29] from the resting discoid form, 
via an intermediate spherical shape, to a fully activated amoeboid form with numerous 
extending pseudopodia able to interact with some nearby surfaces [29]. Meanwhile, 
the contents of α- and δ-granules are released into the immediate environment, fur-
ther amplifying the original activation signal [23]. As a result, in response to a number 
of biological mediators, the activated platelets adhere to each other, to leukocytes and 
endothelial cells, and to components of the sub-endothelial matrix [30].

During extension of platelet plug formation, activated platelets accumulate on 
top of the initial monolayer of platelets bound to collagen of the sub-endothelium 
[3]. Expressed receptors on each platelet allow binding of agonists such as ADP, 
thrombin, and thromboxane A2, which are released from activated platelets [31]. 
Consequently, more platelets are recruited to the site of injury, thereby consolidat-
ing the initial hemostatic plug. Binding of fibrin to aggregated platelets through 
activated receptor glycoprotein GPIIb/IIIa (integrin αIIbβ3) helps to further stabilize 
the hemostatic plug [32].

Several proteins are released during platelet aggregation at a damaged blood 
vessel surface [22]. Some are believed to be responsible for repair of damaged blood 
vessels and development of new ones. Although precise mechanisms are not well 
understood, it was suggested that platelets are necessary for formation of new blood 
vessels [33]. Supporting this are observations of reduced retinal neovascularization 
in a mouse hypoxia-induced retinal angiogenesis model due to thrombocytopenia 
or in response to treatment with inhibitors of platelet aggregation [33]. In this con-
text, platelet granules are believed to contain pro- and anti-angiogenic compounds 
[34, 35]. Similarly, platelet interactions with cancer cells appear to play a role in the 
development of metastases and tumor angiogenesis [36]. While cerebrovascular 
remodeling is known to occur in the newborn in the first few postnatal weeks [37], 
the roles of platelets in this developmental process are not yet well described.

Platelets may also play a role in newborn’s inflammatory processes and host 
defense. Neonates are generally believed to be at least partially immunologically 
incompetent and susceptible to a variety of infections. In this context, it is of inter-
est that platelets have toll-like receptors (TLRs) that directly recognize and interact 
with a number of microorganisms or their products. Platelets may be responsible 
for killing microbes directly by phagocytosis, by release of microbicidal agents, or 
as sentinels communicating information about microbial encounters to cells of the 
innate immune system [15]. Bacterial infections, found in preterm newborns admit-
ted to the neonatal intensive care unit (NICU), appear similar to infections found in 
adults with severe neutropenia [38]. This suggests reduced neutrophil functions in 
these babies. Neonates rely heavily on innate immunity for protection because their 
adaptive immunity is not yet fully developed [39]. Neutrophils are usually the first 
cells to be recruited to infection sites. They kill pathogens by various mechanisms 
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including (a) direct phagocytosis and chemical killing by degranulation and (b) by 
formation of neutrophil extracellular traps (NETs) [40]. Recent studies showed that 
platelet interactions with neutrophils are important for optimal neutrophil func-
tions [41–44]. One such aspect of neutrophil function involves their chemotaxis 
and extravasation to sites of infection. Platelets were observed to act as “pathfind-
ers” guiding neutrophils to infection sites, and platelet inhibition resulted in poor 
neutrophil chemotaxis [45, 46]. Interaction of platelets with leukocytes may induce 
inflammation. Understanding the role and mechanisms involved in platelet-leuko-
cyte interactions in the newborn, particularly those born prematurely, could lead to 
development of more rational approaches to morbidities common to this group.

3. Newborn platelets

Thrombopoietin, a protein regulator of platelet synthesis and homeostasis [18], was 
detected in the fetal liver as early as the sixth week of gestation [18]. In turn, megakary-
ocytes, the precursor cells that form and release platelets into circulation, were detected 
in the liver and circulation at the eighth week [19]. The megakaryocyte numbers were 
observed to be, at least in part, inversely correlated to gestational age, so that healthy 
preterm newborns characteristically have higher levels, while levels in healthy full term 
newborns and adults are similar [47, 48]. Neonatal megakaryocyte progenitor cells are 
more sensitive and have higher proliferative potential in response to thrombopoietin 
compared to adult cells, and this sensitivity is even greater in preterm newborns [49]. 
However, neonatal megakaryocytes, tending to be smaller and with a lower ploidy 
than adult cells, produce fewer platelets per megakaryocyte [48, 50, 51]. Newborn and 
adult platelets are ultra-structurally similar [52, 53] and contain comparable mem-
brane receptor glycoproteins (GPs) [54] and thromboxane receptors [55]. However, 
newborn platelets tend to include more immature forms, with the ability to form fewer 
pseudopods, fewer developed microtubular structures, and fewer α-granules [53]. 
Additionally, neonatal platelets have fewer adrenergic receptors [56]. Although they 
store comparably adult levels of ADP, ATP and serotonin in their dense granules, the 
overall dense granule release during platelet activation is lower in the newborn [57].

Platelet count is dependent on gestational age, increasing during fetal life, but 
usually reaches the expected adult range of 150,000 to 450,000/µL [58] from about 22 
weeks of gestation [59]. The percentage of reticulated platelets, an indication of newly 
produced platelets, is higher in the newborn circulation [60], while the mean platelet 
volume (MPV), a measure of platelet size, tends to be comparable to adults.

Platelet adhesion to, and coverage of, sub-endothelial extracellular matrix is 
higher in the newborns than in adults [61, 62]. This is in spite of comparable colla-
gen binding or platelet aggregation [61]. The enhanced neonatal platelet adhesion is 
believed to be mediated by the neonatal plasma von Willebrand factor (vWF) [61], 
which was reported to include unusually large multimers [63, 64]. Nevertheless, 
compared to full-term newborns, platelet adhesion tended to be lower in earlier 
gestational age neonates [62]. In part, these observations could help to explain how 
hemostatic function is usually maintained in full-term newborns, despite decreased 
intrinsic platelet activation, and why the preterm neonates are progressively decom-
pensated the earlier their gestational age.

The phospholipid content and baseline exposure of platelet surface phospha-
tidylserine is comparable in adults and newborns [65, 66]. However, more platelet 
microparticles are generated and more phosphatidylserine molecules are exposed in 
the term and preterm platelets when thrombin or calcium ionophores were used as 
activators [67]. Microparticles or exposed phosphatidylserine is expected to induce a 
procoagulant state. Yet, the procoagulant activity, especially in the preterm newborn, 
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is generally lower despite the higher levels of generated microparticles and exposed 
phosphatidylserine [67]. Supplementing neonatal plasma with coagulation factors 
improves its procoagulant activity so that it becomes comparable to adults. This 
implies that newborn platelets can often present adequate procoagulant surface, but 
the apparent poor activity may in part be due to a deficiency of humoral factors [68].

P-selectin expression, as an index of α-granule secretion, was reported lower in 
newborn platelets compared to adults, especially in the <30 week gestation group 
[69, 70]. Neonatal dense granule secretion, measured by secreted serotonin, was 
similar to that in adults when inositol triphosphate, 1-oleoyl-2-acetyl-glycerol, or 
thrombin was used as an agonist. Collagen-mediated stimulation, however, resulted 
in lower serotonin secretion in cord blood, although the number of dense granules 
in adults and neonates was found to be similar [57, 68]. GPIIb/IIIa receptors are 
expressed early during gestation. Yet, the fraction of active GPIIb/IIIa in neonatal 
cord and peripheral blood is lower compared to adults [69].

During the first few days of life, platelet activation appears to be less effective, 
as indicated by flow cytometric studies [69]. However, these activation profiles 
approach the adult patterns between the tenth and the fourteenth day of life [71]. 
Proposed explanations for this observed hypo-responsiveness include: relative defi-
ciencies of phospholipid metabolism including thromboxane production, differential 
regulation of GPIIb/IIIa activation, impaired mobilization of calcium and intracel-
lular signaling, impaired granule secretion, and lower aggregation [72]. These could 
result from lower intrinsic signal transduction in neonatal platelets [72]. Such effects 
are further enhanced by lower expression of protease-activated receptor-1 (PAR-1) 
and PAR-4 [73, 74], which mediate thrombin-dependent platelet activation.

Various components of the hemostatic system in the fetus and neonate are qualita-
tively and quantitatively different from those in adults [8]. Such differences could be 
explained either by lower synthesis, higher clearance, or higher consumption [75, 76]. 
Although the hemostatic system is sometimes thought to be incomplete at birth [72], 
it nevertheless appears to be adequate for the majority of healthy full-term newborns.

4. Perinatal factors affecting platelet function in the newborn

Acquired platelet dysfunctions are common during the neonatal period espe-
cially in preterm newborns. These disorders are usually secondary to perinatal or 
neonatal conditions such as maternal and neonatal state of health, presence of 
infections, medications given to mother or to newborn, or interventions for the 
newborn (Tables 1 and 2). Platelet count and function are usually restored several 
hours or days after the triggering condition is removed.

4.1 Prenatal and maternal factors associated with neonatal platelet dysfunction

There are several maternal factors that can impact neonatal platelet function 
especially during the days preceding delivery. These include maternal hypertensive 
disorders and prenatal use of aspirin, magnesium sulfate, or antibiotics.

Hypertensive disorders of pregnancy are associated with platelet dysfunctions in 
the newborn. Pregnancy-induced hypertension (PIH) is a risk factor for early onset 
thrombocytopenia in the newborn [77]. This is especially true for babies born prior to 
36 weeks of gestation [78, 79]. Neonatal platelet counts tend to be inversely correlated 
to maternal blood pressure [79]. These platelets also exhibited lower adhesion proper-
ties [80]. Babies with low birth weight, meconium aspiration, or infections are also at 
greater risk for thrombocytopenia [81, 82]. Flow cytometric analyses of platelets from 
premature newborns from preeclamptic mothers demonstrated lower expression of 
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CD62P (P-selectin), CD63 (platelet activation marker), or CD36 (platelet glycoprotein 
IV (GPIV)) after thrombin stimulation, compared to full-term neonates [83]. However, 
when compared to other similar preterms, the expression of platelet CD62P and CD63 
was relatively higher in newborns from preeclamptic mothers [84]. Additionally, 
this cohort was also characterized by lower platelet and megakaryocyte counts [84], 
implying possible disturbances in platelet production [85]. Infants born to hypertensive 
mothers tend to be hypoxic [86]. Animal model studies suggest that hypoxia tends to 
favor erythropoiesis over megakaryopoiesis, leading to lower platelet counts [87].

Low dose aspirin (LDA), about 60–100 mg, is sometimes given to pregnant 
women, who are at risk of developing a hypertensive disorder, or whose fetus has 

Neonatal factor Effect on newborn platelet

Nitric oxide • Abnormal thromboelastogram values [109]

• Prolonged prothrombin time [109]

• Prolonged bleeding time [111]

Therapeutic hypothermia • Abnormal thromboelastogram values, associated with 
bleeding [199]

• Reduced platelet count [123, 200]

• Prolonged bleeding time and PFA 100 closure time [201]

Asphyxia and RDS • Reduced platelet count [113, 118, 120]

• High MPV and PDW [113, 117]

• Increased thrombopoietin level [118]

• Increased thromboxane level [120]

Mechanical ventilation • Reduced platelet count [121]

Extracorporeal membrane oxygenation 
(ECMO)

• Reduced platelet count [125, 126]

• Reduced platelet activation [126]

RDS, respiratory distress syndrome; MPV, mean platelet volume; PDW, platelet distribution width.

Table 2. 
Neonatal factors affecting platelets in the newborn.

Factor Effect on newborn platelet

Hypertension in mother • Reduced platelet adhesion and surface coverage [80]

• Low platelet count [78, 79]

• Decreased secretion and expression of CD62P, CD63, and CD36 [83]

• Increased expression of CD62P and CD63 [84]

• Low platelet and megakaryocyte counts [84]

Magnesium sulfate (prenatal) • Reduced ADP-mediated platelet aggregation [97]

Low dose aspirin (prenatal) • Reduced platelet aggregation [95]

• No change in platelet count and aggregation [92, 93]

• Reduced thromboxane B2 production [94]

Indomethacin • Prolonged bleeding time and gastrointestinal hemorrhage [104, 105]

• Reduced prostacyclin and prostaglandin levels [104]

• Abnormal platelet aggregation up to 4 days after medication [106]

Ibuprofen • Prolonged PFA-100 closure time [108]

Table 1. 
Maternal factors affecting platelets in the newborn.
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intrauterine growth restriction [88, 89]. Aspirin inhibits cyclooxygenase, which 
catalyzes the initial steps in conversion of arachidonic acid to prostaglandins and 
thromboxanes [90]. Thromboxane A2 (TxA2) serves to amplify the signal during 
platelet activation [91]. Nevertheless, while some reports suggest that prenatal 
aspirin does not alter cord blood platelet count and aggregation [92] or thrombox-
ane B2 (TxB2) inhibition [93], others challenge this with clear TxB2 differences in 
newborns of mothers exposed to LDA even several days after the medication was 
stopped [94]. This apparent contradiction may be resolved by taking into account 
the actual timing of LDA treatment prior to delivery. It was noted that newborn 
platelet dysfunction, including reduced collagen-stimulated platelet aggregation, is 
generally observable if the mother had aspirin within a week of delivery [95]. In this 
context, aspirin also increases the risk for mucocutaneous bleeding in the newborn, 
especially if the mother took it within five days of delivery [72, 95].

While aspirin is perhaps the best described with respect to its potential to alter 
platelet functions, it is not the only drug to do so. Indomethacin, given to the 
mother as a tocolytic, increased the risk of subsequent neonatal intraventricular 
hemorrhage (IVH) [96], presumably by affecting cerebral blood flow and by 
altering platelet and neutrophil functions. Similarly, platelets in newborns, from 
mothers receiving tocolytic magnesium sulfate, tended to be less effective in form-
ing aggregates in response to ADP-mediated activation, but not so in response to 
collagen stimulation [97].

4.2  Postnatal and neonatal factors associated with platelet dysfunction in  
the newborn

Neonatal infections tend to lead to platelet consumption. This is implied by the 
observed upregulation of thrombopoietin and elevated megakaryocyte progenitor 
cells in septic newborns [98]. Reduced platelet adhesion was also reported in such 
neonates [99]. However, enhanced granule secretion and aggregate formation in 
response to agonists during experimental conditions [100] suggest that these circu-
lating platelets may already be to some extent primed and not in their resting state. 
Furthermore, neonates born following chorioamnionitis had significantly higher levels 
of soluble P-selectin and higher CD40L (CD40 ligand, able to bind CD40 protein on 
antigen presenting cells) on their platelets [101].

Antibiotics are often used to treat infections and sepsis, and some of them could 
alter hemostatic responses. Prolonged template bleeding and PFA-100 closure times 
were correlated with duration and dosage of neonatal ampicillin treatment [102, 103].

Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to affect platelet 
function in adults. Yet, they are sometimes given to newborns as a treatment for 
patent ductus arteriosus (PDA). Indomethacin is associated with prolonged bleed-
ing time and gastrointestinal bleeding in preterm newborns [104]. These effects 
tend to last up to 48 h [105], but normal platelet values are restored about the 
tenth day [106]. Nevertheless, in preterm newborns with intracranial hemorrhage, 
indomethacin administration for treatment of PDA did not extend the hemorrhage 
[107]. In contrast, ibuprofen treatment is associated with prolonged PFA-100 
closure time, but not with altered bleeding time [108].

Inhaled nitric oxide (NO) is used as a selective pulmonary vasodilator to treat 
hypoxemic respiratory failure or pulmonary hypertension in newborns (≥34 week 
gestation) [109]. Inhaled NO prolongs bleeding time in adults [110]. Persistent pul-
monary hypertension and treatment with inhaled NO were reported to alter neonatal 
platelet thromboelastogram (TEG) values [109]. Bleeding time was also prolonged 
in such babies [111]. These clinical tests, however, returned to normal after about 24 
h of stopping therapy. It is of interest that newborns receiving NO therapy did not 
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experience increased risk of intracranial hemorrhage [72]. Nitric oxide is known to 
inhibit platelet adhesion and aggregation by inhibiting GPIIb/IIIa activation [110]. 
A reduction in expressed P-selectin and activated GPIIb/IIIa on collagen-stimulated 
platelets was reported after NO treatment in adults and newborns [112].

Term newborns who were small for gestational age tended to have lower platelet 
counts but higher mean platelet volumes (MPVs) [113, 114]. A similar pattern was 
also observed in asphyxiated term newborns [113]. MPV is a measure of average 
platelet size [115] and may serve as a marker of platelet production, consumption, 
or severity of some disorder of bone marrow, thrombosis, or infection [116, 117]. 
For example, MPV was elevated in preterm newborns with respiratory distress 
[117], suggesting potential issues in platelet production, consumption, or both. 
Asphyxia is associated with upregulation of thrombopoietin concentration, which 
in turn is negatively correlated to platelet count up to the 7th day of life [118]. 
Thrombocytopenia, however, when associated with perinatal asphyxia, does not 
tend to resolve until about the 19th to 21st day of life [119]. Increased thromboxane 
levels in asphyxiated newborns [120] suggest platelet activation, and possibly 
consumption, as an explanation for the observed thrombocytopenia. Hypoxia leads 
to preferential upregulation of erythropoiesis over megakaryopoiesis [87, 114], 
consistent with elevated thrombopoietin observed [118].

Mechanical ventilation is generally used to resuscitate hypoxic or asphyxiated 
newborns. It was reported that mechanical ventilation led to reduced platelet counts 
in newborns with respiratory distress, or in rabbit models, regardless of the oxygen 
concentration used [121]. However, using newborn piglet models of hypoxia, it was 
found that various platelet indices were affected particularly by high oxygen level 
used [122]. Resuscitation with 100% oxygen led to enhanced collagen-stimulated 
platelet aggregation, while using 18–21% oxygen did not do so [122].

To prevent permanent brain damage following perinatal asphyxia, the newborns 
are sometimes treated with therapeutic hypothermia. The hypothermia treatment, 
in turn, led to decreased platelet counts, but had an overall protective effect by 
reducing risk of cerebral hemorrhage [123] and restoring other hemostatic param-
eters [124]. Similarly, extracorporeal membrane oxygenation (ECMO) is used 
to rescue term newborns with persistent pulmonary hypertension, asphyxia, or 
congenital diaphragmatic hernia [125]. Platelet counts and rates of activation were 
reduced during ECMO therapy, and were not fully restored with transfusion, until 
several hours post-ECMO [125, 126].

5. Platelets and sepsis

Sepsis is a complex syndrome characterized by disordered immune, endocrine, 
and metabolic responses to infection [127]. The exaggerated responses can lead to 
multi-organ failure (MOF), shock, and death [127]. Sepsis is generally considered if 
a documented or suspected infection is present with at least one additional  finding 
(e.g., fever/hypothermia, elevated heart rate, and leukocytosis/leukopenia). In 
contrast to infection, however, sepsis is defined by additional evidence of organ 
dysfunction and a dysregulated host immune response [127], its key features. 
Notably, interactions between the innate immune system and the hemostatic system, 
including platelets and coagulation factors, were identified as principal steps in the 
pathogenesis of sepsis. Progressive thrombocytopenia and coagulopathy are strong 
negative prognostic findings in severe sepsis and have recently been included in the 
updated definition of the disease [127]. Platelets are able to release cytokines, recruit 
leukocytes, interact with bacteria and the endothelium, and contribute to formation 
of microthrombi [128]. These processes are adaptive and protective in the context of 
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a localized infection, but may become dysregulated and “maladaptive” during sepsis, 
contributing to organ damage [129]. A low platelet count is a well-known biomarker 
for disease severity. More recently, attention has been focused on the active role of 
platelets in the pathogenesis of multi-organ failure.

The correlation between thrombocytopenia and sepsis is well documented [130]. 
Platelet count below <50,000/μL is a strong negative prognostic marker in patients with 
sepsis and is thought to result from platelet activation and consumption [131, 132]. A 
number of platelet function markers were proposed as biomarkers for sepsis correlating 
with its severity [133] (Table 3).

Moreover, platelets interact with neutrophils in the formation of NETs (neutro-
phil extracellular traps) resulting in the trapping and killing of pathogens [133]. 
They also play a central role in driving and modulating host inflammatory and 
immune responses, influencing directly the function of endothelial cells, neu-
trophils, and lymphocytes [134]. Platelets are the most numerous blood cells 
with immune function, able to interact with bacteria in several ways: (1) direct 
interaction between platelet glycoproteins and bacterial surface proteins, as occurs 
between GPIb and S. sanguis SrpA [134]; (2) indirect interactions, such as the inter-
action of platelet αIIbβ3 with fibrinogen to which the clumping factors of S. aureus 
bind [134]; and (3) upon activation, platelets release a series of factors which can 
modulate the immune response or have direct microbicidal effects. For example, 
released thrombin-induced platelet microbicidal protein (tPMP-1) can directly lyse 
bacteria, like S. aureus [134].

5.1 Conclusions

In addition to hemostasis, platelets actively participate in the innate immune 
defense system. Participating in the recognition of pathogens, signal transduction, 
or the release of cytokines/chemokines, they reveal a functional similarity with 
leucocytes in sepsis and septic shock. There is abundant evidence that platelets can 
influence key host responses to sepsis. Further studies are needed to address the 
effects of platelet transfusion or inhibition toward sepsis prevention and treatment 
particularly in the newborn.

6. Platelets in neonates with extracorporeal membrane oxygenation

Extracorporeal membrane oxygenators are used to provide gas exchange in 
severe respiratory failure employing venovenous (VV) circuits or, increasingly, 
if associated with concurrent cardiac failure, veno-arterial (VA) circuits, while 

Biomarker Association References

Thrombocytopenia Mortality [133]

Impaired platelet function MOF, mortality [132, 133]

Impaired platelet aggregation ALI [133]

P-selectin MOF [133]

Platelet-neutrophil aggregates Sepsis progression [132, 133]

Immature platelet fraction MOF [133]

MOF, multi-organ failure; ALI, acute lung injury; TPO, thrombopoietin.

Table 3. 
Platelet-related biomarkers of sepsis severity in human studies.
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waiting for organ recovery to occur. Support by cardiopulmonary bypass (CPB) 
systems decreased the morbidity and mortality of children, especially those 
who require surgery for life-threatening anatomical heart defects [135, 136]. 
ECMO contributed to decreased mortality for children with severe cardiac or 
respiratory failure [137, 138]. While annually thousands of neonates are helped 
by ECMO support, thromboembolic complications also frequently occur [139]. 
Nevertheless, for many neonatal patients, survival is made possible only because 
of ECMO support [136]. ECMO is used to treat a variety of conditions in neo-
natal patients, including respiratory and cardiac failure as a result of persistent 
pulmonary hypertension (PPHN), congenital diaphragmatic hernia (CDH), 
meconium aspiration syndrome (MAS), respiratory distress syndrome (RDS), 
pneumonia, severe air-leak syndromes, or sepsis [140].

Both bleeding and clotting complications can occur during ECMO support, 
often coexist in the same patient, and are associated with significant morbidity 
and mortality [141]. Moreover, patients requiring ECMO are critically ill, thus 
making it difficult to distinguish the relative contributions of the underlying 
pathology from that of the ECMO circuit as such. Rates of reported ECMO-
associated venous thromboembolism (VTE) in general population, ranging from 
18 to 85% in various centers, may be at least partly dependent on anticoagulation 
regimens [141]. Severe hemorrhage is reported in nearly 40% and intracranial 
hemorrhage in 16–21% of patients [142, 143]. At the same time, there is broad 
variation in practice, without clear consensus, on the administration and moni-
toring of anticoagulation during ECMO, or the management of ECMO-related 
hemorrhage and VTE [144].

Activation of the coagulation system is initiated by the exposure of blood to 
foreign synthetic surfaces and by shear stresses of the circuit, especially from 
device pumps. The shift to a pro-coagulant state appears to be mediated primar-
ily by thrombin, while an excessive fibrinolytic tendency is mediated by plasmin, 
resulting in a consumption of clotting factors, impaired platelet function, throm-
bocytopenia, and fibrinolysis [145]. Initial fibrinogen deposition and subsequent 
activation of coagulation and complement factors allow platelets and leukocytes 
to adhere to oxygenator surfaces further enhancing thrombin generation. Such 
changes contribute to higher rates of thrombosis in these patients [145]. Meanwhile, 
several of a series of processes contribute to higher bleeding rates. (a) Primary 
hemostasis is impaired because of platelet dysfunction and loss of key adhesive 
molecules. (b) Shear stress causes the development of an acquired von Willebrand 
defect. (c) Widespread fibrin deposits on surfaces trigger an enhanced fibrinolytic 
response. (d) Administration of systemic anticoagulation, required to maintain 
circuit patency, raises bleeding risks [146].

Balancing the relative risks of bleeding and thrombosis can be difficult. Factors 
related to patient’s illness, the extracorporeal support, and the interplay between 
pro-inflammatory and anti-inflammatory processes vary among patients.

6.1 Platelet dysfunction during ECMO

If the ECMO circuit is primed only with crystalloid or RBCs and plasma, then 
dilutional coagulopathy and dilutional thrombocytopenia develop as the ECMO 
is initiated. Dilutional coagulopathy is generally not severe, but will complement 
the systemic anticoagulation. Dilutional thrombocytopenia, however, may further 
aggravate any preexisting thrombocytopenia or platelet dysfunction, frequently 
present in premature neonates. Accurate assessment of platelet function under 
these circumstances can be difficult, further complicating evaluation of patient’s 



11

Platelets in the Newborn
DOI: http://dx.doi.org/10.5772/intechopen.86715

bleeding or thrombotic potential. Impairment of platelets can occur as early as 
15 min after starting ECMO and last until it is discontinued [125].

Platelets adhere to the protein-coated monolayer of the ECMO circuit surfaces 
and interact with activated components of the coagulation and complement 
systems [147]. Elevated shear flow from the ECMO circuit causes some platelet 
receptor shedding. Of particular interest are the losses of key platelet adhesion 
glycoproteins GPI and GPVI, and the associated reduction of high molecular 
weight vWF multimers. GPI serves as a receptor for vWF and GPVI as a receptor 
for collagen [126]. Adhesive proteins, vWF, and fibrinogen assist platelets to bind 
to damaged vessel wall surface and to other platelets [148]. As platelet thrombus 
is being formed, the prothrombinase enzyme complex assembles on the activated 
platelet surfaces to produce thrombin. In turn, thrombin cleaves fibrinogen to 
form fibrin, which spontaneously polymerizes to form the fibrin meshwork, which 
further strengthens the thrombus [149]. Consequently, shedding of GPI and loss 
of high molecular weight vWF lead to dysfunctional platelet responses to vascular 
injury. This persists despite platelet transfusion and throughout the period of 
ECMO use [126]. Subsequently, lower levels of platelet aggregation are observed 
by light aggregometry using various agonists including ADP, ristocetin, collagen, 
or epinephrine [150]. Such decreased potential for platelet aggregation may lead to 
increased bleeding risk particularly when combined with the effects of anticoagu-
lants or antiplatelet agents. Flow cytometry of blood, from those receiving ECMO 
support, showed severely reduced membrane-bound P-selectin (CD62P) and 
CD63, both of which modulate platelet spreading [151].

Despite reduced aggregation and lower expression of key platelet adhesion 
and structural molecules, there is a time-dependent platelet activation marked by 
increased levels of circulating matrix metalloproteinase-2 (MMP-2) and soluble 
P-selectin [126]. This is not associated with significant activation of the endothe-
lium [126], but may be due to the release of platelet granules [152]. Furthermore, 
this time-dependent platelet activation is also accompanied by platelet recep-
tor shedding and the release of platelet microparticles (PMPs) [153]. These are 
small cell-derived particles, typically 0.1–1 μm in size, that are produced from 
activated platelets in situations of shear stress [154]. While these PMPs can pres-
ent a prothrombotic surface, it is not clear whether they are a major contributor 
to the prothrombotic phenotype or to the pathogenesis of ECMO-associated 
coagulopathy [153].

6.2 Platelet counts during ECMO

Thrombocytopenia is common in critically ill patients. A constant shear force, 
caused by the ECMO pump, is implicated in acquired platelet dysfunctions. 
Appropriate anticoagulation is difficult to achieve during ECMO since severe 
thrombocytopenia of <50,000/μL may be present even prior to ECMO.  This 
situation increases the practice of platelet transfusions [155]. Minimal target 
platelet counts vary from 25,000 to 100,000/μL between hospitals. However, 
if bleeding occurs or is expected, then target platelet counts are increased to 
150,000/μL or higher, particularly if platelet dysfunction is suspected. As in any 
setting of thrombocytopenia, it is important to try and identify the cause and 
treat appropriately [156, 157]. Bleeding in critically ill patients with a platelet 
count of 30,000/μL is believed to be associated with additional disturbances of 
hemostasis [158]. Platelet transfusion is recommended in bleeding patients with 
either primary or secondary platelet abnormalities regardless of platelet counts 
[158]. Required thresholds for prophylactic platelet transfusions, however, are 
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generally at platelet levels above 20,000/μL, given the requirements of invasive 
procedures and potential bleeding risk [158]. Many centers describe targeting a 
platelet count of >100,000/µL during an ECMO [159]. Research to support this 
practice, however, is lacking and urgently needed.

6.3 Anticoagulation during ECMO

Unfractionated heparin is the most widely used anticoagulant during ECMO 
[160]. Heparin levels tend to be monitored primarily indirectly by activated 
clotting time (ACT) [159]. While there are a number of devices that promise to 
describe certain characteristics of platelet function, it is not yet clear to what extent 
the data produced by them actually reflect the physiological platelet interactions 
and roles. Viscoelastic tests using rotational thromboelastometry (ROTEM) assess 
whole blood coagulation, and thus provide information on the dynamics of clot 
development, stabilization, and dissolution. Several reports suggest that ROTEM-
guided coagulation management could reduce bleeding episodes in ECMO patients 
[160, 161]. Similarly, whole blood platelet aggregometry using the Multiplate 
(Roche Diagnostics, Munich, Germany) demonstrated decreased platelet aggrega-
tion in ECMO patients [161].

Other intravenous anticoagulants, such as bivalirudin and argatroban, are 
used increasingly, particularly if heparin-induced thrombocytopenia (HIT), 
heparin resistance, or allergy is suspected [162, 163]. At present, there is no clear 
consensus on administration and monitoring of anticoagulation during ECMO or 
on management of ECMO-related hemorrhage and VTE [164]. The current aim of 
anticoagulation is to reduce thrombin generation. This, however, increases the risk 
of hemorrhage. The ideal therapeutic agent, which would reduce thrombotic risk 
without increasing the risk of bleeding, remains elusive.

6.4 Heparin-induced thrombocytopenia

Heparin-induced thrombocytopenia (HIT) is an immune-mediated coagulation 
side effect of heparin therapy characterized by a prothrombotic state mediated by 
platelets, leukocytes, and antibodies against complexes of platelet factor 4 (PF4) with 
long chain heparins [165]. Rapid platelet consumption leads to thrombocytopenia. 
HIT was considered to be very rare in the pediatric population. However, more recent 
reports indicate that it occurs in children receiving unfractionated heparin therapy 
with an incidence similar to that seen in adults [166]. The highest incidence of pedi-
atric HIT was found in pediatric intensive care units supporting patients following 
cardiac surgery [167].

At least 70 cases of reported HIT were documented in pediatric patients [168], 
with the majority occurring during care following cardiac surgery. HIT in children 
was reported to occur in all age groups, but with a bimodal distribution. The higher 
incidences occur a) early in life, between 0–2, and b) during puberty, between 11–17 
years of age [168, 169]. The balance between the risk of procoagulant and throm-
boembolic events on one hand and the risk of severe, sometimes fatal, bleeding on 
the other hand can be very challenging in ECMO patients with HIT. Pollak et al. 
reported a case of HIT with evidence of small vessel arterial thrombosis in a 5-day-
old newborn receiving ECMO for congenital diaphragmatic hernia. It was assumed 
that the leading cause of death in this patient was massive disseminated intravascu-
lar coagulation. In this case, however, it is more likely that repeated platelet transfu-
sions proved fatal and, retrospectively speaking, should have been avoided [170]. 
Although HIT is a recognizable and treatable complication, its relative infrequency 
increases the risk for delayed diagnosis leading to significant morbidity.
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Diagnostic studies for HIT tend to be unreliable. Therefore, early intervention 
using alternative anticoagulants is a crucial step when HIT is suspected. This can 
hopefully lead to improved outcomes in these patients. Treatment of confirmed or 
suspected HIT in patients on ECMO includes removing unfractionated heparin, 
and possibly the entire ECMO circuit. Certain modern ECMO circuit components 
are heparin bonded in an effort to reduce immune reactivity to foreign surfaces 
[171–173]. If platelet recovery does not occur after withdrawal of heparin, it is 
possible that ongoing exposure to heparin bonding may be a factor [173]. Options 
for alternative anticoagulation if HIT is suspected include direct thrombin inhibi-
tors (argatroban and bivalirudin) as well as short heparinoids (fondaparinux and 
danaparoid) [162, 174].

6.5 Conclusions

The predominant challenge for the clinician caring for a patient on ECMO 
is making an informed assessment of bleeding and clotting risks. The goal is to 
minimize bleeding and transfusion requirements while avoiding formation of micro 
or macro thrombi either in the circuit or within the patient’s cardiovascular system 
[175]. Assessment of the patient’s hemostasis includes consideration of the patho-
physiology, type and severity of organ failure, and extent of tissue trauma during 
cannulation. A holistic approach to hemostatic management is needed to balance all 
these factors. ROTEM and whole blood platelet aggregometry provide rapid infor-
mation on whole blood coagulation, and may be helpful in providing blood product 
support, factor replacement, anti-coagulation therapy and anti-fibrinolytics. 
Further research using ROTEM and whole blood platelet aggregometry in ECMO 
patients is needed to demonstrate efficacy in support of real-time hemostatic 
management in this cohort.

7. Platelet transfusions in neonates

Transfusion of blood products in neonates is not an uncommon practice in 
neonatal intensive care units. Extremely premature neonates (<28 week gesta-
tion) or extremely low birth weight (ELBW) infants (<1000 g) receive at least one 
packed red blood cell (pRBC) transfusion per hospital admission [176]. Platelet 
transfusions are also quite prevalent in ELBW infants, occurring in up to 90% of 
those weighing less than 750 g [177]. Unfortunately, while platelet transfusions for 
thrombocytopenia may be helpful, they are not without risk. Further, because the 
guidelines for transfusion thresholds in neonates are not based on a well-developed 
body of evidence, there is considerable variability in circumstances for such trans-
fusions, and in particular clinical scenarios triggering them.

Thrombocytopenia is defined by a platelet count of less than 150,000/μL,  
and is further sub-classified as mild (100,000–149,000/µL), moderate 
(50,000–99,000/µL), or severe (<50,000/μL) [178]. The reference values for 
very low birth weight (VLBW) babies (<1500 g), however, remain controversial 
[179]. Thrombocytopenia affects 18–35% of all neonates in the neonatal inten-
sive care unit [180, 181] and up to 73% of ELBW infants [182]. While clinical 
significance of platelet counts between 100,000 and 150,000/µL is debatable, 
it is well known that platelet counts below 20,000/µL are associated with 
increased risk of hemorrhage, at least in the adult population [183]. The rela-
tionship between thrombocytopenia and hemorrhage, however, remains one of 
the associations. It is not clear that neonatal thrombocytopenia directly causes 
hemorrhagic events [184].
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Thrombocytopenia may be described by time of onset, where early onset (occur-
ring in the first 72 h of life) is distinguished from late onset (occurring after the first 
72 h of life) [179, 184]. In the premature population, the early onset thrombocyto-
penia is most often mild to moderate, develops gradually, and tends to be related 
to causes of chronic fetal hypoxia, as seen with intra-uterine growth restriction 
(IUGR), pregnancy-induced hypertension (PIH), hemolysis, elevated liver enzymes 
and low platelet count (HELLP) syndrome, or preeclampsia [185]. In term neonates, 
however, platelet destruction tends to be antibody-mediated [184]. In contrast to 
early onset, late onset thrombocytopenia tends to be more severe, more acute, and 
most frequently associated with infections (NEC, sepsis, and viral infections) [184].

7.1 Indications for platelet transfusion

Due to limited understanding of neonatal platelet functions, transfusion practice 
in the newborn is generally extrapolated from what is recognized as beneficial within 
the pediatric and adult populations. However, neonates are vulnerable to particular 
illnesses with varying underlying disease processes. Moreover, they tend to have 
developmental differences in regulation of primary hemostasis [178]. Nevertheless, 
platelet transfusions are typically given in two distinct clinical scenarios: (a) acutely, 
as a life-saving procedure and (b) prophylactically, under the presumption that 
they diminish the risk for hemorrhage. Surprisingly, an overwhelming majority 
of neonatal transfusions are done prophylactically, accounting for 98% of platelet 
transfusions [59]. Yet, it is not clear that this practice is beneficial. Prophylactic 
platelet transfusion in clinically stable neonates with no active bleeding remains con-
troversial at best [186], consistent with the wide range of national and international 
clinical practices by neonatologists [177]. In this context, the severity of thrombocy-
topenia does not correlate with increased risk of intraventricular hemorrhage (IVH), 
and platelet transfusion for mild to moderate thrombocytopenia does not appear to 
prevent or reduce the incidence of intracranial hemorrhage [183, 187].

Although adequate quantities of platelets are necessary for hemostasis, 
increased risk of hemorrhage appears to be dependent on factors other than throm-
bocytopenia alone. Additional relevant platelet parameters include functional 
competency, immature platelet fraction, and developmental differences in neonatal 
thrombopoiesis [49, 188, 189]. Underlying clinical conditions associated with 
increased risk of hemorrhage include: preterm premature rupture of membranes, 
low birth weight, sepsis, shock, pulmonary hypertension, respiratory distress, 
NEC, and premature gestational age [182, 190–192]. Thus, recommendations to 
transfuse platelets should not be solely based on thrombocytopenia, but also on the 
presence of such other contributory factors [178, 190]. In spite of such consider-
ations, it appears that management of thrombocytopenia in the newborn still lacks 
adequately rigorous scientific basis [179].

7.2 Clinical guidelines for platelet transfusion in neonates

In the United States, there are currently no national guidelines for neonatal 
platelet transfusion and only two published randomized controlled trials assessing 
prophylactic transfusions [183, 193]. Most countries recommend therapeutic trans-
fusion in actively bleeding neonates when platelets fall below 50,000/μL. However, 
there is no agreement regarding prophylactic transfusions when platelets are any-
where between 20,000 and 90,000/μL [184, 194, 195]. A wide range of thrombocy-
topenia thresholds are employed, tending to be markedly higher in the United States, 
between 50,000 and 149,000/µL [187, 196, 197]. Nonetheless, such trends are based 
on clinical experience and judgment, rather than on reliable and consistent data.
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7.3 Adverse outcomes of platelet transfusions

A growing number of adverse effects of platelet transfusions are being docu-
mented, including but not limited to increased risk of infection, transfusion-related 
injuries in various organs, alloimmunization, hemolytic reactions, febrile reactions, 
allergic reactions, anaphylaxis, and NEC [177, 185]. Randomized controlled tri-
als comparing thresholds for platelet transfusion in thrombocytopenic neonates 
concluded that the frequency of IVH is not reduced by more aggressive thresholds 
[183]. Additionally, platelet transfusions, themselves, are implicated in increased 
mortality, linking the number of transfusions with death rate [198]. This was fur-
ther supported by a recent large, multicenter, randomized clinical trial suggesting 
that significant hemorrhage and death could be prevented by lowering thrombocy-
topenia transfusion thresholds from 50,000 to 25,000/μL [193].

8. Conclusions

Platelets are best known for their role in hemostasis. But beyond forming a 
platelet plug, they are also important in several processes such as recognition 
and elimination of invading microorganisms, inflammation and interaction with 
leukocytes, wound healing and tissue repair, angiogenesis, and even tumor growth. 
These are emerging areas of investigation and there is little to no information on the 
roles of platelets in such processes in the newborn. Although current understanding 
suggests that newborn platelets may be somewhat different from adult platelets, 
they nonetheless protect the healthy newborn adequately. Certain perinatal factors 
were identified to affect platelet counts and function, but the platelet dysfunctions 
induced by them are acquired and transitory in nature. Premature neonates are 
likely at greatest risk for reduced platelet counts and functions, and by extension, 
at greatest risk of hemorrhage, particularly if prematurity is in combination with 
antenatal infections or postnatal respiratory disorders. There is, however, still a lot 
that is not known about platelets in the newborn. Such information is critical to 
improving the standard of care, intervention, and therapy.
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