
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

The Use of Alginate Hydrogels for 
the Culture of Mesenchymal Stem 
Cells (MSCs): In Vitro and In Vivo 
Paradigms
Michail E. Klontzas, Hicham Drissi  
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Abstract

Alginate hydrogels have been widely used in stem cell cultures due to their 
biocompatibility, malleable nature, high water content, enhanced mass transport 
properties, and their functionalization with bioactive molecules providing cues that 
modulate cell proliferation and differentiation. Mesenchymal stem cells (MSCs) are 
extensively utilized in clinical cellular therapies because of their differentiation effi-
ciency, their immunosuppressive properties, and them not being tumorigenic when 
implanted in vivo. MSCs are isolated from numerous fetal and adult tissues, suitable 
for both autologous and allogeneic applications. Consequently, alginate hydrogels/
MSCs have been applied in vivo for the treatment of a wide variety of musculo-
skeletal, cardiac, neural, and endocrine disorders. This chapter will review the use 
of alginate hydrogels (physical properties and functionalization) for MSC culture 
in vitro (various culture systems) and the application of alginate/MSC implants 
(animal models and human applications) for cellular therapy purposes in vivo.
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1. Introduction

Alginate has been extensively used for tissue engineering and regenerative medi-
cine purposes [1]. Its ability to form hydrogels under mild gelation conditions in the 
presence of ions such as Ca2+, Ba2+, and Sr2+ renders it suitable for cell-based appli-
cations where exposure to harsh crosslinking buffers can lead to cell damage. When 
alginate is exposed to a crosslinking solution, l-guluronic residues of adjacent 
polysaccharide strands are connected forming a hydrogel [2, 3]. Alginate hydrogels 
possess the advantages of natural biomaterials such as excellent biocompatibility 
and abundance in nature with a low cost, properties which render it an excellent 
candidate for cell-based regenerative medicine applications [4]. However, the lack 
of alginate bioactivity requires functionalization with a wide variety of molecules 
promoting adhesion and modulation of stem cell fate. The purpose of this chapter is 
to provide an overview of the use of alginate hydrogels with mesenchymal stem cells 
(MSCs) which represent one of the most widely used stem cell type and the only 
stem cell type currently in clinical use.
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2. Mesenchymal stem cells (MSCs) for tissue engineering

MSCs are multipotent stem cells with the ability to proliferate and differentiate 
into a variety of mature cells, mainly osteocytes, chondrocytes, and adipocytes [5].

MSCs can be isolated from a multitude of adult and fetal tissues including but 
not limited to the bone marrow, adipose tissue, peripheral blood, synovial tissue, 
placenta, Wharton’s jelly, and umbilical cord blood. Importantly, it has been shown 
that MSCs isolated from different tissue sources possess differential proliferation and 
differentiation capacity toward various lineages [6] (Figure 1). Since their description 
by Friedenstein et al. [7], MSCs have been evolved as the stem cell type with the most 
regenerative medicine applications and the only stem cell type used in clinic to date.

MSCs represent attractive stem cell candidates for the use in tissue engineering 
and regenerative medicine applications for a variety of reasons. Firstly, they have 
the ability to proliferate and differentiate producing tissues, which are clinically 
relevant for regenerative medicine purposes such as musculoskeletal and neural 
tissues. In addition, they offer the possibility of autologous use, which can avoid 
adverse immune responses to allogeneic cells while also possessing an immuno-
modulatory capacity being able to regulate the immune environment even when 
implanted in an allogeneic fashion. Finally, the use of MSCs avoids the ethical short-
comings of embryonic stem cell (ESC) use and is not associated with the formation 
of teratomas which is a characteristic of pluripotent stem cell implantation (ESCs 
and induced pluripotent stem cells—iPSCs) [8–10]. Recently, protocols for the 
derivation of MSCs from iPSCs have also enabled the production of unlimited MSC 

Figure 1. 
Tissue sources and properties of mesenchymal stem cells.
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numbers by exploiting the unlimited proliferation capacity of iPSCs prior to their 
differentiation to MSCs [11–13].

The use of MSCs for tissue engineering and regenerative medicine purposes 
requires the robust characterization of MSCs at several levels. At the moment, the 
International Society for Cell and Gene Therapy (ISCT) has posed the minimal 
criteria that need to be fulfilled so that a cell population is characterized as MSCs. 
These include the adherence to plastic; the presence (≥95%) of surface markers 
including CD73, CD90, and CD105; and the absence (≤2%) of hematopoietic 
markers (CD34, CD45, CD79a or CD19, CD14 or CD11b, and HLA II). Finally, cells 
characterized as MSCs should possess the capacity to differentiate to osteoblasts, 
chondroblasts, and adipocytes in vitro [14]. Other surface markers have been 
utilized over the years for the characterization of MSCs including Stro-1, CD271, 
CD146, and MSCA-1, but their use has not yet been established as a routine for MSC 
research [15–18]. Recently, omics strategies have emerged as promising alterna-
tives for the comprehensive evaluation of MSC quality at the undifferentiated and 
differentiated states [11, 19–23].

3.  The use of alginate hydrogels and MSCs in tissue engineering and 
regenerative medicine applications

Due to the lack of bioactive molecules on the alginate structure, alginate hydro-
gels used for cell-based applications require functionalization with molecules which 
can aid cell adhesion, increase cellular proliferation, and/or guide stem cell dif-
ferentiation toward the desired cell lineages. In an attempt to increase cell adhesion 
on alginate hydrogels, a wide variety of extracellular matrix proteins or protein 
fragments have been employed. The most commonly used molecules include colla-
gen, gelatin (product of collagen hydrolysis), and arginylglycylaspartic acid (RGD) 
peptide, which is the functional adhesion sequence in several extracellular matrix 
(ECM) proteins. Gelatin has been widely utilized for the enhancement of cell adhe-
sion and differentiation in alginate hydrogels [24] either mixed [25] or crosslinked 
with alginate [26]. It has also been shown that crosslinking of alginate with gelatin 
reduces gelatin leak over prolonged culture while enhancing cell adhesion and 
vascular endothelial growth factor (VEGF) secretion compared to natural alginate 
and RGD-alginate [27].

Oxidized alginate has been widely used for tissue engineering purposes. Alginate 
can be oxidized with the use of agents including sodium permanganate (KMnO4) 
and periodate, to produce two free aldehyde groups on the alginate backbone, 
offering enhanced in vitro and in vivo. Alginate oxidation is necessitated by the lack 
of natural alginate degrading enzymes in mammals, which is translated to a slower 
biodegradation of alginate hydrogels [28, 29]. Additionally, free aldehyde groups 
offer sites for possible crosslinking with amine group-containing molecules, which 
can be used for the robust functionalization of hydrogels used for tissue engineering 
[29, 30]. Similarly to natural alginate, a wide range of biomolecules have been used 
for the functionalization of oxidized alginate. The most commonly used are gelatin 
and RGD, which have been shown promote cell adhesion and viability [31] .

3.1 In vitro paradigms of alginate/MSC constructs

Culture of MSCs in alginate hydrogels has been attempted for applications 
ranging from the regeneration of bone, cartilage, and tendon to the repair of dam-
aged myocardium and trachea. Most of the initial data on the use of alginate/MSC 
constructs have been obtained in vitro (Table 1).
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Functionalization of alginate has been achieved with molecules mimicking the 
ECM, the most commonly used of which are RGD and gelatin. RGD has been used 
to increase adhesion in photo cross-linked alginate hydrogels which were found to 
maintain viability and promote proliferation of bone marrow MSCs [32] and muscle 
differentiation of umbilical cord MSCs in alginate-fibrin hydrogels [33]. Tyramine 
has been also cross-linked to alginate to increase MSC adhesion [34]. In hydrogels 
functionalized with RGD, it has been shown that high cell density favors cell-cell 
contact and promotes osteogenic differentiation [35] as well as increasing survival 
and VEGF secretion from MSC spheroids [36]. The combination of RGD with a 
matrix metalloproteinase cleavable peptide (proline-valine-glycine-leucine-iso-
leucine-glycine) in alginate has been shown to promote adhesion and allow better 

First author 

[reference]

Year Type of hydrogel MSC type

Park Y [43] 2005 Alginate Synovial MSCs

Coates EE [42] 2013 Methacrylated alginate-HA Bone marrow MSCs

Tohamy KM 

[45]

2018 Sodium alginate (SA)/hydroxyethylcellulose 

(HEC)/hydroxyapatite (HA)

Bone marrow MSCs

Yeatts A [60] 2011 Alginate Bone marrow MSCs

Wang M [61] 2016 Alginate-HA Bone marrow MSCs

Chen B [56] 2013 Strontium crosslinked alginate Bone marrow MSCs

Weber M 

[41]***

2002 Alginate C3H10T1/2 MSC cell 

line

Hsu S [50] 2011 Alginate/nano-sized calcium-deficient 

hydroxyapatite/RGD

Placental MSCs and 

bone marrow MSCs

Schütz K [58] 2017 Alginate/methylcellulose Bone marrow MSCs

Kolambkar Y 

[64]

2007 Alginate Amniotic fluid MSCs

Liu J [33] 2012 Alginate-fibrin-RGD Umbilical cord MSCs

Du W-J [65] 2016 Alginate-HA Bone marrow and 

adipose MSCs

Straccia M [66] 2015 Alginate-chitosan Bone marrow MSCs

Maia F [35] 2014 Alginate-RGD Bone marrow MSCs

Huang J [59] 2016 Alginate-gelatin-carboxymethyl chitosan Bone marrow MSCs

Karunanithi P 

[38]

2016 Alginate-fucoidan Bone marrow MSCs

Klontzas ME 

[20]

2019 Oxidized alginate-GHK Umbilical cord blood 

MSCs

Jose S [39] 2014 Alginate-GHK Bone marrow MSCss

Sarker B [53] 2017 Oxidized alginate-gelatin Adipose tissue MSCs

Bernhardt A 

[46]

2009 Alginate-gelatin-HA Bone marrow MSCs

Wang Y [47] 2014 Oxidized alginate-gelatin-N-succinyl chitosan Bone marrow MSCs

Zhao L [48] 2010 Alginate-calcium phosphate Umbilical cord MSCs

Zhou H [49] 2011 Alginate-fibrin Umbilical cord MSCs

Table 1. 
Representative in vitro studies combining alginate-based hydrogels with MSCs.
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elongation of MSCs than RGD alginate [37]. Increased chondrogenesis has been also 
demonstrated with the incorporation of fucoidan (a heparan sulfate analogue) in 
alginate hydrogels seeded with bone marrow MSCs [38]. Glycine-histidine-lysine 
(GHK), a tripeptide fragment 0f osteonectin (a bone ECM protein), has been 
cross-linked with natural alginate and oxidized alginate achieving enhanced VEGF 
secretion from bone marrow MSCs [39] and increased osteogenic differentiation of 
umbilical cord blood MSCs compared to oxidized alginate with gelatin [20]. Finally, 
functionalization of alginate with RGD has been shown to promote adipose tissue 
MSC chondrogenesis via integrin-dependent transforming growth factor (TGF)-β3 
activation [40].

One of the most common applications of alginate/MSC constructs is for carti-
lage tissue engineering. It has been shown that cells differentiated to chondroblasts 
in alginate hydrogels produce more collagen type II than in monolayer where they 
predominantly produce collagen type I [41]. In addition, photocrosslinked alginate/
hyaluronic acid injectable hydrogels have been shown to support the chondrogenic 
differentiation of bone marrow MSCs for cartilage tissue engineering [42]. Alginate 
hydrogels have been also combined with synovial MSCs showing chondrogenic gene 
expression and collagen type II deposition under the effect of bone morphogenetic 
protein-2 (BMP-2). However, the authors noted that full progression of chondro-
genesis was not feasible [43]. Interestingly enough when applied to bone marrow 
MSCs in RGD-alginate hydrogels, BMP-2 has promoted osteogenic differentiation 
showing that it favors osteogenic differentiation [44].

Several studies have demonstrated the suitability of alginate hydrogels in 
combination with MSCs for bone tissue engineering. Sodium alginate (SA)/
hydroxyethylcellulose (HEC)/hydroxyapatite (HA) hydrogels have been combined 
with bone marrow MSCs for bone tissue engineering maintaining high cell viability 
and proliferation [45]. Alginate-gelatin-hydroxyapatite [46] and oxidized alginate-
gelatin-N-succinyl chitosan hydrogels [47] have been shown to promote the osteo-
genic differentiation of bone marrow MSCs. Injectable hydrogels have been also 
tested for the repair of bone defects such as alginate-calcium phosphate [48] and 
alginate-fibrin hydrogels [49] combined with umbilical cord MSCs. Such materi-
als enable the direct injection of the hydrogel paste in a bone defect and have been 
shown to promote osteogenic differentiation of MSCs facilitating fracture healing. 
Hydroxyapatite (calcium-deficient) and RGD have also been combined with algi-
nate for cartilage regeneration showing that placental MSCs could perform better 
chondrogenesis than bone marrow MSCs [50]. However, RGD-functionalized 
alginate has been also shown to enhance osteogenic differentiation, mineralization, 
and viability [51, 52]. Oxidized alginate hydrogels have been also widely utilized 
for bone tissue engineering. It has been cross-linked with fibrin achieving high 
cell viability and osteogenic differentiation of Wharton’s jelly MSCs compared to 
plain natural and oxidized alginate [49]. Sarker and co-workers have described 
the crosslinking of oxidized alginate with gelatin hydrogels for bone regeneration, 
demonstrating enhanced osteogenesis of adipose tissue and increase of VEGF 
secretion from MG-63 osteosarcoma cells compared to plain alginate and RGD-
functionalized alginate [27, 53]. Other groups have also confirmed the suitability of 
oxidized alginate for the osteogenic differentiation of adipose-derived MSCs [53] 
and muscle differentiation of Wharton’s jelly MSCs [54].

Apart from bone and cartilage regeneration, alginate hydrogels have found a 
limited number of other applications such as the regeneration of nucleus pulposus 
of the intervertebral disk, the cryopreservation of MSCs, and the  three-dimensional 
printing of cellularized structures. Specifically, alginate hydrogels outperform 
chitosan hydrogels in glycosaminoglycan deposition and the production of col-
lagen type II for nucleus pulposus engineering [55]. In addition, they have been 
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used for the cryopreservation of MSCs avoiding minimizing the effects of freezing 
and thawing on stem cell viability [56], and various formulations of alginate such 
as oxidized alginate-gelatin [57], alginate/methylcellulose [58], and alginate-
gelatin-carboxymethyl chitosan [59] have been found to be suitable for 3D printing 
applications.

Finally, it should be mentioned that there is a constantly increasing use of 
dynamic bioreactor cultures for the cultivation of alginate/MSC constructs. For 
example, dynamic perfusion bioreactor cultures of bone marrow MSCs in alginate 
hydrogels have been shown to enhance early in vitro osteogenic commitment and 
late osteogenesis [60, 61], and dynamic cultures incorporating compression forces 
have been used for chondrogenic differentiation purposes [62].

Despite the encouraging in vitro results, it needs to be noted that in vitro data 
do not necessarily correlate to the efficiency of hydrogels in vivo. As shown by 
Yang et al. who performed a direct in vitro-in vivo comparison of differentiation in 
alginate-gelatin hydrogels with MSCs, subcutaneous implantation in mice inhibits 
tri-lineage differentiation despite the efficient in vitro differentiation [63]. These 
results highlight the fact that caution is needed when extrapolating in vitro results 
to the in vivo setting.

3.2 In vivo paradigms of alginate/MSC constructs

Various types of alginate hydrogels have been shown to promote bone healing 
in animal models (Table 2). Injectable materials such as chitosan-alginate-BMP-2 
and alginate-hydroxyapatite (HA)-mineralized microsphere combinations have 
been used in conjunction with MSCs to promote bone healing in vivo, dem-
onstrating the efficient formation of trabecular bone [67, 68]. When used for 
bone tissue engineering, alginate hydrogels are usually seeded with MSCs and 
are allowed to gradually obtain higher mechanical stability as a result of ECM 
deposition and mineralization. However, tough alginate hydrogels have been also 
developed in order to achieve high mechanical stability which has been shown to 
promote bone healing [69]. Additionally, animal experiments have shown that 
when RGD is used for alginate modification, faster stress relaxation of alginate 
hydrogels [70] and high peptide density are linked to more efficient osteogenic 
differentiation than low peptide density which was linked to cell migration [71]. 
This correlates with results showing that increasing RGD concentrations inhibit 
chondrogenic differentiation in vitro [72]. Rottensteiner et al. utilized oxidized 
 alginate-gelatin-nano-Bioglass hydrogels for bone regeneration identifying evi-
dence of in vivo vascularization without adverse reactions, despite the cytotoxic 
action of Bioglass in vitro [73]. Additionally, Paul et al. successfully treated critical 
size calvarial defects with serum-loaded oxidized alginate-gelatin-biphasic calcium 
phosphate hydrogels with rat BM MSCs [74]. Importantly, encapsulation of MSCs 
in oxidized and natural alginate hydrogels increases vascularization which is of 
utmost importance in bone tissue engineering and the repair of vascular lesions 
[75] such as hind limb ischemia [76].

The ability of alginate hydrogels with MSCs to repair cartilage defects in animal 
models has been demonstrated in a variety of studies with various MSC types and 
hydrogel formulations. Chung et al. have compared a variety of hydrogel formulations 
including alginate, HA, chitosan, pluronic, and combinations of them seeded with 
umbilical cord blood MSCs. Their results demonstrated that even though alginate 
mixed with pluronic and chitosan achieved a certain degree of healing in rat knee 
cartilage defects, it was 4% hyaluronic acid which resulted in the optimal cartilage 
repair with macroscopic and microscopic appearance of adjacent healthy cartilage [77]. 
High-quality repair of in vivo rabbit cartilage defects has been shown with the use of 
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bone marrow MSCs and natural alginate [78]. Alginate has been also combined with 
polylactic acid to promote in vivo cartilage repair with bone marrow MSCs [79]. In vivo 
cartilage differentiation in alginate hydrogels has been also attempted for the repair of 
tracheal tissue with the combination of adipose tissue MSCs and chondrocytes [80]. 
Synovial MSCs have also been co-cultured with chondrocytes transgenic for TGF-β3 in 
alginate hydrogels, demonstrating that TGF-β3 release can induce synovial MSC chon-
drogenesis [81]. The simultaneous activation of TGF-β3 and BMP-2 genes in MSC laden 
alginate hydrogels showed superior chondrogenesis compared to the isolated delivery 
of each one of the factors where cells progressed to endochondral osteogenesis instead 
of chondrogenesis [82]. Interestingly, alginate was found more capable in promoting 
endochondral osteogenesis than chondrogenesis when compared to chitosan [83]. 

First author 

[reference]

Year Type of hydrogel MSC type Application

Zhang F [81] 2012 Alginate Co-culture of synovial 

MSCs with transgenic 

chondrocytes

Cartilage 

regeneration

Yu J [85] 2010 Alginate-RGD Bone marrow MSCs Myocardial 

regeneration

Yang C [63] 2009 Alginate-gelatin 

porous scaffolds

Bone marrow MSCs Regeneration of 

multiple tissues

Leijs M [91] 2017 Alginate Bone marrow MSCs Inflammatory 

diseases

Steiner D [92] 2018 Oxidized 

alginate-gelatin

Bone marrow MSCs Vascularization

Wang S [90] 2016 Alginate Umbilical cord MSCs Skin wound healing

Rottensteiner 

[73]

2014 Oxidized alginate with 

nano-Bioglass®

Bone marrow MSCs Bone regeneration

Chung J [77] 2014 Alginate combined 

with pluronic, HA, 

and chitosan

Umbilical cord blood Cartilage 

regeneration

Re’em T [84] 2012 Alginate with TGF-β1 Bone marrow MSCs Cartilage 

regeneration

Sondermeijer H 

[86]

2018 Alginate-cyclic RGD Bone marrow MSCs Cardiac 

regeneration

Park D [67] 2005 Alginate-chitosan-

BMP-2

Bone marrow MSCs Bone regeneration

Schon LC [88] 2014 Alginate Bone marrow MSCs Tendon 

regeneration

Hashemibeni B 

[80]

2012 Alginate Adipose MSCs and 

chondrocytes

Tracheal repair

Ho SS [93] 2016 Oxidized 

methacrylated 

alginate-RGD

Bone marrow MSCs Bone regeneration

Moshaverinia 

A [89]

2014 RGD-alginate with 

TGF-β3

Gingival and 

periodontal MSCs

Tendon 

regeneration

Ingavle GC [68] 2019 Alginate-HA-

mineralized 

microspheres

Bone marrow MSCs Bone regeneration

Table 2. 
Representative in vivo studies combining alginate-based hydrogels with MSCs.
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Finally, TGF-β1-releasing alginate hydrogels have been used to promote chondrogenesis 
of MSCs, demonstrating in vitro increase of chondrogenic markers and healing of 
articular cartilage defects in mice [84].

Another important application of alginate/MSC constructs is the treatment 
of myocardial lesions. Yu et al. combined RGD-functionalized alginate hydrogels 
with human bone marrow MSCs showing that they could improve left ventricular 
function after myocardial infarction in a rat acute myocardial infarction model [85]. 
Cyclic RGD in alginate hydrogels has been also shown to promote neoangiogenesis 
and cardiac neovascularization, improving cardiac function in animals post-
myocardial infarction [86]. Finally, when alginate hydrogels are used for cardiac 
regeneration, it has been shown that G-type alginates possess properties suited for 
the regeneration of cardiac tissue [87].

MSCs have been combined with alginate hydrogels for tendon repair purposes 
in animal model of tendon tears. For example, rat Achilles tendon lesions have been 
treated with hydrogels loaded with MSCs [88] showing healing of higher qual-
ity than surgical meshes and sutures. In addition, RGD-functionalized hydrogels 
loaded with TGF-β3 and loaded with periodontal and gingival MSCs were found to 
efficiently produce tendon tissue when implanted subcutaneously in mice [89].

Alginate hydrogels have also been widely utilized as wound dressings either 
alone or in combination with MSCs. For this application, various types of MSCs 
have been used including umbilical cord MSCs [90] and bone marrow MSCs in 
alginate-chitosan hydrogels with antibacterial properties [66].

Finally, alginate hydrogels have been used to protect MSCs from the local 
immune response elicited when allogeneic cells are implanted in vivo. They have 
been shown to provide protection from the immune system increasing the survival 
of MSCs in the hostile environment of the host-releasing immunomodulatory 
 factors [91].

4. Conclusions

In conclusion, alginate/MSC constructs have been used for a wide variety 
of regenerative medicine applications, ranging from musculoskeletal to cardiac 
tissue repair. MSCs isolated from adult and fetal tissues have been combined with 
alginate hydrogels functionalized with extracellular matrix components, miner-
als, and other natural polymers and evaluated in vitro and in vivo. In vitro studies 
demonstrated the ability of alginate hydrogel at different formulations to support 
MSC growth and differentiation toward several lineages, whereas in vivo data 
have shown that when alginate-based materials are combined with MSCs, they can 
achieve successful healing of bone and cartilage defects, myocardial tissue after 
myocardial infarction, tendon tears, and skin wound. Nonetheless, evaluation 
of safety and efficacy of the constructs is required prior to clinical use. Existing 
in vitro and in vivo data demonstrate the potential of alginates to play an important 
future role in regenerative medicine, reaching the bedside and achieving regenera-
tion of damaged tissues.
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