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1. Introduction      

Biosensors represent very promising analytical tools that are capable of providing a 
continuous, fast and sensitive quantitative analysis in a straightforward and cost-effective 
way. According to the definition of IUPAC (International Union of Pure and Applied 
Chemistry) the biosensing analytical devices combine a biological element for molecular 
recognition with a signal-processing device (transducer). The transducer, which normally 
ensures the high sensitivity of the sensor, can be thermal, optical, magnetic field, piezo-
electrical or electrochemical. On the other hand, the selectivity of detection is assured by the 
biological recognition element that might consists of either a bioligand (DNA, RNA, 
antibodies etc.) or a biocatalyst, such as some redox proteins, individual enzymes and 
enzymatic systems (cell membranes, whole microorganisms, tissues) (Castillo  et al., 2004; 
Scheller et al. 2001). Electrochemical biosensors show two main advantages over the other 
types of biosensors: i) they are susceptible to miniaturization, and ii) the electrical response – 
current or potential, could be easily processed using not expensive and compact 
instrumentation.  
Among the electrochemical biosensors, enzyme-based amperometric biosensors represents 
the most used group, which functions on the basis of monitoring the current variation at an 
polarised electrode, induced by the reaction/interaction of the biorecognition element with 
the analyte of interest. Then, amperometric enzyme-based biosensors on their part, can be 
classified into three categories (Castillo et al., 2004; Scheller et al., 2001), in accordance with 
the mode of action:  
- first generation biosensors: the signal is generated upon the electrochemical reaction of an 

active reagent (monitoring the decrease of the current) or product (monitoring the 
increase of the current) that are involved in the biochemical transformation of the target 
compound- the enzyme substrate (Dimcheva  et al., 2002 ; Dodevska  et al., 2006; 
Horozova  et al., 2009). 

- second generation biosensors: the architecture of these biosensors includes a freely 
diffusing redox mediator (small molecular weight compounds, able to effectively 
shuttle electrons between the electrode surface and the enzyme active site) and in this 
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mode the concentration of the target analyte, that participate at the biochemical reaction, 
is proportional to the response resulted from the mediator oxidation/reduction at the 
electrode (Stoica et al., 2009). 

- third generation biosensors: the biocomponent is capable of directly (mediatorsless) 
exchanging electrons between the active site of the enzyme and the transducer and as a 
result, the concentration of analyte is directly proportional to the redox current 
generated at the polarised electrode. The advantages of third generation biosensors are 
represented by the simplicity of construction, the exclusion of additional supportive 
substances (e.g. mediator), the increase of specificity for target analyte, the removal of 
interferences due to usually low polarization potential at the working electrode, etc. 
(Christensson  et al., 2004;  Stoica  et al., 2005). Nevertheless, only limited number of 
enzymes (mostly heme – or copper - containing oxidoreductases) has been proven to 
work for the third generation biosensors and their common feature is that a metal-
containing cofactor that functions either as a catalytic cofactor and/or as an intra-
molecular electron transfer cofactor is embedded in the protein shell.   

Despite the second and especially third generation biosensors ensure an exceptional 
selectivity of the analysis, first generation biosensors are the most widely spread, mainly 
because of the simplicity of their construction. A typical first generation biosensor can be 
easily constructed by assembling the biological recognition element onto a conventional 
electrode, which can be either an oxygen-sensitive probe to assay the consumption of 
oxygen, or a hydrogen peroxide – sensitive electrode to monitor the concentration of H2O2, 
produced upon the enzymatic conversion of the analyte. Assaying the biological oxygen 
demand (BOD) seems to be the most universal method for biosensing, since oxygen is the 
reagent consumed during biochemical transformations catalysed not only by individual 
oxidative enzymes or enzymatic systems, but also by whole aerobic microorganisms.   
Modelling the processes taking place at the interfaces of the first generation amperometric 
biosensors as well as identifying the factors possessing strong impact on their response will 
facilitate to a great extent the optimisation of biosensors fabrication, which in turn will 
considerably shorten the period between R&D stage and their mass–market acceptance. The 
catalytic activity of the biological recognition element is known to depend strongly on pH 
and temperature, and therefore these factors are expected to affect the biosensor response as 
well.  Similarly to the chemical reactions, the rate of enzyme-catalyzed reactions rises 
exponentially with increasing temperature, however this dependence passes through a 
maximum because at temperatures around 50 deg an irreversible thermal denaturation of 
the enzymes starts. The dependence of the biosensor response on pH represents a bell-
shaped curve that reaches its maximum around the pH optimum of the bio-component. The 
peak might be broad or narrow, depending on the composition of the medium and 
temperature. Under the optimal conditions (pH and temperature) the biosensor response is 
stable and the sensitivity is high and hence, this environment shall be preferred for the 
measurements. 
The modern intelligent devices typically possess the ability to compensate the influences of 
different kind such as temperature and pH as the later are among the most important factors 
for an optimal biosensor performance. Modelling the output current versus pH and 
temperature would provide the opportunity to improve their accuracy and usage while 
doing measurements under variable conditions. 
In the present work a plant tissue biosensor for dopamine assay is considered as the model 
biosensor, based on a plant tissue immobilized onto an oxygen Clark probe (Rangelova et 
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al., 2003). Such a biosensing system will be of high interest for the biomedical analysis 
because the dopamine levels in urine and blood plasma are indicative for diseases like 
ganglioneuroma, schizophrenia, manic-depressive psychosis, stress, and burn-out 
syndrome. The traditional analysis is made mainly by radioimmunoassay or 
chromatography, which are time and labour-consuming techniques, requiring tedious 
sample pre-treatment and costly equipment. Alternatively, an amperometric dopamine 
biosensor would provide a fast and straightforward assay of the analyte. Depending on the 
diffusion limitations the response time of such an amperometric biosensor can range from 
several seconds to 2-3 minutes. 
The purpose of the present work is to model the influence of pH and temperature- 
separately and simultaneously, on the dopamine biosensor response by means of soft 
computing. The problem to solve is to find a way of increasing the accuracy (and the 
rapidity) of the modelling process, under a condition of insufficient experimental data. To 
this end, the following soft computing techniques were compared in MATLAB 
environment: (1) Cerebellar Model Articulation Controller (CMAC) neural network, (2) neural 
network with backpropagation learning algorithm (NNBP), (3) fuzzy logic (FL), and (4) adaptive-
network-based fuzzy inference system (ANFIS). The relative errors over a few new experimental 
samples were calculated for validation of the proposed models. 

2. The biosensor  

2.1 Biosensor construction, the mechanism of enzyme action, experimental setup, 
measurement procedure, and factors affecting the biosensor performance 

a) Biosensor preparation. 

The detection principle of dopamine biosensing consists in measuring the oxygen 
consumption upon the oxidation of dopamine, catalysed by the enzyme polyphenol oxidase 
(PPO). The first-generation biosensor studied here, was constructed from a conventional 
oxygen probe (Clark type gold electrode, purity 99.95%, 1 mm diameter) used as transducer 
and a polyphenol oxidase (PPO) - containing membrane, fixed at the tip of the electrode. A 
thin banana (musa acuminata) slice was used as the source of PPO enzyme. The banana tissue 

was first homogenised, then immobilised onto a dederone mesh (thickness 70 μm), the mesh 

was placed over an oxygen-permeable Teflon membrane (10 μm thick) which was further 
assembled on the forehead of the oxygen electrode. To protect the biological material from 

leakage, the dederone mesh was covered by a 25 μm thick dialysis membrane and the so 
obtained triple-layer membrane was fixed with an O – ring onto the forehead of the working 
electrode. 

b) Mechanism of enzyme action 

The enzyme polyphenol oxidase (PPO) the physiological function of which  is to convert 
phenolic compounds into o-quinones in the presence of molecular oxygen, consists of four 
subunits containing one atom of copper per subunit (Palmer, 1963), with a relative 
molecular weight of the tetramer of about 128 000 Daltons. It possesses two binding sites for 
aromatic compounds including phenolic substrates (Climent, 2001) and a distinct binding 
site for oxygen. The enzyme reaches its optimum activity at pH 7 when using it specific 
substrate dopamine – a phenolyc type neurotransmitter. The oxidation of dopamine with 
molecular oxygen, catalysed by the enzyme PPO is schematically represented by the 
following reaction (1):  
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        PPO
Dopamine +1/2 O2                    Dopamine-o-quinone + H2O

 
(1) 

Or the corresponding general scheme of a bi-substrate enzyme –catalysed reaction:  

                     E 
  So + C                    P 

 
(2) 

where So stands for the first substrate – dopamine, the dissolved oxygen gas (the co-
substrate) is denoted with C, with E – the enzyme PPO; with P – the products: dopamine – o 
– quinine and the  molecule of water released upon dopamine oxidation. 

c) Experimental setup and apparatus. 

The experimental setup is schematically depicted at Fig.1.  (Rangelova et al., 2002). All the 
measurements were performed in a conventional dual-electrode electrochemical setup with 
the working bio-electrode and a reference Ag/AgCl electrode. Prior to use the biosensor 
was conditioned by dipping in a phosphate buffer (pH = 7) for one hour. Then the prepared 
biosensor was immersed in a single-compartment electrochemical cell (working volume 15 

ml, filled with phosphate buffer) and polarised at a constant potential of  - 800 ± 80 mV/ vs. 
Ag/AgCl.  During the experiments the solution was permanently stirred at 600 rpm  (rpm-
rotations per minute stirring rate, with a magnetic stirrer). Transient currents were allowed to 
decay to a steady-state value within 2 - 3 min until a constant background current (the 

response in the buffer solution without substrate) of 104 nA ± 7.5 nA was established. The 

output current was measured by means of a microampermeter (Φ 195 accuracy ±1.5%, 

Russia, measuring range  50 nA - 100 μA). For monitoring the transient state a Y - t recorder 
(ENDIM  622.01, Germany) was used. The pH of the buffer solutions was adjusted with a 
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Fig. 1. Schematic representation of the dual–electrode experimental setup 
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pH-meter Piccolo (Hanna Instr., accuracy ± 0.1), while the temperature was monitored with 
a mercury thermometer (accuracy  ± 0.05°C). 
On Fig.1. the three membranes are indicated as follows: Ǻ1 - dialysis, Ǻ2 - the banana tissue-
containing membrane and Ǻ3 - the gas-permeable membrane. In the electrochemical cell the 
working electrode was negatively polarised and therefore functioned as the cathode, while 
the reference electrode was the anode. The potential difference between the electrodes was 
generated by applying an external voltage EP. When the current Is passed through the 
loading resistance RL an Ohmic drop U was generated. 

d) Measurement procedure 

In order to determine any unknown concentration of substrate in the cell (Scell = So) a 
calibration graph was built by using the method of subsequent additions. For this purpose, 
the background current was first established at the chosen pH and temperature, then an 
aliquot of the substrate stock solution with a volume Vpr and concentration Cpr was added to 
the buffer in the cell (volume Vcell) and the current was allowed to decay to a steady-state 
value. Then new aliquots were injected in the cell and the corresponding biosensor 
responses were registered until the saturation of the enzyme layer with substrate was 
reached, i.e. until the electrode response stopped changing when a new injection was added. 
Upon injecting the substrate the transient current was registered with Y-t recorder until the 
steady state was reached and the readings of microampermeter were taken as electrode 

response. Usually, 12 additions with volume of 100 μl each, were made and the calibration 
graph was obtained by plotting the electrode response versus the substrate concentration at 
which it was registered. Single dopamine injection assures a final concentration of substrate 
in the cell of  So=0.142 mM. 
In order to provide the enzyme-catalysed reaction with a continuous flow of oxygen, which 
is the second substrate of PPO, the buffer solution was permanently stirred with a stirring 

rate ωo, ensuring also much faster mass-transfer of the substrate towards the enzyme layer 
(the membrane Ǻ2). In this layer the measured substrate So is converted to the product P, a 
part of the dissolved oxygen is consumed during the dopamine enzymatic oxidation, while 
the rest of the oxygen passes through the gas-permeable membrane and is further 
depolarised on the cathode, resulting in an output current Is. The measurements were 
performed  in a steady-state regime.  

e) The influencing factors 

The main factors supposed to affect to a great extent the output current of the dopamine 
biosensor, are schematically depicted at Fig.2. (Rangelova et al., 2002). With block 1) is 
denoted the dissolution of the oxygen Co2 from the gas phase to the liquid phase Co.  With 
block 2) is denoted the dilution of the sample concentration Ssm to the measured one So. 
With block 3) is denoted the conversion of the gas components CG into the corresponding 
concentrations in the liquid phase Ci. In the active membrane from the membrane group 4) 
reaction catalyzed by the enzyme (E) takes place. With Pi is denoted the lateral product from 
the conversion of substrate S into the product P. They change the acidity of the medium to 
the value pHR. In the active membrane, usually the optimal pH and temperature T are 
maintained. In the active membrane normally the optimal pH is given and for these reason 

it is changed with ΔpH. Because the system is co-substrate sensitive, through the membrane 
M3 the residual concentration of oxygen Cx and only a  part of  obstructive substances Ci(2) 
is passing. The rest reagents with concentration Ci(1), product P and substrate S are returned 
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Fig. 2. Scheme of the factors influencing the biosensor responce. 

to the active membrane. The electrochemical cell 5) is supplied by an external polarising 
voltage Ep. The output steady-state current is Is. The main external factors possessing 

strong impact over the biosensor performance are: temperature t °C, pH, stirring rate ωo 
and atmospheric pressure Patm. They have significant effect over the processes into the 
measuring cell. For the practical measurements all these parameters are chosen very 
carefully and the measurements are done for some definite working conditions 
(depending on the task). The constructive parameters can be divided into two groups. The 
first one {ai}, includes all diffusions coefficients Dij, the thickness of membranes b, l, d, 

variation of Δрǻ and concentration of enzyme [Eo]. The second group {aj} includes the 
parameters of the electrochemical cell: concentration of electrolyte Cel and the 
corresponding diffusion coefficients Del, the thickness of the electrolyte layer hel, anode and 
cathode surface area- SA and SK, the initial value of the current I*, the value of the polarising 
voltage Ep and the rate constant of the electrochemical reaction Kin. 
From the metrological point of view, the measurements with a biosensor can be presented 
with the model 

 ),.......,,......,( 1,1 FaaTxFy nm Δ= ξξ , (3) 

where: x – is the measured value ( concentration of substrate So);   

mξξ ......,1  - influencing factors (Co2 , CG ,T, pH, ωo, Patm);   

a1…….an - constructive parameters ({ai}, includes all diffusions coefficients Dij, the thickness 

of membranes b, l, d, variation of Δрǻ, concentration of enzyme [Eo] and {aj}  include the 
parameters of the electrochemical cell : concentration of electrolyte Cel and corresponding 
diffusion coefficients Del, the thickness of the electrolyte layer hel, anode area SA and 
cathode area SK,  the initial value of current Is*, the value of the polarising voltage Ep and 
the rate of the electrochemical reaction Kin.);  
ΔF - error of the model. 
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For the given biosensor all constructive parameters are chosen after careful selection, 
depending on the task and usage, but the influencing factors depend on the circumstances 
and they may change during the measurement. Temperature and pH are the most important 
influencing factors. They have strong impact not only on the very enzymatic reactions 
(Ziyan & Pekyardimci, 2004; Shizuko et al., 2005; Burkert et al., 2006) but also on the 
diffusion parameters (Puida  et al, 2009)  and the oxygen concentration (Falck , 1997) and 
therefore the output current will be greatly dependent on them. Moreover, the temperature 
and pH significantly affect the biosensor response, causing non-linearity (maximum in our 
case) in the curve of the output current.  
Thermostatic conditions can be achieved by either controlling the sample solution 
temperature or by regulating the temperature of the electrode itself so that the membrane 
and diffusion layers are at a constant temperature throughout an experiment (Falck , 1997). 
pH can be controlled too.  But when the biosensor is used in-situ or in-vivo (in our case for 
measurement of neurotransmiter dopamine) the temperature and pH affect strongly the 
output reading. The body temperature may be higher or lower than the temperature at 
which the sensor is calibrated and the same is for the pH (depending on the person's acid-
base status, the pH of urine may range from 4.5 to 8) thereby it can be invalidating the 
calibration curve (usually it has been done for constant pH and constant temperature). If 
thermostatic conditions are not feasible, temperature effects must be compensated. The most 
popular method is hardware method. Using a miniature thermistor probe, the temperature 
of the sensing system is measured simultaneously with the current of the biosensor and a 
normalised signal is calculated which does not depend on temperature (Skladal 1995, Patent 
Appl. No. 60/859,586, 2006). But those methods can not compensate the full process of 
measurement. First, pH can not be compensated during the in vivo measurement. Second, 
the measured current is very small – within the nA- range, where the drift of electronic 
devices will affect the precision of the whole system. If the biosensor is used for the 
biomedical purposes, where the accuracy of the device is of key importance, it is necessary 
to be sure that measured values are real and precise. 
The soft computing methods propose a new type of modelling the influence factors over 
measurement quantity and that way the calibration surfaces for the certain range of them 
can be received. Those methods are intelligent and adaptive. Their advantages become more 
obvious when the data are complex. 

2.2 Calibration graphs 

The experimental data used in the work were derived under the following conditions: 
Calibration graphs were carried out in steady state regime, using the method of subsequent 
additions. Every addition was with volume 0.1 ml and corresponding to 0.142 mM 
dopamine concentration. Measurements were stopped when the saturation zone of the 
output current Is was reached, because the system became uninformative.  Five calibration 
graphs were obtained for five different temperatures (15  24  26  35 and 50°C) at a constant 
pH=7 and 12 steps of substrate additions (Fig.3a). Seven calibration graphs were built up for 
seven different pH-values (4  4.8  5 5.4  5.8  7  7.5 and  8) at a constant temperature  T=24°C 
and with the same steps of substrate additions (Fig.3b). Because the output current is a 
dropping function of substrate concentration it was centred to the zero of the scale. The 
vertical section of Fig.3a and Fig.3b for the given substrate concentration So=0.142 mM is 
shown in Fig.3c and Fig.3d, respectively. 
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Fig. 3. Experimental data: influences of temperature and pH on a dopamine biosensor 

3. The task formulation and soft computing algorithms for its implementation 

To some extent, the soft computing draws inspiration from natural phenomena. Its key 
areas include: neural networks, fuzzy systems, and evolutionary computation. The soft 
computing is usually robust under noisy input environments and has a high tolerance for 
imprecision in the data on which it operates. It is well known that neural networks are 
universal function approximators (Blum & Li, 1991). The approximation possibility of 
feedforward multilayered neural networks with backpropagation learning algorithm for 
modelling the biosensor’s output voltage versus substrate concentration at different 
temperatures has been considered in (Ferreira et al., 2003). The same type of neural network 
has been used for pH estimation (Hitzman et al., 1997; Moatar et al.,1999) and control 
(Lamanna et al., 1996; Syu & Chen, 1998) with applications in ecology. Such neural networks 
have some drawbacks: (1) the proper number of hidden layers and the number of neurons 
in them are not known in advance, (2) the learning is a time consuming process, which often 
gets stuck in local minima, (3) the neural network could not generalize, if the training 
samples are insufficient. The CMAC-neural-network-based model of the biosensor 
input/output has overcome some of the drawbacks, however it needs sufficient number of 
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experimental data for designing a large set of overlapping receptive fields. Additional 
samples obtained by linear interpolation have been applied for the CMAC training in 
(Rangelova & Tsankova 2007a). The use of interpolated data is justified under the lack of 
data, because of difficulties associated with their experimental acquisition, but it reduces the 
main advantage of a neural model – the high accuracy. Two fuzzy logic based models of a 
dopamine biosensor that take into account the influence of temperature (first model) and 
pH (the other) have been recently proposed in (Rangelova & Tsankova, 2007b) and 
(Rangelova & Tsankova, 2008), respectively. This technique has been found to perform well 
under imprecise and insufficient experimental data. 

3.1 The task formulation 
The overall goal of this scientific work is to propose an appropriate soft computing 
technique to model the influence of both the temperature and the pH on the input-output 
dependency of a biosensor for dopamine assay. Due to the difficulties associated with their 
experimental acquisition, only very limited number of experimental data are supposed to be 
available. Thus, in order to accomplish the target of the work the following directions were 
identified: 
1. To investigate and model separately the influence of temperature and pH on the output 

current of the above described dopamine biosensor; 
2. To explore four types of soft computing techniques – CMAC, NNBP, FL and ANFIS; 
3. To determine the average relative error of a few new experimental data intended for a 

validation of the models; 
4. To select the best performing under insufficient experimental data technique;   
5. To apply the selected technique for modelling the influence of both the temperature and 

pH (simultaneously) on the dopamine biosensor. 
Since in the literature have been proposed some intelligent models, considering the 
influence of the temperature and the pH on the same type of biosensor, some of the here 
made analyses have a confirmative character (Section 5) and give us a reason to expect, that 
under deprived information the fuzzy model performs better than the others. That is why 
the fuzzy logic has been chosen a priori as a means for modelling simultaneously the 
influence of the temperature and pH. A more precise design of this model (our particular 
contribution here) is given in Section 4. The next two Sections (3.2 and 3.3) treat in brief 
some neural and fuzzy algorithms used for the purposes of intelligent modelling. 

3.2 Feedforward neural networks 
In this Section two types of feedforward NNs are presented: (1) CMAC-based NN, and (2) 
NN trained by error backpropagation learning algorithm. They are used as universal 
function approximators. 
CMAC functional block diagram for two-dimensional input space (Miller et al., 1990) is 
shown in Fig. 4. A large set of overlapping, multidimensional receptive fields with finite 
boundaries describes the operation of the Albus CMAC (Kraft et al., 1992). Any input vector 
falls within the range of some of the receptive fields and excites them. The response of the 
CMAC neural network to a given input is the average of responses only of receptive fields 
excited by that input. Neural network training for a given input vector affects the adjustable 
parameters of the excited receptive fields. The total collection of receptive fields is divided 
into C subsets (layers), which represent parallel N- dimensional hyperspaces for a network 
with N inputs. The receptive fields in each of the layers are organized so as to span the input 
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space without overlapping. Any input vector excites one receptive field from each layer, 
which means C exited receptive fields per input. Each of the layers of receptive fields is 
offset relative to the others in the input hyperspace. The width of the receptive fields 
produces input generalization, while the offset of the adjacent layers of receptive fields 
produces input quantization (Miller & Glanz, 1994). The integer parameter C is determined 
as the generalization parameter. The ratio of the width of each receptive field (input 
generalization) to the offset between adjacent layers of receptive fields (input quantization) 
must be equal to C. Each receptive field is assumed to be a ‘switch on/ switch off’ type of 
content. If a receptive field is excited, its response is equal to the magnitude of a single 
adjustable weight assigned to that receptive field. If a receptive field is not excited, its 
response is zero. The CMAC output is the average of the adjustable weights of the excited 
receptive fields. 
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Fig. 4. CMAC functional block diagram  (Kraft et al., 1992). 

Consider Albus CMAC neural network with the following real valued input vector 

 T
21 ),...,,( Nsss=S , (4) 

where N is the dimension of input space. Let C  be the generalization parameter (the 

number of simultaneously excited receptive fields for each input). The first step of the 

CMAC computing algorithm is to form a normalized integer input vector S′  by dividing 

each component s  of the input vector by an appropriate quantization parameter jΔ :  

 T
NNN ssssss ))/int(),...,/int(),/(int(),...,,( 221121 ΔΔΔ=′′′=′S . (5) 

The width of each receptive field along the jth axis is equal to jC Δ⋅  in the original input 

space, and is equal to C  along all axes in the normalized input space. The next step of the 

CMAC computing algorithm is to form the vector addresses iA  of the C  receptive fields 

which contain the input point S′ :  
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where % represents the modulus operator, and the index i  references the C  parallel layers 

of receptive fields. iA  is the normalized N -dimensional address of one corner of the 

hypercubic region spanned by the single excited receptive field in layer i . Then the next 

step of the CMAC algorithm is forming the scalar physical addresses iA′  of the actual 

adjustable weights: 

 ),...,,( 21 iNiii aaahA =′ . (7) 

In this equation, (...)h  represents any pseudo-random hashing function which operates on 

the components ija  of the virtual addresses of the receptive fields, producing uniformly 

distributed scalar addresses in the physical weight memory of size M . Finally, the CMAC 

scalar output )(Sy  is calculated as:  

 ∑
=

′=
C

i
iAW

C
y

1

)(
1

)(S . (8) 

Network training use the data pairs S  and )(Sdy , where )(Sdy  is the desired network 

output in response to the input vector S . The weights of memory are adjusted by WΔ , 

calculated as:  

 ))()(( SS yyW d −=Δ β , (9) 

where the same value WΔ  is added to the content  )(AW ′  of each of the C  memory cells, 

taking part in the computation of )(Sy . β  is a constant training gain (between 0 and 1).   
NNBP is composed of one hidden layer, whose neurons have a hyperbolic tangent sigmoid 
transfer function, and one neuron with a linear transfer function in the output layer. The 
weights of the network connections and the biases of the neuron’s transfer functions are 
trained by the classical error backpropagation learning algorithm. Because of the limited 
space and the popularity of the backpropagation learning algorithm, it will not be described 
here. A detailed description can be found in (Rumelhart et al., 1986; Krose & Smagt, 1996). 

3.3 Fuzzy logic and ANFIS 
A fuzzy system employing fuzzy if-then rules can model the qualitative aspects of human 
knowledge and reasoning without precise quantitative analyses. Consider a fuzzy system, 
which comprises of four principal components: fuzzifier, fuzzy rule base, fuzzy inference 
engine, and defuzzifier (Fig. 5). For the sake of simplicity of understanding the mechanism 
of fuzzy logic the system under consideration has two inputs and one output. 
 

 

Fuzzifier

Fuzzy Rule Base

Inference Engine
Defuzzifier

),( 21 xxFy =

1x

2x

y

 

Fig. 5. Basic configuration of a fuzzy system. 
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Let R⊂ , , YXX 21  are universes of discourse of the variables 1x , 2x , and y , respectively. 

The fuzzifier performs a mapping from the observed crisp input spaces 1X  and 2X  to the 

fuzzy sets in these spaces. The fuzzy sets 11 X∈iX  ( li ,...,2,1= ) and 22 X∈j
X  ( mj ,...,2,1= ) 

are linguistic terms characterized by fuzzy membership functions )( 11 xiμ  and )( 22 xjμ , 

respectively. The two linguistic variables (for 1x  and 2x ) with corresponding membership 

functions ( )(, 11 xX i
i μ , )(, 11

1
1 xX i
i

+
+ μ , )(, 22 xX j

j μ , and )(, 21
1

2 xX j
j

+
+ μ ) enter the fuzzy rule 

table. The fuzzy rule base consists of fuzzy if-then rules of Takagi and Sugeno’s type (Takagi 

& Sugeno, 1983). The fuzzy rule set can be expressed in the following form: 

 IF  1x  is iX1   and  2x  is jX2   THEN jiYy ,= ,  (10) 

where  li ,...,2,1=  and mj ,...,2,1= . Four fuzzy sets of the output signal are obtained from 

the fuzzy rule table: ,, jiY );(, yjiμ  ,1, +jiY );(1, yji +μ  ,,1 jiY + );(,1 yji+μ  and ,1,1 ++ jiY )(1,1 yji ++μ .  

( jiY ,  is assumed to be the variable in the cell arranged in i -th row and j -th column of the 

rule table). 

The fuzzy inference engine is a decision making logic which employs fuzzy rules from the 

fuzzy rule base to determine a mapping from the fuzzy sets in the input spaces 1X  and 2X  

to the fuzzy sets in the output space Y .  The firing strength of qp, -th rule ( )(, yqpμ ) is 

obtained as the T-norm of the membership values on the premise part (by using a 

multiplication operator): 

 )()()( 21, xxy qpqp μμμ = , (11) 

where  1, += iip , and 1, += jjq . 
The defuzzifier performs a back mapping of the output signal from the fuzzy sets to crisp 
points. So the overall output is computed as the weighted average of each rule’s output: 

 

∑

∑
=

qp
qp

qp
qpqp

y

yY

y

,
,

,
,,

)(

)(

μ

μ
, (12) 

where 1, += iip ; 1, += jjq . 
ANFIS has the same number of membership functions assigned to each of the two inputs as 
those of the fuzzy system. A supervisor gives the training input-output samples 
(experimental data). The ANFIS uses a combination of least-squares and backpropagation 
gradient descent methods for training membership function’s parameters to model that set 
of training data. More detailed description of ANFIS can be found in (Jang, 1993). 

4. Fuzzy logic based modelling the influence of both temperature and pH on 
the biosensor’s input/output dependency. 

According to (Kosko 1992) the representation theorem states that any continuous nonlinear 
function can be approximated to any desired level of accuracy with a finite set of fuzzy 
variables, values, and rules. This theorem describes the representational power of fuzzy 
modelling, but it does not answer the questions, how many rules are needed and how they 
can be found, which are of course essential to real-world problems and solutions (Driankov 
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et al., 1993). In a conventional fuzzy system, the number of rules is decided by an expert 
who is familiar with the system to be modelled. 

The experimental data needed for modelling the biosensor under consideration are given in 

Section 2.2 (Fig.3). The surface plot of the output current versus both pH and temperature 

for three different values of the substrate concentration, mM)710.0426.0142.0(0 =S , is 

shown in Fig.6. The surfaces have the expected bell-shaped trend, forming maximum for 

pH=7 and temperature 35°C. Actually, only part of this experimental data, belonging to a 

region, that is important for the dopamine measurement, is used in the modelling process. 
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Fig. 6. Experimental data: Surface plots of the output current vs. both pH and temperature 
for three different values of the substrate concentration 
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Fig. 7. Membership functions 
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The substrate concentration 0S , the pH  and the temperature T  are the three input 

variables of the fuzzy inference system, i.e. 01 Sx ← , pHx ←2  and Tx ←3 . The fuzzy 

system described in Section 3.3 is used here, but adapted to three-dimensional input space. 

The number of membership functions assigned to each input variable is proposed to be 

equal to the number of corresponding measured values, i.e. 5=l  ( 0S ),  4=m  ( pH ) and 

3=n  ( T ). In conformity with the results, reported in (Rangelova & Tsankova, 2007b; 

Rangelova & Tsankova, 2008) and confirmed in the next Section, the triangular shape of 

membership functions (Fig.7) and T-norm (using the multiplication operator) of the 

membership values on the premise part are chosen. The apexes of the triangles are exactly 

the measured values of substrate, pH and temperature. The fuzzy rule table can be filled in 

with all the experimental data for biosensor’s output current ( SIy ← ), which are 

60:,, =×× nmlY kji . The output current is presented by 60 different values. For the sake of 

convenience the values kjiY ,,  in the fuzzy rule table are presented with 60-level gray scale 

squares (Fig. 8), corresponding to the values of ),,( 0 TpHSII SS = . 
 

Sheet 1 Sheet 2 Sheet 3 
So

pH

Is 158.8 19.2

Sheet 3 

Sheet 2 

Sheet 1 

So 

pH

T

 

Fig. 8. Fuzzy rule table 

5. Results and discussions 

The next Sections 5.1 and 5.2 treat modelling the influence of the temperature and the pH 
separately on the biosensor’s output current.  The soft computing models investigated in 
those sections have been already proposed in the literature, and their presentation here has 
a confirmation character. On the basis of their comparative analysis, made in Section 5.3, the 
most proper type of model (sufficiently accurate under a small number of data) was chosen 
for the simultaneously modelling the influence of the temperature and pH on dopamine 
biosensor (Sections 4 and 5.4).    
Fig. 9 shows the surface plots of the experimental data (Section 2.2) used in the modelling 

procedure of: (a) the temperature influence (pH=7), and (b) the pH influence (T=24°C).  
All of the models using learning techniques need a large amount of data for training, 
otherwise they do not generalize incoming new data. A supervisor gives the training input-
output samples. The basic samples are obtained experimentally (Fig.3, Fig9), but they are 
insufficient, because of difficulties associated with their experimentally deriving.  This may 
result in a very coarse approximation or a lack of generalization. In the literature (Rangelova 
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& Tsankova, 2007a,b; Rangelova & Tsankova, 2008) additional samples obtained by linear 
interpolation have been used in training procedure. 
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                                    (a)                                   (b) 

Fig. 9. Surface plots of experimental data: (a) temperature influence (pH=7), and (b) pH 

influence (T=24°C) 

The supervisors for both CMAC and NNBP, as well as ANFIS used the experimental data 

supplemented with additional samples obtained by linear interpolation with discrete 

parameters: (a) mM071.0  and C01  along substrate concentration 0S  and temperature T , 

respectively, in ),( 0 TSII SS = models; and (b) mM071.0  and 1.0  along substrate 

concentration 0S  and pH, respectively, in ),( 0 pHSII SS = models. 
The validation of the considered aproximators is based on the average relative error over a 
few new experimental data (Section 5.3). 

5.1 Neural networks based models of the influence of the temperature and the pH 
(separately) on the biosensor’s output current 

As it was mentioned above, in both models (the temperature influenced model and the pH 
influenced one), the supervisor for the CMAC neural network, as well as for the NNBP, 
used experimental data supplemented with additional samples. 

The CMAC’s generalization parameter and learning coefficient were chosen to be 2=C  and 

0.05=β , respectively. The results obtained after 10000 learning epochs is shown in Fig.10a 

and Fig.10b, but after the first three thousands of iterations the accuracy of approximation 

was already satisfactory. The sum squared error (SSE) over the experimental data used in 

training (the interpolated samples are not included in the calculation of SSE) is 

260.0=CMAC
TSSE  for the temperature influenced model and 423.0=CMAC

pHSSE  for the pH 

influenced one. 
As it was mentioned in Section 3.2 the NNBP consists of one hidden layer, whose neurons 
posess hyperbolic tangent sigmoid transfer functions, and one output layer neuron with 
linear transfer function. The NNBP, modelling the temperatute influence, contained 500 
neurons in its hidden layer, and the other NNBP, modelling the pH influence - 1000 
neurons. After millions iterations the NNBPs were still not learned enough. The responces 
of the NNBP, modelling the temperatute influence and the other, modelling the pH influene 
(after prolonged training) are shown in Fig.10c and Fig.10d, respectively. 
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              (a) CMAC model of T influence    (b) CMAC model of pH influence 
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                 (c) NNBP model of T influence   (d) NNBP model of pH influence 

Fig. 10. NN-based approximation surfaces of the biosensor input/output dependency  

5.2 Modelling the influence of the temperature and the pH (separately) on the 
biosensor’s output current using fuzzy logic and ANFIS 

Fuzzy logic based biosensor’s model has two inputs: 01 Sx ←  and pHTx or2 ←  - the 

substrate concentration and the temperature (for the first model) or the pH (for the second 

model), respectively, and one output – the biosensor’s current SIy ← . As it was described 

in Section 4 the number of membership functions assigned to each input variable is equal to 

the number of corresponding measured values, i.e., 12=l  and 8or5=m  (for pHT or , 

respectively). The triangular form of membership functions and T-norm of the membership 

values on the premise part were chosen.  The fuzzy rule table contained all the 

measurements of the biosensor’s output current, which are 96or60:, =× mlY ji  (for 

pHT or , respectively).  

The fuzzy approximations of the biosensor’s input-output relation, taking into account the 

influence of the temperature and the pH (separately) are shown in Fig.11a and Fig.11b, 

respectively. For the sake of clarity of simulations and a good visualization, discrete steps 

mM071.0 , C10  and pH1.0  were used along the substrate concentration, the temperature, 

and the pH, respectively. 
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                                   (a)                                                                             (b) 

Fig. 11. Fuzzy approximation surface of the influence of: (a) the temperature, and (b) the pH, 
on the biosensor’s input-output dependency.   

ANFIS had the same number of membership functions as the fuzzy approximator. Two 

types of membership function (MF), triangular and Gaussian curve membership functions, 

were heuristically chosen. The output membership function type was set up linear.  

The performance of two variants of ANFIS-based approximators, one using triangular 

membership functions, and another - Gaussian curve based ones, is demonstrated in Fig.12a 

and Fig.12b, respectively. The former modelled the temperature influence on the biosensor’s 

current, and the latter - the pH influence. In these two cases ANFIS used only the experimental 

data. Regardless of the shape of membership functions the ANFIS did not generalize under 

insufficient number of data. The modelling procedure was repeated with the same 

additional interpolated data as those used in the neural approximations. The resultant 

surfaces reffering to the temperatute influenced model and the pH affected one are shown in 

Fig.13a and Fig.13b. Both approximators shown in Fig.13 used triangular membership 

functions. All the ANFIS approximators were considered as trained after 20 epochs. 
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 (a) ANFIS with triangular MF     (b) ANFIS with Gaussian MF 
      (model of T influence)          (model of pH influence)  

Fig. 12. ANFIS-based approximation surfaces using only experimental data 

www.intechopen.com



 Intelligent and Biosensors 

 

116 

10
20

30
40

50

0

0.5

1

1.5

2
0

50

100

150

200

TSo

Is

   
4

5
6

7
8

0

0.5

1

1.5

2
0

50

100

150

pHSo
Is

 

(a) ANFIS with triangular MF     (b) ANFIS with triangular MF 
      (model of T influence)          (model of pH influence)  

Fig. 13. ANFIS-based approximation surfaces using additional interpolated data 

5.3 Comparative analysis of the investigated models 

The generalization of the four soft computing techniques was verified on the one hand 
qualitatively, by a visual observation the shape of approximation surfaces, and on the other 
hand – quantitatively, by calculating the average relative error over three new experimental 
samples. The relative error of each of the new experiments is calculated as  

 %,100
||

e
S

e
S

approx
S

I

II −
=ε  (13) 

where e
SI  and 

approx
SI  are the output current determined experimentally and by means of one 

of the four type of approximations. The validation results, represented by the relative error 

(13), are listed in Table 1 and Table 2, referring to the temperature influence model and the 

pH influence one, respectively. 
 

 
 

Table 1. Results from validation test for temperature influence modelling. 
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NN ANFIS 

Using additional 
interpolated data 

Test Data 
 

T = 24°C 
BP CMAC 

Fuzzy 
Logic 

Triangular Gaussian 

pH 0S  SI  NNBP

SI
NNBPε CMAC

SI
CMACε FL

SI
FLε ANFIS

SI
ANFISε ANFIS

SI  ANFISε

No. 
 
 
 

 mM nA nA % nA % nA % nA % nA % 

1 4.5 0.852 11.5 10.75 6.54 11.57 0.62 11.56 0.54 11.504 0.03 11.66 1.42 

2 6.5 0.426 56.0 56.11 0.42 55.37 1.11 55.38 1.10 55.37 1.12 55.37 1.13 

3 7.5 0.426 55.0 55.37 0.85 55.12 0.21 55.10 0.18 55.11 0.20 55.12 0.22 

Average Relative Error 
[%] 

 2.60  0.65  0.61  0.45  0.92 

Table 2. Results from validation test for pH influence modelling 

It is evident from the two tables, that only the fuzzy approximator operates well under the 
small number of the experimental input/output samples. All the other approximators do 
not generalize under this circumstance. They need additional training data, which are 
obtained in this scientific work by linear interpolation of experimental data. The 
interpolated data predetermine the type of approximation surface and usually decrease the 
main advantage of neural models – the high accuracy. Using additional training data the 
models perform similarly to each other (with respect to accuracy), excepting the NNBP. 
Although the neural networks with backpropagation learning algorithm can approximate 
each function with sufficient high accuracy, practically, it is not so easy to determine the 
proper number of hidden layers and the number of neurons per each layer. Training is 
extremely time-consuming procedure, because it requires millions of iterations. Due to the 
gradient method there is a tendency the learning process to be trapped in local minima. The 
NNBP performs worse than the others, probably because of insufficient learning. 
The fuzzy model performs better then the others: it is faster and easier to implement, works 
well under a small number of experimental data. These properties make it preferable for the 
particular purpose – to improve the accuracy of the dopamine measurement by taking into 
account both the temperature and the pH influences on the biosensor’s  output current. 

5.4 Fuzzy modelling and validation of the simultaneous influence of temperature and 
pH on the biosensor’s output current 

The comparative analysis, made in the previous Section, shows that the most appropriate 

soft computing technique for our purpose (intelligent modelling the dependency 
),,( 0 TpHSII SS =  using poor experimental data) is the fuzzy logic. Since this result was 

expected, having in mind the present publications, this model was developed and adapted 

to our purpose in advance in Section 4. So the membership functions of the three input 

variables ( 0S , pH  and T ) and the output signal are presented in Fig.7a,b,c,d, respectively. 

The fuzzy rule table is shown in Fig.8. Only part of the experimental data, shown in Fig.3, is 

used in the fuzzy model. The samples, included in this part, correspond to the apexes of the 

membership functions of the input variables (Fig.7a,b,c), and more precisely written: 

mM)278.1997.0710.0426.0142.0(0 =S ,  )5.70.78.54.5(=pH , 

and  C)503526( 0=T . 
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The fuzzy model was simulated in MATLAB environment using a number of assignment 
input samples and the result is shown in Fig. 14 (a qualitative validation test). For the sake 
of clarity two variants of a presentation (one using a gray scale, and another – colour scale) 
are proposed. The values of thus calculated output current IS can be determined using the 
transformation bar (gray or colour bar), situated to the right of the pictures.  
 

 

                                            (a)     (b) 

Fig. 14. A plot of the biosensor’s output current versus substrate concentration, temperature 
and pH: (a) in gray scale, and (b) in colour scale 

The generalization of the fuzzy system was tested on three experimental data unused in the 

design process. The results are listed in Table 3 (a quantitative validation). The average 

relative error over the three test samples is %60.03 =FLε , and maximum relative error in this 

limited extract is %194.1max,3 =FLε .  

The proposed fuzzy model shows quite well results, having in mind the exceptional small 

extract of experimental data, needed for its design. The result inspires the idea for 

synthesizing a “quasi-inverse” fuzzy model in the form of ),,(00 TpHISS S= , that could 

automate, facilitate and improve the accuracy of the dopamine measurement under variable 

temperature and pH. 
 

Test Data Fuzzy Logic 

T pH 0S  SI  FL

SI  FLε  

No. 
 
 
 

°C  mM nA nA % 

1 30 6.0 0.426 68.0 68.14 0.205 

2 40 6.5 0.994 138.1 139.75 1.194 

3 45 7.5 1.278 151.3 150.7 0.396 

Average Relative Error ,% 0.60 

Table 3. Results from a validation test for the simultaneous modelling the pH and T 
influences by means of fuzzy logic. 

www.intechopen.com



Soft Computing Techniques in Modelling the Influence of pH  
and Temperature on Dopamine Biosensor  

 

119 

6. Conclusion 

The presented work discusses the use of soft computing techniques for modelling the input-

output dependency of a dopamine biosensor, which takes into account the simultaneous 

influence of pH and temperature over the output current. Under the conditions of 

insufficient experimental data the fuzzy approximator performs better than the others, 

regarding accuracy and rapidity. Besides, it does not need additional interpolated data. In 

order to generalize, all the other techniques, which undergo learning process, require more 

experimental (or interpolated) data. Moreover the learning of the NNBP is a very time 

consuming process and most probably could be trapped in local minima. The soft 

computing based modelling, as a whole, is able to improve the accuracy of a biosensor for 

measurement of dopamine by considering the simultaneous effect of pH and temperature 

on the output current. That way it provides the opportunity to have calibration surfaces for 

every value of the measured substrate. The algorithm can be easily programmed into a 

microcontroller and to be used for precise biomedical analyses. The future prospective of 

this work is foreseen in investigations on the simultaneous influence of the pH, temperature 

and dissolved oxygen concentration on the biosensor’s response. The main benefit from 

these studies would be the possibility to expand and/or specifically adopt the resolved 

models over a large scale of sensing devices, sensitive to the dissolved oxygen concentration 

such as biosensors or microbial sensing platforms.  
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