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Chapter

Distinctive Characteristics of
Cosserat Plate Free Vibrations
Lev Steinberg and Roman Kvasov

Abstract

In this chapter, we present the theoretical analysis of the distinctive characteris-
tics of Cosserat plate vibrations. This analysis is based on the dynamic model of the
Cosserat plates, which we developed as an extension of the Reissner plate theory.
Primarily, we describe the validation of the model, which is based on the compari-
son with three-dimensional exact solutions. We present the results of the computer
simulations, which allow us to identify different characteristics of the plate vibra-
tions. Particularly, we illustrate and discuss the detection and the classification of
the additional high resonance frequencies of a plate depending on the shape and
orientation of microelements incorporated into the Cosserat plates.

Keywords: variational principle, Cosserat plate vibrations,
frequencies of micro-vibrations

1. Introduction

The theory of asymmetric elasticity introduced in 1909 by the Cosserat brothers
[1] gave rise to a variety of Cosserat plate theories. In 1960s, Green and Naghdi
specialized their general theory of Cosserat surface to obtain the linear Cosserat
plate [2], while independently Eringen proposed a complete theory of plates in the
framework of Cosserat elasticity [3]. Numerous plate theories were formulated
afterwards; for the review of the latest developments in the area of Cosserat plates
we recommend to turn to [4].

The first theory of Cosserat plates based on the Reissner plate theory was devel-
oped in [5] and its finite element modeling is provided in [6]. The parametric theory
of Cosserat plate, presented by the authors in [7], includes some additional
assumptions leading to the introduction of the splitting parameter. This provided
the highest level of approximation to the original three-dimensional problem. The
theory provides the equilibrium equations and constitutive relations, and the opti-
mal value of the minimization of the elastic energy of the Cosserat plate. The paper
[7] also provides the analytical solutions of the presented plate theory and the three-
dimensional Cosserat elasticity for simply supported rectangular plate. The com-
parison of these solutions showed that the precision of the developed Cosserat plate
theory is similar to the precision of the classical plate theory developed by Reissner
[8, 9].

The numerical modeling of bending of simply supported rectangular plates is
given in [10]. We developed the Cosserat plate field equations and a rigorous
formula for the optimal value of the splitting parameter. The solution of the
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Cosserat plate was shown to converge to the Reissner plate as the elastic asymmetric
parameters tend to zero. The Cosserat plate theory demonstrates the agreement
with the size effect, confirming that the plates of smaller thickness are more rigid
than is expected from the Reissner model. The modeling of Cosserat plates with
simply supported rectangular holes is also provided. The finite element analysis of
the perforated Cosserat plates is given in [11].

The extension of the static model of Cosserat elastic plates to the dynamic
problems is presented in [12]. The computations predict a new kind of natural
frequencies associated with the material microstructure and were shown to be
compatible with the size effect principle reported in [10] for the Cosserat plate
bending.

This chapter represents an extension of the paper [12] for different shapes and
orientations of micro-elements incorporated into the Cosserat plates. It is based on
the generalized variational principle for elastodynamics and includes a non-
diagonal rotatory inertia tensor. The numerical computations of the plate free
vibrations showed the existence of some additional high frequencies of micro-
vibrations depending on the orientation of micro-elements. The comparison with
three-dimensional Cosserat elastodynamics shows a high agreement with the exact
values of the eigenvalue frequencies.

2. Cosserat linear elastodynamics

2.1 Fundamental equations

The Cosserat linear elasticity balance laws are

σji, j ¼
∂pi
∂t

, (1)

εijkσjk þ μji, j ¼
∂qi
∂t

, (2)

where the σji is the stress tensor, μji the couple stress tensor, pi ¼ ρ ∂ui
∂t and

qi ¼ Jji
∂ϕj

∂t are the linear and angular momenta, ρ and Jji are the material density and

the rotatory inertia characteristics, εijk is the Levi-Civita tensor.

We will also consider the constitutive equations as in [13]:

σji ¼ μþ αð Þγji þ μ� αð Þγij þ λγkkδij, (3)

μji ¼ γ þ εð Þχji þ γ � εð Þχij þ βχkkδij, (4)

and the kinematic relations in the form

γji ¼ ui, j þ εijkϕk and χji ¼ ϕi, j, (5)

Here ui and ϕi represent the displacement and microrotation vectors, γji and χji

represent the strain and bend-twist tensors, μ, λ are the Lamé parameters and α, β,
γ, ε are the Cosserat elasticity parameters.

The constitutive Eqs. (3)–(4) can be written in the reverse form [5].

γji ¼ μ0 þ α0ð Þσji þ μ0 � α0ð Þσij þ λ0σkk, (6)
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χji ¼ γ0 þ ε0ð Þμji þ γ0 � ε0ð Þμij þ β0μkk, (7)

where μ0 ¼ 1
4μ, α

0 ¼ 1
4α, γ

0 ¼ 1
4γ, ε ¼

1
4ε, λ

0 ¼ �λ

6μ λþ2μ
3ð Þ

and β0 ¼ �β

6μ βþ2γ
3ð Þ
.

We will consider the boundary conditions given in [12].

ui ¼ u0i ,ϕi ¼ ϕ0
i , onG

t
1 ¼ ∂B0\∂Bσ � t0; t½ �, (8)

σjini ¼ σ0j , μjini ¼ μ0j onG
t
2 ¼ ∂Bσ � t0; t½ �, (9)

and initial conditions

ui x;0ð Þ ¼ U0
i ,ϕi x;0ð Þ ¼ Φ

0
i , inB0, (10)

_ui x;0ð Þ ¼ _U0
i ,

_ϕi x;0ð Þ ¼ _Φ
0
i , inB0, (11)

where u0i and ϕ0
i are prescribed on G1, σ0j and μ0j on G2, and ni is the unit vector

normal to the boundary ∂B0 of the elastic body B0.

2.2 Cosserat elastic energy

The strain stored energy UC of the body B0 is defined by the integral [13]:

UC ¼

ð

B0

W γ; χf gdv, (12)

where

W γ; χf g ¼
μþ α

2
γijγij þ

μ� α

2
γijγji þ

λ

2
γkkγnn

þ
γ þ ε

2
χijχij þ

γ � ε

2
χijχji þ

β

2
χkkχnn,

(13)

is non-negative. The relations Eqs. (3)–(4) can be written in the form [12]:

σ ¼ ∇γW and μ ¼ ∇χW: (14)

The stress energy is given as

UK ¼

ð

B0

Φ σ; μf gdv, (15)

where

Φ σ; μf g ¼
μ0 þ α0

2
σijσij þ

μ0 � α0

2
σijσji þ

λ0

2
σkkσnn

þ
γ0 þ ε0

2
μijμij þ

γ0 � ε0

2
μijμji þ

β0

2
μkkμnn,

(16)

and the relations Eqs. (6)–(7) can be written as [12].

γ ¼
∂Φ

∂σ
, and χ ¼

∂Φ

∂μ
: (17)
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Weconsider thework done by the stresses σ and μ over the strains γ and χ as in [13].

U ¼

ð

B0

σ � γ þ μ � χ½ �dv (18)

and

U ¼ UK ¼ UC (19)

Here σ � γ ¼ σjiγji and μ � χ ¼ μjiχji:

The stored kinetic energy TC is defined as

TC ¼

ð

B0

ϒCdv ¼
1

2

ð

B0

ρ
∂u

∂t

� �2

þ J
∂ϕ

∂t

� �2
 !

dv, (20)

The kinetic energy TK is given as

TK ¼

ð

B0

ϒK p;qf gdv ¼
1

2

ð

B0

p2ρ�1 þ q2J�1
� �

dv, (21)

where

p ¼
∂ϒC

∂ _u
¼ ρ

∂u

∂t
andq ¼

∂ϒC

∂ _ϕ
¼ J

∂ϕ

∂t
, (22)

and

∂u

∂t
¼

∂ϒK

∂p
¼ pρ�1 and

∂ϕ

∂t
¼

∂ϒK

∂q
¼ qJ�1, (23)

The work TW done by the inertia forces over displacement and microrotation is
given as in [12].

TW ¼

ð

B0

ϒWdv ¼

ð

B0

∂p

∂t
� uþ

∂q

∂t
� ϕ

� �

dv (24)

Keeping in mind that the variation of p u, q, ϕ, δu, and δϕ is zero at t0 and tk we
can integrate by parts

ðtk

t0

TKdt ¼

ðtk

t0

TIdt ¼
1

2

ð

B0

p � uþ q � ϕð Þdv

�

�

�

�

tk

t0

�

ðtk

t0

TWdt (25)

δ

ðtk

t0

TK ¼ �δ

ðtk

t0

TW (26)

or

δTC ¼ δTK ¼ �δTW (27)

and therefore

ðtk

t0

ð

B0

p � δ
∂u

∂t

� �

þ q � δ
∂ϕ

∂t

� �� �� �

dvdt ¼ �

ðtk

t0

ð

B0

∂p

∂t
� δuþ

∂q

∂t
� δϕ

� �

dvdt

(28)
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2.3 Variational principle for elastodynamics

We modify the HPR principle [14] for the case of Cosserat elastodynamics in
the following way: for any set Av of all admissible states s ¼ u;ϕ; γ; χ ; σ; μ½ � that
satisfy the strain-displacement and torsion-rotation relations Eq. (5), the zero
variation

δΘ sð Þ ¼ 0

of the functional

Θ sð Þ ¼

ðtk

t0

UK þ TC �

ð

B0

σ � γ þ μ � χ þ p
∂u

∂t
þ q

∂ϕ

∂t

� �

dv

� �

dt

þ

ðt

t0

ð

G1

σn � u� u0ð Þ þ μn ϕ� ϕ0ð Þ½ �dadtþ

ðt

t0

ð

G2

σ0 � uþ μ0 � ϕ½ �dadt

(29)

at s∈A is equivalent of s to be a solution of the system of equilibrium
Eqs. (1)–(2), constitutive relations Eqs. (6)–(7), which satisfies the mixed boundary
conditions Eqs. (8)–(9).

Proof of the variational principle for elastodynamics
Let us consider the variation of the functional Θ sð Þ:

δΘ sð Þ ¼

ðtk

t0

δUK þ δTC½ �dt

�

ðtk

t0

ð

B0

δσ � γ þ σ � δγ þ δμ � χ þ μ � δχ þ
∂u

∂t
δpþ p � δ

∂u

∂t

� �

þ δq �
∂ϕ

∂t
þ q � δ

∂ϕ

∂t

� �� �

dvdt

þ

ðt

t0

ð

G1

δσn � u� u0ð Þ þ σnδuþ δμn � ϕ� ϕ0ð Þ þ μnδϕ½ �dadt

þ

ðt

t0

ð

G2

σ0 � δuþ μ0 � δϕ½ �dadt

Taking into account Eq. (5) we can perform the integration by parts

ð

B0

σ � δγdv ¼

ð

∂B0

σn � δuda�

ð

B0

δu � divσdvþ

ð

B0

εσ � δϕdv

ð

B0

μ � δχdv ¼

ð

∂B0

μn � δϕda�

ð

B0

δϕ � divμdv

and based on Eqs. (17)–(23)

δΦ ¼
∂Φ

∂σ
� δσ þ

∂Φ

∂μ
� δμ, δϒC ¼

∂ϒC

∂
∂u
∂t

� � � δ
∂u

∂t

� �

þ
∂ϒC

∂
∂ϕ

∂t

� � � δ
∂ϕ

∂t

� �

:

Then keeping in mind that δTK ¼ �δT and Eq. (28) we can rewrite the
expression for the variation of the functional δΘ sð Þ in the following form
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δΘ sð Þ ¼

ðt

t0

ð

B0

∂Φ

∂σ
� γ

� �

� δσ

� �

dvdtþ

ðt

t0

ð

B0

∂Φ

∂μ
� χ

� �

� δμ

� �

dvdt

þ

ðt

t0

ð

B0

ρ
∂u

∂t
� p

� �

� δ
∂u

∂t

� �� �

dvdtþ

ðt

t0

ð

B0

J
∂φ

∂t
� q

� �

� δ
∂φ

∂t

� �� �

dvdt

þ

ðt

t0

ð

B0

divσ �
∂p

∂t

� �

� δu

� �

dvdtþ

ðt

t0

ð

B0

divμþ ε � σ �
∂q

∂t

� �

� δu

� �

dvdt

þ

ðt

t0

ð

G1

u� u0ð Þ � δσn½ �dadtþ

ðt

t0

ð

G1

ϕ� ϕ0ð Þ � δμn½ �dadt

þ

ðt

t0

ð

G2

σn � σ0ð Þ � δu½ �dadtþ

ðt

t0

ð

G2

μn � μ0ð Þ � δϕ½ �dadt

3. Dynamic Cosserat plate theory

In this section we review our stress, couple stress and kinematic assumptions of
the Cosserat plate [7]. We consider the thin plate P, where h is the thickness of the
plate and x3 ¼ 0 represents its middle plane. The sets T and B are the top and
bottom surfaces contained in the planes x3 ¼ h=2, x3 ¼ �h=2 respectively and the
curve Γ is the boundary of the middle plane of the plate.

The set of points P ¼ Γ� � h
2 ;

h
2

	 
� �

∪T ∪B forms the entire surface of the plate

and Γu � � h
2 ,

h
2

	 


is the lateral part of the boundary where displacements and
microrotations are prescribed. The notation Γσ ¼ Γ\Γu of the remainder we use to

describe the lateral part of the boundary edge Γσ � � h
2 ,

h
2

	 


where stress and couple
stress are prescribed. We also use notation P0 for the middle plane internal domain
of the plate.

In our case we consider the vertical load and pure twisting momentum boundary
conditions at the top and bottom of the plate, which can be written in the form:

σ33 x1; x2; h=2; tð Þ ¼ σt x1; x2; tð Þ, σ33 x1; x2;�h=2; tð Þ ¼ σb x1; x2; tð Þ, (30)

σ3β x1; x2;�h=2; tð Þ ¼ 0, (31)

μ33 x1; x2; h=2; tð Þ ¼ μt x1; x2; tð Þ, μ33 x1; x2;�h=2; tð Þ ¼ μb x1; x2; tð Þ, (32)

μ3β x1; x2;�h=2; tð Þ ¼ 0, (33)

where x1; x2ð Þ∈P0:
We will also consider the rotatory inertia J in the form

J ¼

J11 J12 0

J12 J22 0

0 0 J33

0

B

@

1

C

A

LetA denote the set of all admissible states that satisfy the Cosserat plate strain-
displacement relation Eq. (5) and let Θ be a functional on A defined by

Θ s; ηð Þ ¼ US
K þ TS

C �

ð

P0

S � E þ P �
∂U

∂t
� P̂ �W þ vΩ0

3

� �

daþ

ð

Γσ

So � U�Uoð Þdsþ

ð

Γu

Sn �Uds,

(34)
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for every s ¼ U; E;S½ �∈A: Here P̂ ¼ p̂1; p̂2

� �

andW ¼ W;W ∗ð Þ, p̂1 ¼ ηp and

p̂2 ¼
2
3 1� ηð Þp

Here the plate stress and kinetic energy density by the formulas

US
K ¼

ð

P0

Φ Sð Þda, TS
K ¼

ð

P0

ϒC
∂U

∂t

� �

da (35)

where P0 is the internal domain of the middle plane of the plate.

Φ Sð Þ ¼ �
3λ Mααð Þ Mββ

� �

h3μ 3λþ 2μð Þ

þ
3 αþ μð ÞM2

αβ

2h3αμ
þ

3 αþ μð Þ

160h3αμ
8Q̂ αQ̂ α þ 15QαQ̂ α þ 20Q̂ αQ

∗

α þ 8Q ∗

α Q
∗

α

h i

þ
3 α� μð ÞM2

αβ

2h3αμ
þ

α� μ

280h3αμ
21Qα 5Q̂ α þ 4Q ∗

α

� �h i

�
γ � ε

160hγε
24R2

αα þ 45R ∗

αα þ 60RαβR
∗

αβ þ 48R12R21

h i

þ
3 γ þ εð ÞS ∗

α S
∗

α

2h3γε
þ

γ þ ε

160h3γε
8R2

αβ þ 15R ∗

αβR
∗

αβ þ 20RαβR
∗

αβ

h i

�
3β

80hγ 3β þ 2γð Þ
�8 Rααð Þ Rββ

� �

� 15 R ∗

αα

� �

R ∗

ββ

� �

� 20 Rααð Þ R ∗

αα

� �

h i

�
β

4γ 3β þ 2γð Þ
2Rαα þ 3R ∗

αα

� �

t� h V2 þ T2
� �	 


þ
λ

560hμ 3λþ 2μð Þ

5þ 3η

1þ ηð Þ
pMαα

� �

þ
λþ μð Þh

840μ 3λþ 2μð Þ

140þ 168ηþ 51η2

4 1þ ηð Þ2

 !

p2 þ
λþ μð Þh

2μ 3λþ 2μð Þ
σ20 þ

εh

12hγε
3T2 þ V2
� �	 


(36)

and

ϒC
∂U

∂t

� �

¼
hρ

2

∂W

∂t

� �2

þ
4hρ

15

∂W ∗

∂t

� �2

þ
2hρ

3

∂W

∂t

∂W ∗

∂t

� �

þ
h3ρ

24

∂Ψα

∂t

� �2

þ
4hJαβ
15

∂Ω
0
α

∂t

∂Ω
0
β

∂t

 !

þ
hJαβ
2

∂Ω̂
0

α

∂t

∂Ω̂
0

β

∂t

 !

þ
2hJαβ
3

∂Ω
0
α

∂t

∂Ω̂
0

β

∂t

 !

þ
hJ33
6

∂Ω3

∂t

� �2

:

S, U and E are the Cosserat plate stress, displacement and strain sets

S ¼ Mαβ;Qα;Q
∗

α ; Q̂ α;Rαβ;R
∗

αβ; S
∗

β

h i

, (37)

Sn ¼ �Mα;
�Q ∗ ; �Q

^

α
; �Rα;

�R
∗

α ;
�S
∗

h i

, (38)

So ¼ Πoα;Πo3;Π
∗

o3;Moα;M
∗

oα;M
∗

o3

	 


, (39)

U ¼ Ψα;W;Ω3;Ω
0
α ;W

∗ ;Ω0
α

	 


, (40)
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E ¼ eαβ;ωβ;ω
∗

α ; ω̂α; τ3α; ταβ; τ
∗

αβ

h i

, (41)

where Mαβnβ ¼ Πoα, Rαβnβ ¼ Moα, Q
∗

α nα ¼ Πo3, S
∗

α nα ¼ M ∗

o3, Q̂ αnα ¼ Π
∗

o3,

R ∗

αβnβ ¼ M ∗

oα,
�Mα ¼ Mαβnβ, �Q

∗

¼ Q ∗

β nβ,
�Rα ¼ Rαβnβ, �S

∗

¼ S ∗

β nβ,
�Q
^

¼ �Q
^

βnβ,

�R
∗

α ¼ �R
∗

αβnβ. (nβ is the outward unit normal vector to Γu).

The plate characteristics provide the approximation of the components of the
three-dimensional tensors σji and μji

σαβ ¼
6

h2
ζMαβ x1; x2; tð Þ, (42)

σ3β ¼
3

2h
1� ζ2
� �

Qβ x1; x2; tð Þ, (43)

σβ3 ¼
3

2h
1� ζ2
� �

Q ∗

β x1; x2; tð Þ þ
3

2h
Q̂ β x1; x2; tð Þ, (44)

σ33 ¼ �
3

4

1

3
ζ3 � ζ

� �

p1 x1; x2; tð Þ þ ζp2 x1; x2; tð Þ þ σ0 x1; x2; tð Þ, (45)

μαβ ¼
3

2h
1� ζ2
� �

Rαβ x1; x2; tð Þ þ
3

2h
R ∗

αβ x1; x2; tð Þ, (46)

μβ3 ¼
6

h2
ζS ∗

β x1; x2; tð Þ, (47)

μ3β ¼ 0, (48)

μ33 ¼ ζV x1; x2; tð Þ þ T x1; x2; tð Þ, (49)

where

p x1; x2; tð Þ ¼ σt x1; x2; tð Þ � σb x1; x2; tð Þ, (50)

σ0 x1; x2; tð Þ ¼
1

2
σt x1; x2; tð Þ þ σb x1; x2; tð Þ
� �

, (51)

V x1; x2; tð Þ ¼
1

2
μt x1; x2; tð Þ � μb x1; x2; tð Þ
� �

, (52)

T x1; x2; tð Þ ¼
1

2
μt x1; x2; tð Þ þ μb x1; x2; tð Þ
� �

: (53)

The pressures p1 and p2 are chosen in the form

p1 x1; x2; tð Þ ¼ ηp x1; x2; tð Þ, (54)

p2 x1; x2; tð Þ ¼
1� ηð Þ

2
p x1; x2; tð Þ: (55)

and η∈R is called splitting parameter.
The three-dimensional displacements ui and microrotations ϕi

uα ¼
h

2
ζΨα x1; x2; tð Þ, (56)

u3 ¼ W x1; x2; tð Þ þ 1� ζ2
� �

W ∗ x1; x2; tð Þ, (57)

ϕα ¼ Ω
0
α x1; x2; tð Þ 1� ζ2

� �

þ Ω̂α x1; x2; tð Þ, (58)
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ϕ3 ¼ ζΩ3 x1; x2; tð Þ, (59)

and the three-dimensional strain and torsion tensors γji and χji

γαβ ¼
6

h2
ζeαβ x1; x2; tð Þ, (60)

γ3β ¼
3

2h
1� ζ2
� �

ωβ x1; x2; tð Þ, (61)

γβ3 ¼
3

2h
1� ζ2
� �

ω ∗

β x1; x2; tð Þ þ
3

2h
ω̂β x1; x2; tð Þ, (62)

χαβ ¼
3

2h
1� ζ2
� �

ταβ x1; x2; tð Þ þ
3

2h
τ ∗αβ x1; x2; tð Þ, (63)

χ3β ¼
6

h2
ζτ ∗β x1; x2; tð Þ, (64)

where ζ ¼ 2x3
h .

Then zero variation of the functional

δΘ s; ηð Þ ¼ 0

is equivalent to the plate bending system of equations (A) and constitutive
formulas (B) mixed problems.

A. The bending equilibrium system of equations:

Mαβ,α �Qβ ¼ I1
∂
2
Ψβ

∂t2
, (65)

Q ∗

α,α þ p̂1 ¼ I2
∂
2W ∗

∂t2
, (66)

Rαβ,α þ ε3βγ Q ∗

γ �Q γ

� �

¼ Iαβ
∂
2
Ω

0
α

∂t2
, (67)

ε3βγMβγ þ S ∗

α,α ¼ I3
∂
2
Ω3

∂t2
, (68)

Q̂ α,α þ p̂2 ¼ I2
∂
2W

∂t2
, (69)

R ∗

αβ,α þ ε3βγQ̂ γ ¼ I0αβ
∂
2
Ω̂

0

α

∂t2
, (70)

where I1 ¼ h3

12 ρ, I2 ¼
2h
3 ρ, Iαβ ¼

5h
6 Jαβ, I3 ¼

h2

6 J33, I
0
αβ ¼

2h
3 Jαβ, p̂1 ¼ ηoptp, and

p̂2 ¼
2
3 1� ηopt

� �

p, with the resultant traction boundary conditions:

Mαβnβ ¼ Πoα, Rαβnβ ¼ Moα, (71)

Q ∗

α nα ¼ Πo3, S ∗

α nα ¼ ϒo3, (72)

at the part Γσ and the resultant displacement boundary conditions

Ψα ¼ Ψoα,W ¼ Wo,Ω
0
α ¼ Ω

0
oα,Ω3 ¼ Ωo3, (73)

at the part Γu:
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B. Constitutive formulas in the reverse form:1

Mαα ¼
μ λþ μð Þh3

3 λþ 2μð Þ
Ψα,α þ

λμh3

6 λþ 2μð Þ
Ψβ,β þ

3p1 þ 5p2
� �

λh2

30 λþ 2μð Þ
, (74)

Mβα ¼
μ� αð Þh3

12
Ψα,β þ

μþ αð Þh3

12
Ψβ,α þ �1ð Þα

0 αh3

6
Ω3, (75)

Rβα ¼
5 γ � εð Þh

6
Ω

0
β,α þ

5 γ þ εð Þh

6
Ω

0
α,β, (76)

Rαα ¼
10hγ β þ γð Þ

3 β þ 2γð Þ
Ω

0
α,α þ

5hβγ

3 β þ 2γð Þ
Ω

0
β,β, (77)

R ∗

βα ¼
2 γ � εð Þh

3
Ω̂β,α þ

2 γ þ εð Þh

3
Ω̂α,β, (78)

R ∗

αα ¼
8γ γ þ βð Þh

3 β þ 2γð Þ
Ω̂α,α þ

4γβh

3 β þ 2γð Þ
Ω̂β,β, (79)

Qα ¼
5 μþ αð Þh

6
Ψα þ

5 μ� αð Þh

6
W ,α þ

2 μ� αð Þh

3
W ∗

,α þ �1ð Þβ
5hα

3
Ω

0
β þ �1ð Þβ

5hα

3
Ω̂β,

(80)

Q ∗

α ¼
5 μ� αð Þh

6
Ψα þ

5 μ� αð Þ2h

6 μþ αð Þ
W ,α þ

2 μþ αð Þh

3
W ∗

,α þ �1ð Þα
5hα

3
Ω

0
β þ

μ� αð Þ

μþ αð Þ
Ω̂β

� �

,

(81)

Q̂ α ¼
8αμh

3 μþ αð Þ
W ,α þ �1ð Þα

8αμh

3 μþ αð Þ
Ω̂β, (82)

S ∗

α ¼
5γεh3

3 γ þ εð Þ
Ω3,α, (83)

and the optimal value ηopt of the splitting parameter is given as in [10]

ηopt ¼
2W 00ð Þ �W 10ð Þ �W 01ð Þ

2 W 11ð Þ þW 00ð Þ �W 10ð Þ �W 01ð Þ
� � : (84)

where

W
ijð Þ ¼ Sjη¼i � Ejη¼j:

We also assume that the initial condition can be presented in the form

U x1; x2;0ð Þ ¼ U
0 x1; x2ð Þ,

∂U

∂t
x1; x2;0ð Þ ¼ V

0 x1; x2ð Þ

4. Cosserat plate dynamic field equations

The Cosserat plate field equations are obtained by substituting the relations
Eqs. (74)–(83) into the system of Eqs. (65)–(70) similar to [10]:

1 In the following formulas a subindex β = 1 if α = 2 and β = 2 if α = 1.

10

Dynamical Systems Theory



LU ¼ K
∂
2
U

∂t2
þ F ηð Þ, (85)

where

L ¼

L11 L12 L13 L14 0 L16 kL13 0 L16

L12 L22 L23 L24 L16 0 kL23 L16 0

�L13 �L23 L33 0 L35 L36 L77 L38 L39

L41 L42 0 L44 0 0 0 0 0

0 �L16 �L38 0 L55 L56 �kL35 L58 0

L16 0 �L39 0 L56 L66 �kL36 0 L58

�L13 �L14 L73 0 L35 L36 L77 L78 L79

0 �L16 �L78 0 L85 L56 �kL35 L88 kL56

L16 0 �L79 0 L56 L55 �kL36 kL56 L99

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

K ¼

h3

12
ρ 0 0 0 0 0 0 0 0

0
h3

12
ρ 0 0 0 0 0 0 0

0 0
2h

3
ρ 0 0 0 0 0 0

0 0 0
h2

6
J33 0 0 0 0 0

0 0 0 0
5h

6
J11

5h

6
J12 0 0 0

0 0 0 0
5h

6
J12

5h

6
J22 0 0 0

0 0 0 0 0 0
2h

3
ρ 0 0

0 0 0 0 0 0 0
2h

3
J11

2h

3
J12

0 0 0 0 0 0 0
2h

3
J12

2h

3
J22

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

U ¼ Ψ1; Ψ2; W; Ω3; Ω
0
1 ; Ω

0
2 ; W ∗ ; Ω

0
1 ; Ω

0
2

	 
T
,

F ηð Þ ¼ �
3h2λ 3p1,1þ5p2,1ð Þ

30 λþ2μð Þ , �
3h2λ 3p1,2þ5p2,2ð Þ

30 λþ2μð Þ , �p1, 0, 0, 0,
h2 3p1þ4p2ð Þ

24 , 0, 0
h iT

,

p1 ¼ ηp, p2 ¼
1� ηð Þ

2
p
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The operators Lij are given as follows

L11 ¼ c1
∂
2

∂x21
þ c2

∂
2

∂x22
� c3, L12 ¼ c1 � c2ð Þ

∂
2

∂x1x2
, L13 ¼ c11

∂

∂x1
,

L14 ¼ c12
∂

∂x2
, L16 ¼ c13, L17 ¼ k1c11

∂

∂x1
,

L22 ¼ c2
∂
2

∂x21
þ c1

∂
2

∂x22
� c3, L23 ¼ c11

∂

∂x2
, L24 ¼ �c12

∂

∂x1
,

L33 ¼ c3
∂
2

∂x21
þ

∂
2

∂x22

� �

, L35 ¼ �c13
∂

∂x2
, L36 ¼ c13

∂

∂x1
,

L38 ¼ �c10
∂

∂x2
, L39 ¼ c10

∂

∂x1
, L41 ¼ �c12

∂

∂x2
,

L42 ¼ c12
∂

∂x1
, L44 ¼ c6

∂
2

∂x21
þ

∂
2

∂x22

� �

� 2c12, L55 ¼ c7
∂
2

∂x21
þ c8

∂
2

∂x22
� 2c13,

L56 ¼ c7 � c8ð Þ
∂
2

∂x1x2
, L58 ¼ �c9, L66 ¼ c8

∂
2

∂x21
þ c7

∂
2

∂x22
� 2c13,

L73 ¼ c5
∂
2

∂x21
þ

∂
2

∂x22

� �

, L77 ¼ c4
∂
2

∂x21
þ

∂
2

∂x22

� �

, L78 ¼ �c14
∂

∂x2
,

L79 ¼ c14
∂

∂x1
, L85 ¼ c7

∂
2

∂x21
þ c8

∂
2

∂x22
� 2c13, L88 ¼ c7

∂
2

∂x21
þ c8

∂
2

∂x22
� c15,

L99 ¼ c8
∂
2

∂x21
þ c7

∂
2

∂x22
� c15:

The coefficients ci are given as

c1 ¼
h3μ λþ μð Þ

3 λþ 2μð Þ
, c2 ¼

h3 αþ μð Þ

12
, c3 ¼

5h αþ μð Þ

6
, c4 ¼

5h α� μð Þ2

6 αþ μð Þ
,

c5 ¼
h 5α2 þ 6αμþ 5μ2ð Þ

6 αþ μð Þ
, c6 ¼

h3γε

3 γ þ εð Þ
, c7 ¼

10hγ β þ γð Þ

3 β þ 2γð Þ
, c8 ¼

5h γ þ εð Þ

6
,

c9 ¼
10hα2

3 αþ μð Þ
, c10 ¼

5hα α� μð Þ

3 αþ μð Þ
, c11 ¼

5h α� μð Þ

6
, c12 ¼

h3α

6
,

c13 ¼
5hα

3
, c14 ¼

hα 5αþ 3μð Þ

3 αþ μð Þ
, c15 ¼

2hα 5αþ 4μð Þ

3 αþ μð Þ
:

5. Numerical validation

For the validation purposes we provide the algorithm and computation results
for the three-dimensional Cosserat elastodynamics. We also present the analysis of
the numerical results based on the plate theory for the microelements of different
shapes and orientations incorporated into the Cosserat plate.

5.1 Analysis of Cosserat plate vibrations based on the three-dimensional theory

In our computations we consider the plates made of polyurethane foam—a
material reported in the literature to behave Cosserat like—and the values of the
technical elastic parameters presented in [15]: E ¼ 299:5MPa, ν ¼ 0:44,

lt ¼ 0:62mm, lb ¼ 0:327mm, N2 ¼ 0:04. Taking into account that the ratio β=γ
is equal to 1 for bending [15], these values of the technical constants correspond
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to the following values of Lamé and Cosserat parameters: λ ¼ 762:616MPa,
μ ¼ 103:993MPa, α ¼ 4:333MPa, β ¼ 39:975MPa, γ ¼ 39:975MPa, ε ¼ 4:505MPa.
We consider a low-density rigid foam usually characterized by the densities of
24–50 kg/m3 [16]. In all further numerical computations we used the density value
ρ ¼ 34 kg/m3 and different values the rotatory inertia J.

Let us consider the plate B0 being a rectangular cuboid 0; a½ � � 0, a� � � h
2 ;

h
2

	 


. Let

the sets T and B be the top and the bottom surfaces contained in the planes x3 ¼ h
2 and

x3 ¼ � h
2 respectively, and the curve Γ ¼ Γ1 ∪Γ2 be the lateral part of the boundary:

Γ1 ¼ x1; x2; x3ð Þ : x1 ∈ 0; af g; x2 ∈ 0; a½ �; x3 ∈ �
h

2
;
h

2

� � �

,

Γ2 ¼ x1; x2; x3ð Þ : x1 ∈ 0; a½ �; x2 ∈ 0; af g; x3 ∈ �
h

2
;
h

2

� � �

,

We solve the three-dimensional Cosserat equilibrium Eqs. (1)–(2) accompanied
by the constitutive Eqs. (3)–(4) and strain-displacement and torsion-rotation
relations Eq. (5) complemented by the following boundary conditions:

Γ1 : u2 ¼ 0, u3 ¼ 0,φ1 ¼ 0, σ11 ¼ 0, μ12 ¼ 0, μ13 ¼ 0; (86)

Γ2 : u1 ¼ 0, u3 ¼ 0,φ2 ¼ 0, σ22 ¼ 0, μ21 ¼ 0, μ23 ¼ 0; (87)

T : σ33 ¼ p x1; x2ð Þ, μ33 ¼ 0; (88)

B : σ33 ¼ 0, μ33 ¼ 0: (89)

where the initial distribution of the pressure is given as p ¼ sin πx1
a

� �

sin πx2
a

� �

sinωt

and the rotatory inertia tensor J is assumed to have a diagonal form

J ¼

Jx 0 0

0 Jy 0

0 0 Jz

2

6

4

3

7

5
: (90)

Using the method of separation of variables and taking into account the bound-
ary conditions Eqs. (86)–(87), we express the kinematic variables in the form:

u1 ¼ cos
πx1
a

� �

sin
πx2
a

� �

z1 x3ð Þ sinωt, (91)

u2 ¼ sin
πx1
a

� �

cos
πx2
a

� �

z2 x3ð Þ sinωt, (92)

u3 ¼ sin
πx1
a

� �

sin
πx2
a

� �

z3 x3ð Þ sinωt, (93)

ϕ1 ¼ sin
πx1
a

� �

cos
πx2
a

� �

z4 x3ð Þ sinωt, (94)

ϕ2 ¼ cos
πx1
a

� �

sin
πx2
a

� �

z5 x3ð Þ sinωt, (95)

ϕ3 ¼ cos
πx1
a

� �

cos
πx2
a

� �

z6 x3ð Þ sinωt, (96)

where the functions zi x3ð Þ represent the transverse variations of the kinematic
variables.

If we substitute the expressions Eqs. (91)–(96) into Eqs. (3)–(4) and then into
Eqs. (1)–(2), we will obtain the following eigenvalue problem
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Bz ¼ ω2Az (97)

where

B ¼

b1L2 þ b2L0 b3L0 b4L1 0 �b5L1 �b6L0

b3L0 b1L2 þ b2L0 b4L1 b5L1 0 b6L0

�b4L1 b4L1 b7L2 b6L0 �b6L0 0

0 �b5L1 b6L0 b9L2 þ b10L0 b11L0 b12L1

b5L1 0 �b6L0 b11L0 b9L2 þ b10L0 b12L1

�b6L0 b6L0 0 �b12L1 �b12L1 b13L2 þ b2L14

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

,

(98)

A ¼

�a2ρ 0 0 0 0 0

0 �a2ρ 0 0 0 0

0 0 �a2ρ 0 0 0

0 0 0 �a2Jx 0 0

0 0 0 0 �a2Jy 0

0 0 0 0 0 �a2Jz

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

, (99)

z ¼ z1, z2, z3, z4, z5, z6½ �T, (100)

and the differential operators Li are defined as

L0 ¼ I, L1 ¼
d

dx3
, L2 ¼

d2

dx23

and the coefficients bi are defined as

b1 ¼ a2 μþ αð Þ, b2 ¼ �π2 αþ λþ 3μð Þ, b3 ¼ �π2 λþ μ� αð Þ,

b4 ¼ aπ λþ μ� αð Þ, b5 ¼ 2a2α, b6 ¼ 2aπα,

b7 ¼ a2 2μþ λð Þ, b8 ¼ �2π2 αþ μð Þ, b9 ¼ a2 γ þ εð Þ,

b10 ¼ �π2 β þ εþ 3γð Þ, b11 ¼ �π2 β þ γ � εð Þ, b12 ¼ �aπ β þ γ � εð Þ,

b13 ¼ a2 β þ 2γð Þ, b14 ¼ �2π2 γ þ εð Þ � 4a2α

The system of differential Eq. (97) is complemented by the following boundary

conditions Dz ¼ D0 for x3 ¼ h
2 and Dz ¼ 0 for x3 ¼ � h

2.

D ¼

d1L1 0 d2L0 0 �d3L0 0

0 d1L1 d2L0 d3L0 0 0

d4L0 d4L0 d5L1 0 0 0

0 0 0 d6L1 0 d7L0

0 0 0 0 d6L1 d7L0

0 0 0 d8L0 d8L0 d9L1

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

, (101)

D0 ¼ 0, 0, a, 0, 0, 0½ �T, (102)

and the coefficients di are defined as

d1 ¼ a μþ αð Þ, d2 ¼ �π μ� αð Þ, d3 ¼ 2aα,

d4 ¼ a λþ 2μð Þ, d5 ¼ �πλ, d6 ¼ a γ þ εð Þ,

d7 ¼ a γ � εð Þ, d8 ¼ πβ, d9 ¼ a β þ 2γð Þ:
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The idea for the solution of the eigenvalue problem Eq. (97) is based on the
following algorithm:

Step 1. Fix certain frequency value.
We fix certain value of the frequency ω and force the Cosserat body to vibrate at

this frequency.
Step 2. Solve the three-dimensional Cosserat system of equations.
Mathematically, fixing certain value of ω implies that three-dimensional system

of Eq. (97) has a constant right-hand side and therefore can be solved for the
kinematic variables as a static system of equations. We solve the system Eq. (97)
using the high-precision Runge-Kutta method incorporated in Mathematica
software similar to how it was done in [7].

Step 3. Find large amplitudes of the kinematic variables.
We runω through an interval of positive real values and takenotewhere the solution

changes its sign and the amplitude of the solutions starts to grow indefinitely. This
corresponds to the oscillation of the Cosserat body at its resonant frequency. Thus,
when the frequencyω coincides with the natural frequency of the plate the resonance
will occur and the large amplitude linear vibrations can be observed (Figure 1).

The comparison of the eigenfrequencies of the Cosserat plate with the eigenfre-
quencies of the three-dimensional Cosserat elasticity is given in the Table 1. The
rotatory inertia principle moments used are Jx ¼ 0:001, Jy ¼ 0:001, Jz ¼ 0:001,

which represent a ball-shaped microelement (Figure 2). The relative error of the
natural macro frequencies associated with the rotation of the middle plane and the
flexural motion is less than 1%.

Figure 1.
Large amplitude linear vibrations of the Cosserat body forced to vibrate close to its natural frequency ω1.

ω1, ω2 ω3, ω7 ω4 ω5, ω8 ω6, ω9

Plate theory 0.310 17.881 501.13 205.62 338.95

D Cosserat elasticity 0.309 17.763 530.82 211.98 317.87

Table 1.
Comparison of the eigenfrequencies ωi (Hz) with the exact values of the 3D Cosserat elasticity.
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5.2 Analysis of Cosserat plate vibrations based on the plate theory

We consider a plate a� a of thickness h with the boundary G ¼ G1 ∪G2

G1 ¼ x1; x2ð Þ : x1 ∈ 0; af g; x2 ∈ 0; a½ �f g

G2 ¼ x1; x2ð Þ : x2 ∈ 0; af g; x1 ∈ 0; a½ �f g

and the following hard simply supported boundary conditions [7]:

G1 : W ¼ 0,W ∗ ¼ 0,Ψ2 ¼ 0,Ω0
1 ¼ 0, Ω̂0

1 ¼ 0,Ω3 ¼ 0,
∂Ψ1

∂n
¼ 0,

∂Ω
0
2

∂n
¼ 0,

∂Ω̂
0

2

∂n
¼ 0;

G2 : W ¼ 0,W ∗ ¼ 0,Ψ1 ¼ 0,Ω0
2 ¼ 0, Ω̂0

2 ¼ 0,Ω3 ¼ 0,
∂Ψ2

∂n
¼ 0,

∂Ω
0
1

∂n
¼ 0,

∂Ω̂
0

1

∂n
¼ 0:

Similar to [12] we apply the method of separation of variables for the eigenvalue

problem Eq. (85) to solve for the kinematic variables Ψα, W, Ω3, Ω
0
α , W

∗ and Ω
0
α .

The kinematic variables can be further expressed in the following form

Ψ
nm
1 ¼ A1 cos

nπx1
a

� �

sin
mπx2
a

� �

sin ωtð Þ þ B1 sin
nπx1
a

� �

cos
mπx2
a

� �

sin ωtð Þ,

Ψ
nm
2 ¼ A2 sin

nπx1
a

� �

cos
mπx2
a

� �

sin ωtð Þ þ B2 cos
nπx1
a

� �

sin
mπx2
a

� �

sin ωtð Þ,

Wnm ¼ A3 sin
nπx1
a

� �

sin
mπx2
a

� �

sin ωtð Þ þ B3 cos
nπx1
a

� �

cos
mπx2
a

� �

sin ωtð Þ,

Ω
nm
3 ¼ A4 cos

nπx1
a

� �

cos
mπx2
a

� �

sin ωtð Þ þ B4 sin
nπx1
a

� �

sin
mπx2
a

� �

sin ωtð Þ,

Ω
0,nm
1 ¼ A5 sin

nπx1
a

� �

cos
mπx2
a

� �

sin ωtð Þ þ B5 cos
nπx1
a

� �

sin
mπx2
a

� �

sin ωtð Þ,

Ω
0,nm
2 ¼ A6 cos

nπx1
a

� �

sin
mπx2
a

� �

sin ωtð Þ þ B6 sin
nπx1
a

� �

cos
mπx2
a

� �

sin ωtð Þ,

W ∗ ,nm ¼ A7 sin
nπx1
a

� �

sin
mπx2
a

� �

sin ωtð Þ þ B7 cos
nπx1
a

� �

cos
mπx2
a

� �

sin ωtð Þ,

Ω̂
0,nm
1 ¼ A8 sin

nπx1
a

� �

cos
mπx2
a

� �

sin ωtð Þ þ B8 cos
nπx1
a

� �

sin
mπx2
a

� �

sin ωtð Þ,

Ω̂
0,nm
2 ¼ A9 cos

nπx1
a

� �

sin
mπx2
a

� �

sin ωtð Þ þ B9 sin
nπx1
a

� �

cos
mπx2
a

� �

sin ωtð Þ,

where Ai and Bi are constants.

Figure 2.
Ball-shaped micro-elements: Jx ¼ 0:001, Jy ¼ 0:001, Jz ¼ 0:001 (left) and horizontally stretched ellipsoid

micro-elements: Jx ¼ 0:002, Jy ¼ 0:001, Jz ¼ 0:0001 rightð Þ.
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We solve an eigenvalue problem by substituting these expressions into the
system of Eq. (85). The obtained nine sequences of positive eigenfrequencies ωnm

i

are associated with the rotation of the middle plane (ωnm
1 and ωnm

2 ), flexural motion
and its transverse variation (ωnm

3 and ωnm
7 ), micro rotatory inertia (ωnm

4 , ωnm
5 and

ωnm
6 ) and its transverse variation (ωnm

8 and ωnm
9 ) [12].

We perform all our numerical simulations for a ¼ 3:0 m and h ¼ 0:1 m. We
consider different forms of micro elements: ball-shaped elements, horizontally and
vertically stretched ellipsoids (see Figure 2). For simplicity we will use the notation
ωi for the first elements ω11

i of the sequences ωnm
i . The results of the computations

are given in the Table 2. The shape of the micro-elements does not effect the
natural macro frequencies ω1 and ω2 associated with the rotation of the middle
plane and ω3 and ω7 associated with the flexural motion and its transverse variation.
The ellipsoid elements have higher micro frequencies associated with the micro
rotatory inertia (ω4, ω5 and ω6) and its transverse variation (ω8 and ω9), than the
ball-shaped elements.

Let Jx, Jy and Jz be the principal moments of inertia of the microelements

corresponding to the principal axes of their rotation.We assume that the quantities Jx,
Jy and Jz are constant throughout the plate B0. If the microelements are rotated

around the z-axis by the angle θ the rotatory inertia tensor J can be expressed as

J ¼

Jx cos
2θ þ Jy sin

2θ Jx � Jy

� �

sin 2θ 0

Jx � Jy

� �

sin 2θ Jx sin
2θ þ Jy cos

2θ 0

0 0 Jz

0

B

B

B

@

1

C

C

C

A

(103)

ω1, ω2 ω3, ω7 ω4 ω5, ω8 ω6, ω9

Shape Jx Jy Jz ω1, ω2 ω3, ω7 ω4 ω5, ω8 ω6, ω9

Ball 0.001 0.001 0.001 17.88 0.31 501.13 205.62 338.95

Vertical ellipsoid 0.001 0.001 0.0001 17.88 0.31 501.13 650.22 338.95

Horizontal ellipsoid 0.0001 0.001 0.001 17.88 0.31 1363.01 205.62 394.08

Table 2.
Eigenfrequencies ω11

i (Hz) for different shapes of micro-elements.

Angle θ ω1 ω2 ω3 ω7 ω4 ω5 ω8 ω6 ω9

0∘ 17.88 17.88 0.31 0.31 650.221 265.37 265.37 450.61 450.61

10∘ 17.88 17.88 0.31 0.31 650.221 255.59 279.40 429.89 469.93

20∘ 17.88 17.88 0.31 0.31 650.221 247.75 295.33 406.70 484.79

30∘ 17.88 17.88 0.31 0.31 650.221 242.57 313.65 382.94 495.14

40∘ 17.88 17.88 0.31 0.31 650.221 239.99 333.10 360.57 500.46

45∘ 17.88 17.88 0.31 0.31 650.221 239.68 338.95 354.35 501.13

50∘ 17.88 17.88 0.31 0.31 650.221 239.99 333.10 360.57 500.46

60∘ 17.88 17.88 0.31 0.31 650.221 242.57 313.65 382.94 495.14

70∘ 17.88 17.88 0.31 0.31 650.221 247.75 295.33 406.70 484.79

80∘ 17.88 17.88 0.31 0.31 650.221 255.59 279.40 429.89 469.93

90∘ 17.88 17.88 0.31 0.31 650.221 265.37 265.37 450.61 450.61

Table 3.
Eigenfrequencies ω11

i (Hz) for different angles of rotation of horizontal ellipsoid micro-elements.
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The eigenfrequencies for different angles of microrotation of the microelements
are given in the Table 3 and the Figure 3. The rotatory inertia principle moments
used are Jx ¼ 0:002, Jy ¼ 0:001, Jz ¼ 0:0001, which represent a horizontally

stretched ellipsoid microelement. The case when the microelements are not aligned
with the edges of the plate the model predicts some additional natural frequencies
related with the microstructure of the material.

6. Conclusions

In this chapter, we presented a mathematical model of Cosserat plate vibrations.
The dynamic model of the plates has been developed as a dynamic extension of the
Reissner plate theory. The equations has been presented in both tensorial and the
matrix forms. We also described the validation of the model, which is based on the
comparison with the three-dimensional Cosserat elastodynamics exact solutions.
Based on the presented results of the computer simulations we were able to detect
and classify the additional high resonance frequencies of a plate. We have shown
that the frequencies depend on the shape and orientation of microelements (ball-
shaped elements, horizontally and vertically stretched ellipsoids) incorporated into
the Cosserat plates. We also have been able to identify that micro frequencies
associated with the micro rotatory inertia and its transverse variation of the ellip-
soid elements have higher micro frequencies than the ball-shaped elements. We also
showed the dependence of the eigenfrequencies on the angles of rotation of the
horizontal ellipsoid micro-elements. These results can be used to identify the char-
acteristics of the plate micro-elements.

Figure 3.
Micro frequencies ω4, ω5, ω8, ω6 and ω9.
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Appendix A: conventions and notations

A.1 Conventions

We use the following notation convention:

1. the values of the Latin subindex i take values in the set 1; 2; 3f g

2. the values of the Greek indices α and β take values in the set 1; 2f g

3. the Einstein summation notation is used throughout the chapter

A.2 Notations

xif g artesian coordinates
P Cosserat thin plate
h plate thickness
μ, λ Lamé parameters
α, β, γ, ε Cosserat elasticity parameters
ρ material density
Jji or J rotatory inertia

σji orσ the stress tensor
μji orμ the couple stress tensor

γji orγ strain tensor

χji or χ bend-twist tensor

ui oru displacement vector
ϕi orϕ microrotation vector
pi orp linear momentum
qi orq angular momentum
εijk Levi-Civita tensor

UC strain stored energy
UK stress energy
TC stored kinetic energy
TW work of inertia forces
S Cosserat plate stress set
U Cosserat plate displacement set
E Cosserat plate strain set
η splitting parameter
p pressure
ω natural frequency of plate vibration
θ angle of microelement orientation
Mαβ bending and twisting moments
Qα shear forces

Q ∗

α , Q̂ α
transverse shear forces

Rαβ micropolar bending moments
R ∗

αβ micropolar twisting moments

S ∗

α micropolar couple moments
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Ψα rotations of the middle plane around xα axis
W,W ∗ vertical deflections of the middle plate

Ω
0
α

microrotations in the middle plate around xα axis

Ω3 rate of change of the microrotation
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