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Chapter

Innate Immunity and 
Neuroinflammation in 
Neuropsychiatric Conditions 
Including Autism Spectrum 
Disorders: Role of Innate Immune 
Memory
Harumi Jyonouchi

Abstract

The neuroimmune network represents a dense network of multiple signals 
mediated by neurotransmitters, hormones, growth factors, and cytokines produced 
by multiple lineage cells and is crucial for maintaining neuroimmune homeostasis. 
Endogenous and exogenous stimuli, which are dangerous to the body, are detected 
by sensor cells, and they rapidly inform the brain through this network. Innate 
immunity is thought to play a major role in the neuroimmune network, through 
cytokines and other mediators released from secretary innate immune cells. 
Recent research has revealed that innate immunity has its own memory. This is 
accomplished by metabolic and epigenetic changes. Such changes may result in 
augmenting immune protection with a risk of excessive inflammatory responses 
to subsequent stimuli (trained immunity). Alternatively, innate immune memory 
can induce suppressive effects (tolerance), which may impose a risk of impaired 
immune defense. Innate immune memory affects the neuroimmune network for a 
prolonged period, and dysregulated innate immune memory has been implicated 
with pathogenesis of neuropsychiatric conditions. This chapter summarizes a role 
of innate immune memory (trained immunity vs. tolerance) in neuroinflammation 
in association with neuropsychiatric conditions including autism spectrum disor-
ders (ASD).

Keywords: innate immunity, cytokines, neuroinflammation, neuroimmune network, 
immune metabolic processes

1. Introduction

It is well accepted that inflammation in the peripheral organs can influence 
homeostasis and immune responses in the central nervous system (CNS) [1]. In 
common neuropsychiatric conditions such as schizophrenia and depression, evi-
dence indicates that neuroinflammation plays a role in the disease pathogenesis [2]. 
Long-lasting effects of neuroinflammation in such neuropsychiatric conditions are 
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implicated with altered innate immune responses in the absence of specific patho-
gens [2]. However, until recently, it is not well understood how innate immunity, 
which was thought to have no lasting memory unlike adaptive immunity, can exert 
prolonged actions on the CNS. The recent discovery of innate immune memory 
(trained immunity vs. tolerance) shed a light in a long postulated role of innate 
immunity in neuropsychiatric diseases [3, 4].

Since the existence of the immune system was recognized more than 50 years 
ago, the immune system has been thought to be comprised of two components, 
innate immunity and adaptive immunity. Innate immunity is the arm that mounts 
nonspecific, acute immune responses, by sensing microbial by-products called 
pathogen-associated molecular patterns (PAMPs) or by-products derived from 
tissue injuries called damage-associated molecular patterns (DAMPs) [5]. Signaling 
through PAMPs and DAMPs are thought to play a major role in plant immunity 
[6]. In animals, adaptive immunity is the arm that develops antigen (Ag)-specific 
responses. The development of Ag-specific responses requires lengthy processes 
including antigen (Ag) processing by Ag-presenting cells (APCs), Ag presentation 
to T and B cells, and TCR or immunoglobulin gene arrangements of T and B lym-
phocytes, respectively, which lead to the development of Ag-specific T and B cells 
and finally antibodies (Abs) [7]. Adaptive immunity effectively eliminates hazards 
from the body through Ag-specific cellular and humoral immune responses [7]. 
Adaptive immunity results in the development of long-lasting Ag-specific memory 
T/B cells [8]. In this way, the body retains immune memory against specific patho-
gens for a prolonged time. It is well known that individuals who have survived 
measles will retain measles-specific immune defense for life.

In contrast, immunology textbooks have long taught us that innate immunity 
does not have any lasting effects or memory, and it is mainly effective in containing 
infection until adaptive immunity takes over. Innate immunity has also been known 
to shape adaptive immunity through multiple mechanisms such as affecting actions 
of APCs, thereby indirectly modifying adaptive immune responses [7]. However, 
recent exciting research revealed that innate immunity can have its own memory, 
following an immune stimulus, and this depends on time, amount, and the kinds 
of stimuli through metabolic and epigenetic changes [3, 9]. More importantly, 
the stimuli that evoke innate immune memory are not restricted to microbes; 
nonpathogenic challenges such as stress and obesity are also found to cause innate 
immune memory [3, 10].

As described previously, despite the accumulating evidence, it was difficult to 
understand how innate immunity exerts lasting effects, in the absence of specific 
pathogens or other persistent environmental stimuli, in neuropsychiatric condi-
tions. The recognition of innate immune memory (trained immunity vs. tolerance) 
has provided us new insights with regard to the role of innate immunity in physi-
ological as well as pathogenic consequences in the brain. In this chapter, research 
efforts shaping a concept of innate immune memory (trained immunity vs. innate 
immune tolerance) will be discussed first. In the latter part of the chapter, a poten-
tial role of innate immune memory in neuropsychiatric conditions, especially in 
ASD, will be discussed.

2. Innate immune memory

2.1 Trained immunity

The presence of innate immune memory was first suspected because of 
unexpected, nonspecific effects of vaccinations. This is best known for a Bacillus 
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Calmette-Guérin (BCG) vaccine. Epidemiological studies and subsequent ran-
domized trials showed that the BCG vaccination not only provided protection for 
tuberculosis but also protection against other pathogens, especially those causing 
respiratory infection, which resulted in a reduction in infant mortality greater than 
expected for reducing tuberculosis-associated mortality [11, 12]. Likewise, the 
measles vaccination resulted in a striking reduction in children’s mortality, which 
was again not to be explained by the reduction in mortality caused by measles [11]. 
These epidemiological observations were further explored by researchers in the 
Netherlands. They first demonstrated that innate immune memory does exist in 
animal models [13]. Namely, these researchers showed that BCG provided enhanced 
protection against Candida albicans through nonspecific adaptation of innate 
immunity, independent of lymphocytes [13]. They proposed to name this process 
of innate immune memory “trained immunity.” The following studies by the same 
group also revealed that such adaptive changes in innate immunity are present not 
only in monocyte-macrophage lineage cells but also in other innate immune cells 
such as natural killer (NK) cells [14] and progenitor cells of innate immune cells in 
the bone marrow [15, 16]. Further studies revealed the presence of trained immu-
nity in humans [17–19]. It became clear that trained immunity is similar to plant 
immunity which does not develop Ag-specific immunity, but develops prolonged 
immune defense by metabolic and epigenetic modulation [20]. Mounting evidence 
has now repeatedly shown that trained immunity is Ag nonspecific; the second 
stimulus (DAMP or PAMP) causing innate immune activation can be different from 
the first stimulus [3].

2.2 Mechanisms of trained immunity

Adaptive changes observed in “in vitro” models of trained immunity with 
β-glucan, a representative PAMP from Candida albicans, have been extensively 
studied. It was revealed that ß-glucan treatment induces activation of the dectin-1/
Akt/PTEN/mTOR/HIF-1α signaling pathway in innate immune cells [21]. That is, 
β-glucan activates dectin-1 which recruits Akt, leading to activation of mammalian 
target of rapamycin (mTOR) with suppression of PTEN expression and phosphory-
lation of the tuberous sclerosis complex (TSC) [22]. Activation of this pathway 
switches cellular metabolism from oxidative phosphorylation (ATP synthesis) to 
glycolysis, thereby reducing basal cellular respiration and increasing in glucose 
consumption, resulting in higher production of lactate [21]. Such metabolic changes 
lead to the exportation of citrate to the cytoplasm for cholesterol synthesis and 
phospholipid synthesis [23, 24].

This metabolic shift described above results in the replenishment of the Krebs 
cycle by metabolization of glutamine into glutamate and α-keto-glutamate, leading 
to an accumulation of fumarate [23, 24]. Higher concentration of fumarate inhibits 
the KDM5 family of H3K4 demethylase that eventually leads to epigenetic repro-
gramming [23]. It has been reported that in the initial phase of trained immunity, 
lysine 27 of histone 3 (H3K27) is acetylated and lysine 4 of histone 3 (H3K4) is 
methylated rapidly [25]. Although H3K27Ac gradually returns to the baseline over 
time, H3K4me3 was found to remain elevated in the trained immunity [25]. Such 
epigenetic histone modification (accumulation of H3K4me3) is known to lead to 
the remodeling of the local chromatin into an open and accessible state, result-
ing in the facilitation of the loading of transcriptional machinery. The remaining 
accumulation of H3K4me3 on chromatin has been implicated in the establishment 
of the epigenetic memory in the trained immunity [25, 26]. It was hypothesized that 
H3K4me3 increases the local hydrophobicity of the chromatin, allowing for liquid-
liquid phase separated transcription factors to engage with the DNA in the aqueous 
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environment of the nucleus, subsequently rendering loading of transcriptional 
machinery onto promoters [27–29]. This will allow cells to start rapid transcription 
of the genes necessary for immune responses, thereby causing a much stronger Ag 
nonspecific pro-inflammatory response.

Long noncoding RNAs (lncRNAs) can function as a molecular scaffold where 
multiple protein complexes can assemble, and they also guide these complexes to 
specific gene loci [30]. Recent research disclosed a new class of lncRNAs named 
immune gene-priming lncRNAs (IPLs), and IPLs were found to have a crucial 
role in the accumulation of H3K4me3 on chromatin [31]. A candidate IPL, termed 
upstream master lncRNA of the inflammatory chemokine locus (UMLILO), was 
found to be crucial for trained immunity; ablation of the UMLILO transcript 
abolished β-glucan-induced trained immunity in both human and murine mono-
cytes [30].

As shown in epidemiological studies of vaccinations, trained immunity, 
caused by metabolic and epigenetic changes, will be beneficial in providing 
broader immune defense and promoting tissue repair [32]. On the other hand, 
maladapted trained immunity can be detrimental to human health. Chronic 
inflammatory conditions including neuropsychiatric conditions have been impli-
cated with maladapted changes in trained immunity [2, 9]. It should also be noted 
that induction of trained immunity appears to be associated with doses of PAMP, 
perhaps DAMP in humans; depending on the dose and the kinds of PAMP/DAMP, 
tolerance can be induced, instead of trained immunity [2]. It has been shown that 
low to moderate doses of β-glucan, tri-DAP, and muramyl dipeptides are reported 
to induce trained immunity [33]. It also needs to be cautioned that the effects of 
trained immunity are likely associated with individual’s genetic and epigenetic 
background. For example, nonspecific effects of infant BCG vaccination are 
reported to be heterogeneous, affected by multiple genetic and environmental 
factors including age, gender, interactions with other vaccines, and exposure to 
infectious pathogens at the time of BCG vaccination [34].

2.3 Mediators of trained immunity

It has been reported that pre-administration of pro-inflammatory innate cyto-
kines [interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), and IL-6] provided 
protection against a variety of microbes [35]. Among the cytokines administered, 
IL-1 showed superior effects over TNF-α or IL-6 [35]. In BCG-vaccinated individu-
als, increase in production of these innate cytokines by monocytes in response to 
other microbes, other than BCG, was also found; this effect was again the most 
dependent on IL-1β [32]. IL-1β has also been reported to be crucial in the induc-
tion of trained immunity in NK cells [36]. On the other hand, in individuals with 
chronic mucocutaneous candidiasis, STAT-1-mediated type II interferon (IFN) 
induction was found to be crucial for induction of trained immunity [37]. The role 
of type II IFN (IFN-γ) in animal models was also reported by Kaufmann et al. [16]. 
However, in humans, innate immunity-associated protection (trained immunity) 
has been mainly implicated with IL-1β and other IL-1 families [38].

As detailed in the previous section, a metabolic shift from oxidative phosphory-
lation to aerobic glycolysis through the Hypoxia inducible factor-1α (HIF-1α)  
pathway downstream to mTOR is crucial for the development of trained immunity, 
since inhibition of this pathway is abolished induction of trained immunity [21]. 
Namely, in HIF-1α knockout mice, trained immunity was not induced [21]. IL-1β 
is known to be a direct target of HIF-1α [39], having a HIF-1α binding site in the 
promoter region of IL-1β gene [40]. It is now thus proposed that HIF-1α-induced 
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IL-1β also plays a role in epigenetic changes, through histone modifications [35]. 
Alternatively, IL-1β has been shown to upregulate HIF-1α [41].

Given the role of IL-1β in trained immunity, excessive, dysregulated production 
of IL-1β is likely to cause maladapted trained immunity and resultant pathogenic 
consequences. This may be observed in patients with autoinflammatory syndromes 
associated with gene mutation that lead to overproduction of IL-1β, including 
cryopyrin associated periodic syndrome (CAPS) [38, 42]. On the other hand, 
impaired induction of trained immunity can also cause detrimental effects. It was 
reported that patients with chronic mucocutaneous candidiasis exhibit impaired 
induction of STAT-1-dependent, trained immunity in response to β-glucan [37].

The above-described metabolic shift is not limited to glucose metabolism. 
Changes in glutamine and cholesterol metabolism have also shown to be crucial 
in trained immunity [24]. Consequently, it is thought that increased cholesterol 
content also plays a role in the development of trained immunity. Interestingly, 
increased levels of oxidized low-density lipoprotein (OxLDL) caused by dysregu-
lated cholesterol metabolism are found to induce trained immunity in human 
monocytes [10]. Such a finding indicates a pathogenic role for maladapted trained 
immunity in atherosclerosis, since monocyte and macrophage cells are known to 
play a major role in plaque formation in vascular endothelium, a major histologic 
change in atherosclerosis [10].

2.4 Tolerance in innate immunity

As detailed in the previous section, trained immunity causes a metabolic shift 
from oxidative phosphorylation (OXPHOS) to glycolysis, rendering macrophage 
and monocyte lineage cells to classically activated cells or M1 phenotype; these 
cells exhibit impaired OXPHOS and anabolic repurposing of the tricarboxylic acid 
(TCA) cycle [43, 44]. In contrast, alternatively activated or the M2 phenotype of 
macrophages and monocytes has balanced processes of OXPHOS and TCA cycle 
activation; enhanced glycolytic generation of pyruvate fuels the TCA cycle, paral-
leling the induction of OXPHOS [44]. Trained macrophages via ß-glucan exposure 
are shown to reveal M1 phenotype [21]. Generation of M1 vs. M2 phenotypes of 
macrophages indicates the importance of regulating innate immune responses for 
prevention of excessive, potentially harmful inflammatory responses. In addition 
to generation of M2 phenotype, hypo-responsiveness of innate immunity has been 
described as endotoxin tolerance and compensatory anti-inflammatory response 
syndrome (CARS) [45]. Such regulatory mechanisms also have lasting effects, as 
observed in trained immunity.

Endotoxin tolerance in innate immunity was first shown in rodent models of 
sepsis. Namely, survival from sepsis is associated with diminished or absence of 
responses to LPS, an endotoxin [46]. Subsequently, it was shown that previous 
exposure to a sublethal dose of LPS led to resistance to a lethal dose of LPS in rodents 
[46]. Endotoxin tolerance is thought to be a result of innate immune memory with 
lasting immune hypo-responsiveness, even to non-LPS stimulants [47]. Phenotypic 
changes of tolerant innate immune cells are characterized with less production of 
inflammatory cytokines (TNF-α, IL-12, IL-6) and increase in production of counter-
regulatory cytokines (IL-10 and TGF-β) upon stimulation [48, 49]. CARS was 
recognized as a clinical syndrome which is thought to represent a phase of immune 
“exhaustion,” following initial potent immune activation, known as systemic 
inflammatory response syndrome (SIRS) [50]. Peripheral blood monocytes and 
neutrophils from CARS patients are reported to reveal similar phenotype to endo-
toxin-tolerant cells observed in rodent models [45, 49]. Recent research revealed that 
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persistent effects of endotoxin tolerance and CARS are mediated by lncRNAs as well 
as microRNAs (miRNAs).

LPS activates TLR4 which leads to the activation of the myeloid differentiation 
factor 88 (MyD88)-mediated pathway and the TIR-domain-containing adaptor-
inducing interferon-β (TRIF) pathway [45]. The molecular signature of endotoxin 
tolerance involves downregulation of TLR4, decreased recruitment of MyD88 or 
TRIF to TLR4, decreased activation of IL-1 receptor-associated kinase (IRAK)1 and 
IRAK4, diminished nuclear factor κ chain of B-cell (NF-κB) signaling, as well as 
upregulation of negative regulatory molecules including SH2 domain-containing 
inositol phosphatase 1 (SHIP1) [51].

2.5 Regulators of innate immune tolerance

Recent research revealed a role of miRNAs in the regulation of endotoxin toler-
ance. Specifically, miR-155 and miR-146α have been shown to regulate endotoxin 
tolerance [52]. MiR-146α reduces TLR signaling, by targeting IRAK1 and TRAF6, 
key components of TLR signaling pathway [53]. In contrast, miR-155 is reported 
to inhibit expression of SHIP1 and SOCS1, negative regulators of TLR signaling, 
prohibiting or attenuating tolerance induction by endotoxin [54, 55]. Several 
other miRNAs are also implicated with regulation of endotoxin intolerance [45]. 
It was shown recently that miR-221/miR-222 regulates functional reprogramming 
of macrophages during LPS-induced tolerization [47]. miR-221/miR-222 targets 
brahma-regulated gene 1 (Brg1), rendering transcriptional silencing of a subset 
of inflammatory genes that depend on SWI/SNF and STAT-mediated chromatin 
remodeling [47].

Recent research also revealed a role of lncRNAs in endotoxin tolerance; lncRNAs 
exert transcriptional, posttranscriptional, and translational regulation of gene 
expression [56–58]. Multiple lncRNAs are reported to regulate target molecules 
of TLR4 signaling pathways. LPS-responsive lncRNAs Mirt2, THRIl, MALTAT1, 
NKILA, lincRNA-21, and SeT have been reported to suppress expression of pro-
inflammatory mediators including TNF-α [45]. For example, Mirt2 is reported 
to inhibit TRAF6 ubiquitination, leading to a decrease in TNF-α production [59]. 
However, at this time, relationships between actions of miRNAs and lncRNA in 
innate immune tolerance are not well understood. Other soluble mediators such 
as cytokines (IL-1β, IL-10, TGF-β, and TNF-α) are also reported to induce cross-
tolerance or cytokine-mediated tolerance, causing a signaling cascade similar to that 
observed in TLR signaling [60]. In contrast, interferons (IFN-γ, α2-IFN, etc.) are 
known to abrogate endotoxin tolerance [61, 62]. Again these soluble mediators exert 
their actions on endotoxin tolerance via modulation of intracellular lncRNAs [45].

This type of innate immune memory (tolerance) is thought to be important in 
maintaining brain homeostasis, and impaired tolerance of innate immunity has 
been suspected in chronic neurodegenerative conditions such as Alzheimer’s disease 
[9]. Aging is associated with an increased load of gram-negative bacteria in the GI 
tract and mouth mucosa, resulting in an increase in endotoxin levels in the blood 
and the brain [62]. However, aging individuals tolerate higher LPS levels in the 
brain through developing endotoxin tolerance [63].

3. Role of innate immunity in the nervous system

It is known that innate immunity does exist in the brain, playing a crucial role in 
brain morphogenesis and homeostasis. The major innate immune cells in the central 
nervous system (CNS) are microglial cells which are endogenously generated in the 
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brain, but they can also be developed from bone marrow-derived monocytes, which 
are called BM-derived microglial cells (BMDM) [64, 65]. BMDM-induced inflam-
mation has been implicated in neuropsychiatric conditions [64, 65]. It has also been 
reported that peripherally derived macrophages modulate microglial function after 
CNS injury; in this case, they are reported to exert anti-inflammatory effects [66]. 
Other innate immune cells in the CNS such as astrocytes are also known to exert 
important physiological roles [9, 67].

3.1 Trained immunity in the CNS

Inflammation in the periphery can prompt immune responses in the brain 
[1, 4]. Given the effects of trained immunity (activation vs. tolerance) in rodent 
models and humans, the development of maladapted innate immune memory in 
the CNS is expected to result in undesired, hazardous effects to the brain. However, 
reports concerning the effects of trained immunity and/or innate immune toler-
ance in the brain have been limited. Nevertheless, it was shown that microglial cells 
isolated from adult rats that were exposed to E. coli during the newborn period had 
increased expression of IL-1β mRNA [68]. The rats exposed to E. coli as newborns 
were also found to have impaired memory when they were challenged with a low 
dose of LPS, which was blocked by minocycline [2]. In experiments employing 
microglial cells obtained from sheep fetuses whose mother was given LPS intra-
venously, these fetal microglial cells were shown to have metabolic and epigenetic 
modulation, as has been reported in trained immunity [69].

Independent of the studies concerning trained immunity in the brain, persistent 
effects of maternal immune activation (MIA) on fetuses have been extensively 
studied, as one of the best studied rodent models of ASD [70]. In this model, 
sterile inflammation in pregnant rodents was induced with the use of PAMPs such 
as LPS, poly I:C, resulting in impaired neuropsychiatric symptoms in offspring 
in their adult years [70]. That is, offspring of MIA mothers have been shown to 
suffer from persistent behavioral symptoms and cognitive deficits frequently seen 
in ASD subjects later in life [70]. In addition, MIA also causes persistent alteration 
of adaptive immunity [71]. However, in this model, it is not yet well understood 
how innate immune memory (most likely trained immunity in this model) plays a 
role in a MIA model, causing persistent behavioral changes and impaired cognitive 
development. Children exposed to stressful events during the fetal and newborn 
period have also been reported to have higher levels of pro-inflammatory cytokines 
and neurodevelopmental impairment than control children [2]. Given the research 
findings in molecular mechanisms of trained immunity described in the previous 
section, there is a possibility that maladapted trained immunity contributes to the 
onset and progress of some neuropsychiatric disorders.

3.2 Innate tolerance in the brain

Tolerized innate immunity in the brain is thought to be crucial for limiting 
excessive inflammatory responses during brain tissue repair that involves phago-
cytosis of apoptotic cells and damaged tissue debris by tolerant phagocytes [72]. 
In rodent models, disruption of this pathway leads to neuroinflammation and 
subsequent neuronal damage [73]. An important regulator of this pathway is the 
triggering receptor expressed on myeloid cells 2 (TREM-2), which is expressed on 
microglial cells [74]. Blockade of TREM-2 was shown to exacerbate experimental 
autoimmune encephalitis (EAE), a rodent model of multiple sclerosis (MS) [75]. 
Apolipoprotein E (ApoE) which is a TREM-2 ligand was shown to have a role in 
maintaining tolerized phenotype of phagocytic cells [74]. This interaction was 
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found to be impaired in patients with Alzheimer’s disease [9]. In animal models of 
Alzheimer’s disease treated with trained immunity vs. tolerance inducing stimuli, it 
was reported that long-term modulation of brain immune responses were observed, 
and the authors attributed this prolonged effects on innate immune memory to 
reprogramming of microglial cells [4].

3.3 mTOR-related pathology in neuropsychiatric disorders

In the previous section describing molecular pathways associated with trained 
immunity, the importance of mTOR signaling has been repeatedly shown. One 
thing we learned from the research on trained immunity is that multiple lineage 
cells reveal metabolic and epigenetic reprogramming in the process of innate 
immune memory, which, in animal models, can also be applied to microglial cells 
[4]. Interestingly, brain dysfunction caused by dysregulated mTOR signaling has 
been implicated in several neuropsychiatric disorders. In the next paragraph, we 
summarize mTOR-related brain dysfunctions and proposed mechanisms.

One of the expected consequences of excessive mTOR signaling caused by 
trained immunity is the impairment of lysosomal degradation of intracellular 
components, since mTOR activation inhibits autophagy via inhibition of the early 
steps of autophagosome biogenesis [76, 77]. Autophagy is a key physiological 
cellular function that clears intracellular molecules and thought to be developed to 
adjust the state of nutrient depletion [76, 77]. However, this is also an important 
mechanism to remove misfolded proteins that naturally occur in living cells [22]. 
In addition to degradation of misfolded proteins, autophagy also degrades altered 
subcellular organelles, such as the mitochondria [22]. Prolonged dysfunction in 
autophagy can lead to detrimental effects and is implicated in the pathogenesis of 
multiple neuropsychiatric conditions including dementia, movement disorders, 
seizures, brain ischemia, ASD, affective disorder, and schizophrenia [78–82]. In 
rodent models of depression, tuberous sclerosis, and ASD, rapamycin (sirolimus), 
a representative mTOR inhibitor, has been shown to attenuate social interactions 
and reverse behavioral effects on their neuropsychiatric symptoms [83–86]. Thus 
metabolic and epigenetic changes caused by trained immunity may have profound 
effects through altered levels of autophagy, as a result of metabolic and epigenetic 
reprograming, as detailed in the previous section.

3.4 ASD and a possible role of trained immunity

In this section, we discuss a possible role for trained immunity in the onset and 
progress of ASD. As a clinician, the author observed that an apparent strong immune 
stimulus altered the responses to subsequent immune stimuli in some, but not all ASD 
children and these ASD children also exhibit fluctuating neuropsychiatric symptoms, 
following microbial infection [87, 88]. As discussed in the previous section, in the 
MIA model of ASD, prolonged effects of MIA on the offspring brain can be explained 
through a concept of trained immunity occurring to the fetus at the time of sterile 
immune activation in the mother. This may have also happened in ASD subjects as 
described above. However, it should be noted that ASD is a behaviorally defined syn-
drome, diagnosed on the basis of behavioral symptoms, except for a minority of ASD 
cases that have well-defined gene mutations [89]. Therefore, based on the author’s 
clinical experience, it is likely that trained immunity plays a role in a subset of ASD 
subjects for whom neuroinflammation is associated in their ASD pathogenesis.

In ASD patients, just like in other neuropsychiatric conditions, a role of inflam-
mation has been long suspected, and more and more evidence has been accumulating 
[90–92]. In the research of innate immune abnormalities in ASD children, we have 
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also found evidence of dysregulated innate immune responses, shifting to pro-
inflammatory responses in a subset of ASD subjects [88, 93, 94]. We also experi-
enced that these ASD subjects suffer from various comorbid medical conditions 
involving the gastrointestinal (GI) tract and other organs [87]. Retrospectively, 
our findings may be reflecting maladapted innate immunity as a form of trained 
immunity in such ASD subjects; these ASD subjects may fall into an ASD subset 
which we have called inflammatory autism, mimicking the rodent ASD model of 
MIA [93]. Our previous findings that may indicate altered innate immune memory 
in such ASD patients are as follows:

• In some but not all the ASD subjects, we found significant changes in innate 
immune abnormalities which are best reflected in changes in IL-1β/IL-10 ratios 
produced by purified peripheral blood monocytes (PBMo) [88, 93]. Namely, 
some patients reveal high ratios of IL-1β/IL-10, while others showed low ratios, 
and these rations can change from time to time, depending on their exposure to 
immune insults [93].

• ASD subjects who revealed high and/or low IL-1β/IL-10 ratios also revealed 
fluctuating behavioral symptoms following immune insults [94]. Parents of 
these subjects often describe more severe, prolonged illnesses and frequent 
respiratory infection following microbial infection [87]. They also seem to 
reveal significant changes in their behavioral symptoms and cognitive activ-
ity with immune stimuli not associated with microbial infection; these ASD 
children may exhibit worsening neuropsychiatric symptoms, following flare-
ups of aeroallergen allergy, delayed-type food allergy, and adverse reactions to 
medications including vaccinations [87, 94].

• ASD subjects who revealed high and/or low IL-1β/IL-10 ratios also revealed 
changes in production of inflammatory monocyte cytokines including TNF-α 
and IL-6 [93, 95].

• PBMo from ASD subjects who revealed altered IL-1β/IL-10 ratios also revealed 
changes in miRNA expression by PBMo, as compared to cells obtained from 
neurotypical, non-ASD controls [93].

• We also studied changes in mitochondrial respiration in peripheral blood 
mononuclear cells (PBMCs) obtained from ASD subjects and non-ASD 
controls. Our results revealed evidence of altered mitochondrial respiration in 
association with changes in IL-1β/IL-10 ratios by PBMo in ASD subjects [95].

• In recent studies, we also found changes in miRNA in sera of ASD subjects, when 
tested by high-throughput deep sequencing. Again, changes in serum miRNA 
levels are closely associated with changes in IL-1β/IL-10 ratios by PBMo, produc-
tion of monocyte cytokines (TNF-β, IL-6, IL-10, CCL2 mostly), along with 
parameters of mitochondrial respiration (manuscript submitted for publica-
tion). Interestingly, in ASD subjects, miRNA levels are mostly decreased, as 
compared to non-ASD controls (submitted for publication). Targeted genes by 
miRNAs that are altered in serum levels in ASD subjects with high or low IL-1β/
IL-10 ratios are associated with pathways involved in innate immune responses, 
including the mTOR signaling pathway (unpublished observation).

The above-described findings may be best explained by altered innate 
immune responses associated with innate immune memory (trained immunity 
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vs. tolerance). So, if this is the case, for these ASD subjects, can clinical features 
that indicate an alternation of innate immune memory be detected? The author is 
a pediatric immunologist and, as indicated before, as stated previously, observes 
exacerbation of neuropsychiatric symptoms, following immune insults. Herein, 
a representative ASD case, in which trained immunity may be associated with the 
onset and progression of ASD, is presented.

3.5 Case presentation

A 10-year-old female child presented to the pediatric allergy/immunology clinic 
at our institution secondary to fluctuating behavioral symptoms. Fluctuation of 
behavioral symptoms often occurred, following microbial infection.

The patient was born at 41 weeks of gestation via cesarean section due to breech 
presentation, following an uneventful pregnancy. The patient was developing 
typically until 24 months of age and then suffered from significant developmental 
regression. Prior to the onset of the developmental regression, parents took the 
patient to South Asia to visit other family members and friends. During this visit, 
the patient suffered an insect bite which was complicated by a secondary bacterial 
skin infection. When treated with oral antibiotics abroad, the patient developed 
generalized hives and severe GI symptoms (nausea, vomiting, diarrhea, and bloat-
ing): the patient then became intolerant to multiple foods. After returning to the 
United States, the patient was given multiple vaccinations including live vaccines to 
catch up the vaccination schedule. All these vaccines were given while the patient 
was still suffering from GI symptoms and an active skin infection. Within several 
days after vaccinations (multiple vaccines given all together), noticeable loss of 
cognitive and motor skills became apparent in the patient. The patient was eventu-
ally diagnosed with ASD around 2.5 years of age.

Eventually, the patient’s GI symptoms subsided, but this subject never regained 
the cognitive skills that this patient had once acquired prior to the onset of devel-
opmental regression. Prior to advancing to pre-kindergarten, the patient was 
given booster doses of vaccines which were well tolerated. However, after starting 
pre-kindergarten, the patient started getting sick frequently with upper respiratory 
infections, which often evolved into ear infection. The patient missed many days 
of school, since the patient suffered a prolonged course of illness and more severe 
symptoms, as compared to peers. While the patient presented with symptoms of 
upper respiratory infection, this patient’s behavioral symptoms continue to fluctu-
ate, most evident in worsening of obsessive compulsive behaviors and frequency 
of “rage” episodes. Worsening behavioral symptoms would always follow immune 
insults, worse in a convalescence stage. Avoidance of sick contacts by placing the 
patient in home schooling attenuated the fluctuating behavioral symptoms. At 
7–8 years of age, the fluctuating behavioral symptoms seen were mainly associated 
with teething. After the completion of teething, behavioral symptoms became more 
stable. However, the patient stopped growing, falling under the first percentile of 
the growth curve in height and weight. An exhausting workup for primary mito-
chondrial diseases, endocrine diseases, primary immunodeficiency with known 
gene mutations, and congenital metabolic and genetic diseases was unrevealing. 
However, video electric encephalogram revealed a focal epileptic activity. Family 
history is negative for neuropsychiatric, genetic, autoimmune, immune, and 
metabolic diseases.

In the case presented above, did neuroinflammation caused by maladapted 
trained immunity have a role in her clinical features? It is hard to prove, but it may 
be speculated that the initial stressful events that occurred abroad shaped trained 
immunity in this patient, and the subsequent multiple unrelated immune stimuli 
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may have caused prolonged maladapted trained immunity, leading to persistent 
neuroinflammation and impairment of cognitive activity, as observed in the MIA 
models of ASD. Interestingly, changes in GI conditions, such as changes in microbi-
ome, have been implicated with neuropsychiatric diseases, triggering maladapted 
trained immunity [96]. It is also reported that trained innate immunity can be 
induced in human monocytes by cow’s milk [97]. Thus her severe GI symptoms and 
subsequent intolerance to multiple foods may be associated with excessive trained 
immunity in the gut of this patient.

3.6 Evidence of impaired trained immunity

As summarized in the previous section, we have found that IL-1β/IL-10 ratios 
produced by PBMo are altered in some ASD subjects in association with fluctuating 
behavioral symptoms [94]. Thus if innate immune memory (trained immunity) is 
associated with her above-described remarkable clinical symptoms, we may also 
find altered IL-1β/IL-10 ratios, as an indicator of altered innate immune responses.

Thus we assessed IL-1β/IL-10 ratios produced by PBMo in response to a panel of 
innate immune stimuli, including β-glucan, as reported previously [95]. As shown 
in Figure 1, the presented case revealed increase in IL-1β/IL-10 ratios in response 
to zymosan, CL097, and β-glucan. High IL-1β/IL-10 ratio in response to CL097, an 
agonist of TLR7/TLR8, was especially striking. We also observed increase in produc-
tion of TNF-α and IL-6 and decrease in the production of IL-10, as well. Given these 
findings, it is possible that maladapted trained immunity may have caused excessive 
inflammatory responses to various innate immune stimuli, which then led to devel-
opmental regression and fluctuating behavioral symptoms in this presented case.

4. Conclusions

Our deepening knowledge of innate immune memory (trained immunity vs. 
tolerance) has shed light on the understanding of nonspecific effects of microbial 
infection and other immune stimuli, which have been implicated in the onset and 

Figure 1. 
IL-1β/IL-10 ratios produced by purified peripheral blood monocytes in response to medium only (no stimulus), 
LPS (TLR4 agonist), zymosan (TLR2/TLR6 agonist), CL097 (TLR7/TLR8 agonist), and β-glucan in the 
presented case (patient) and control cells from a non-ASD neurotypical subject. IL-1β/IL-10 ratios are shown 
in a log scale.
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progress of various neuropsychiatric diseases. Recent research indicates a possibil-
ity for a role of maladapted innate immune memory in various neuropsychiatric 
conditions. The finding of innate immune memory is especially exciting in the field 
of neuroimmunology, since we now likely have better tools for addressing the long-
suspected role of immune-mediated inflammation that is not associated with spe-
cific pathogens or environmental factors, in various neuropsychiatric conditions. 
The concept of innate immune memory will be especially important in addressing 
insults to the brain during the early years of CNS development, and the resultant 
lasting intellectual disabilities, as seen in MIA models [70]. More importantly, an 
improved understanding of the role of innate immune memory (trained immunity 
vs. tolerance) in pathogenic neuroinflammation can lead to novel therapeutic mea-
sures that are desperately needed for the treatment of neuropsychiatric diseases.
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