
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



10 

Abstraction for Genetics-Based Reinforcement 
Learning  

Dr Will Browne, Dan Scott and Charalambos Ioannides  
University of Reading 

UK 

1. Introduction 

 Abstraction is a higher order cognitive ability that facilitates the production of rules that are 
independent of their associations.  
In standard reinforcement learning it is often expedient to directly associate situations 
(states) with actions in order to maximise the environmental reward signal. This may lead to 
problems including a lack of generalisation and not utilising higher order patterns in 
complex domains. Thus standard Q-learning has been developed to include models or 
genetics-based search (Learning Classifier Systems), which improve learning speeds and 
generality. In order to extend reinforcement learning techniques to higher-order rules, 
abstraction is considered here.  
The process of abstraction can be likened to Information Processing Theory (a branch of 
Learning Theory) (Miller, 1956), which suggests that humans have the ability to recognize 
patterns in data and chunk these patterns into meaningful units. The individual patterns do 
not necessarily remain in a memory store due to the holistic nature of the individual 
patterns. However, the chunks of meaningful information remain, and become a basic 
element of all subsequent analyses.  
The need for abstraction arose from the data-mining of rules in the steel industry through 
application of the genetics-based machine learning technique of Learning Classifier Systems 
(Holland, 1975), which utilise a Q-learning type update for reinforcement learning. It was 
noted that many rules had similar patterns. For example, there were many rules of the type 
'if side guide setting < width, then poor quality product' due to different product widths. 
This resulted in a rule-base that was unnecessarily hard to interpret and slow to learn. The 
initial development of the abstraction method was based on the known problem of 
Connect4 due to its vast search space, temporal nature and available patterns.  
The contribution of this chapter is that the novel method of abstraction is described and 
shown to be effective on a large search space test problem. Abstraction enabled higher order 
rules to be learned from base knowledge, which mimic important aspects of human 
cognition. Tests showed that the abstracted rules were more compact, had greater utility 
and assisted in developmental learning. The emergence of abstracted rules corresponded 
with escaping from local minima that would have otherwise trapped basic reinforcement 
learning techniques, such as standard Q-learning.  

Source: Reinforcement Learning: Theory and Applications, Book edited by Cornelius Weber, Mark Elshaw and Norbert Michael Mayer
ISBN 978-3-902613-14-1, pp.424, January 2008, I-Tech Education and Publishing, Vienna, Austria

O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.i-

te
ch

on
lin

e.
co

m

www.intechopen.com



Reinforcement Learning: Theory and Applications 

 

188 

2. Background  

During the application of the Genetics-Based Machine Learning technique of Learning 
Classifier Systems (LCS) to data-mine rules in the steel industry, Browne noted that many 
rules had similar patterns (Browne 2004). For example, there were many rules of the type 'if 
side guide setting < width, then poor quality product' due to different product widths. This 
resulted in a rule-base that was unnecessarily hard to interpret and slow to learn. A method 
is sought to generate higher order (abstracted) rules from the learnt base rules. 
A novel Abstraction algorithm has been proposed (see figure 1) to improve the performance 
of a reinforcement learning genetics-based machine learning technique in a complex multi-
step problem (Browne & Scott, 2005). It is hoped that this algorithm will help reinforcement 
learning techniques identify higher-order patterns inherent in an environment.  

 

Fig. 1. Abstraction from data to higher order rules. 

2.1 Test domain  
Connect 4 is a turn-based game between two players, each trying to be the first to achieve 
four counters in a row (horizontally, vertically or diagonally). The game takes place on a 7 * 
6 board; players take it in turns to drop one of their counters into one of the seven columns. 
The counters will drop to the lowest free space in the column. Play continues until the board 
is full or one player gets four in a row, see figure 2. Optimum strategies exist (Allis, 1988; 
Watkins, 1989), so the problem is both known and bounded. 
A client-server program of Connect 4 was written in Java, as Java Applets can easily be 
viewed on the internet, allowing a website to be constructed for this project [please visit: 
http://sip189a.rdg.ac.uk].  
A Q-Learning (Sutton & Barto, 1998) approach to the problem is implemented in order to 
provide benchmark learning performance. Two different approaches were taken to training 
the Q-Learning system. The first progressively trained the algorithm against increasingly 
hard opponents, whilst the second trained for the same number of games, but against the 
hardest opponent from the outset.  

www.intechopen.com



Abstraction for Genetics-Based Reinforcement Learning 

 

189 

  

Fig. 2. Connect 4 board, black horizontal win  

The Abstraction algorithm requires rules in order to perform abstraction. A well-known 
LCS, XCS (Butz, 2004) was implemented to create rules and provide a second benchmark 
learning performance.  

3. Biological inspiration for abstraction  

The human brain has inspired artificial intelligence researchers, such as the development of 
Artificial Neural Networks that model aspects of low-level neuronal activity. Higher-level 
functional modelling has also been undertaken, see ACT-R and SOAR architectures 
(Anderson et al, 2004; Laird et al, 1987). Behavioural studies suggest that pattern 
recognition, which includes abstraction, is important to human cognition. Thus this section 
considers how the brain abstracts. This includes using the common neuroscience technique 
of studying subjects with liaisons to specific brain areas.  
It has been observed in cases of autism that there is a lack of abstraction. A well studied case 
is that of Kim Peek -due to his Savant abilities and popularity as the inspiration for the main 
character in the film Rain Man. He was born with macrocephaly (an enlarged head), an 
encephalocele (part of one or more of the skull plates did not seal) and agenesis of the 
corpus callosum (the bundle of nerves that connects the two hemispheres of the brain is 
missing). Brain studies, such as MRI, show that the there is also no anterior commissure and 
damage to the cerebellum.  
Kim has the ability to analyse certain types of information in great detail, e.g. Kim's father 
indicates that by the age of 16-20 months Kim was able to memorize every book that was 
read to him. It is speculated that neurons have made other connections in the absence of a 
corpus callosum, resulting in the increased memory capacity (Treffert & Christensen, 2005). 
However, Kim has difficulty with motor skills, such as buttoning a shirt, which is likely to 
be caused by the damaged cerebellum as it normally coordinates motor activities. His 
general IQ is well below normal, but he scores very highly in some subtests.  
An absent corpus callosum (ACC) does not regenerate as no new callosal fibers emerge 
during an infant's development. Although people with ACC lead productive and 
meaningful lives there are common developmental problems that may occur with disorders 
of the corpus callosum (DCC). The National Organization for Disorders of the Corpus 
Callosum states:  

Behaviorally individuals with DCC may fall behind their peers in social and 
problem solving skills in elementary school or as they approach adolescence. In 
typical development, the fibers of the corpus callosum become more efficient as 

www.intechopen.com



Reinforcement Learning: Theory and Applications 

 

190 

children approach adolescence. At that point children with an intact corpus 
callosum show rapid gains in abstract reasoning, problem solving, and social 
comprehension. Although a child with DCC may have kept up with his or her 
peers until this age, as the peer-group begins to make use of an increasingly 
efficient corpus callosum, the child with DCC falls behind in mental and social 
functioning. In this way, the behavioral challenges for individuals with DCC may 
become more evident as they grow into adolescence and young adulthood.  

Behavioural characteristics related to DCC difficulties on multidimensional tasks, such as 
using language in social situations (for example, jokes, metaphors), appropriate motor 
responses to visual information (for example, stepping on others' toes, handwriting runs off 
the page), and the use of complex reasoning, creativity and problem solving (for example, 
coping with math and science requirements in middle school and high school, budgeting) 
(NODCC, 2007).  
The connection between the left and right half of the brain is important as each hemisphere 
tends to be specialised on certain tasks. The HERA model asserts that the left pre-frontal 
cortex is associated with semantic (meaning) memory, whilst the right is associated with 
episodic (temporal) memory (Tulving et al., 1994). Memories themselves are associated with 
the hippocampus, which assists in transforming short to long term memory. This is intact in 
many savants, such as Kim Peek. Thus, it is postulated here that a link is needed between 
the separated episodic and semantic memory areas in order for abstract, higher order, 
knowledge to form -it is not sufficient just to create long-term generalised memories.  
A caveat of the above analysis is that even with modern behavioural studies, functional 
MRI, PET scans and other neurological analysis, the brain/mind is highly complex, plastic 
and still not fully understood.  

4. Learning classifier systems  

This section outlines the architecture of XCS, including the required adjustments for the 
Connect 4 domain, so that it may train against a pre-coded expert system. A standard XCS 
(Butz, 2004, available from www-illigal.ge.uiuc.edu/) was implemented with the 
Abstraction algorithm (see section 5). Following these results tests were also conducted with 
a modified version of XCS (mXCS) that had its reinforcement learning component adjusted 
to complement the Abstraction algorithm.  

4.1 Setup and board representation  

The board representation formed an important part of the LCS. Each space on the board 
could be one of three possible states, red, yellow or empty, however it was considered 
useful to further split down the empty squares into two categories, playable and unplayable 
(unplayable squares are above the playable squares and become playable in the future as the 
game progresses).  
A two character representation for each space was chosen, leading to an 84 character long 
string representing the board (running from top row to bottom row). The encoding for a red 
was chosen as “11” and a yellow was “10”, a playable space was “00” whilst an unplayable 
was “01”. Mutation may only generalize by replacing specific characters with a “#”; where 
hashes can stand for either a “1” or a “0”.  

www.intechopen.com



Abstraction for Genetics-Based Reinforcement Learning 

 

191 

4.2 Gameplay and reward  

LCS must decide upon the best move to play at its turn without knowing where its 
opponent will play in the subsequent turn. An untrained LCS will often play randomly as it 
attempts to learn the best moves to play. After each move has been played by the opponent, 
the LCS attempts to match the state of the board to its rules. Attached to each of these 
classifiers are three pieces of information: the move that should be played, the win score (the 
higher this is the more likely a win will occur) and the accuracy score (accuracy of the win 
score). Win scores of less than 50 indicate a predicted loss, greater than 50 is a projected win.  
After matching, an action must be selected through explore, exploit or coverage. Exploring 
(which is most likely to happen) uses a weighted roulette wheel based on accuracy to choose 
a move. Exploiting chooses the move that has the greatest win score and is used for 
performance evaluation. Coverage generates a new rule by simply selecting a random move 
to play for the current board position.  
θGA the GA threshold was set to 1000 games, the GA would run after a set of 1000 games had 

been played and the maximum population size was set to 5000. χ, the crossover possibility 
was set to generate 500 random crossovers every time the GA is run. Of the 500 crossovers 
generated, approximately 100 in every GA run passed validity checks and were inputted 

into the new population. μ, the mutation rate was set at a 1% chance to receive a mutation 
and then a 2% that each character in that rule would receive a mutation. Deletion θ 
probabilities (θdel) were based upon tournament selection of rule fitness and the number of 
rules deleted was chosen to keep the population size at 5000. 
The standard reinforcement update for LCS is the Widrow-Hoff update (Butz & Wilson, 
2002), which is a recency weighted average. A Q-learning type update is used within the 
LCS technique for multistep decision problems (Lanzi, P-L., 2002).  

5. Abstraction algorithm  

The Abstraction algorithm was designed to work upon generated rules, e.g. by the LCS. 
Abstraction is independent of the data itself. Other methods, such as the standard coverage 
operator, depend directly on the data. Crossover and mutation depend indirectly on the 
data as they require the fitness of the hypothesized rules, which is dependent on the data. 
Abstraction is a higher order method, as once good rules have been discovered; it could 
function without the raw data being available.  
The abstraction attempts to find patterns in the rules that performed best within the LCS. 
Having found a pattern common to two or more of the LCS rules, the Abstraction algorithm 
is to generate a new rule in the abstracted population based solely on this pattern. This 
allows the pattern to be matched when it occurs in any state, not just the specific rules that 
exist within the LCS.  
Not all of the rules generated by the LCS are worthwhile and therefore the Abstraction 
algorithm should not be run upon all of the rules within the LCS. The domain is noiseless, 
so the parameters chosen to govern the testing of rules for abstraction were the conditions 
that a rule must have a 100% win score and a 100% accuracy. Therefore the rules abstracted 
by the Abstraction algorithm should only be rules that lead to winning situations.  
The main mechanism that allowed the abstraction to perform was a windowing function 
that was used in rule generation as well as rule selection (when it came to choosing an 
abstracted rule to play). The windowing function acted as a filter that was passed over the 

www.intechopen.com



Reinforcement Learning: Theory and Applications 

 

192 

‘good’ rules generated by the LCS. This filter would compare two rules at a time for 
similarities that could lead to abstracted rules.  
The windowing function worked in all directions on the board, horizontally, vertically and 
in both diagonal directions. The window size was set to 4 space/counters (8 characters in 
terms of the board representation). However code allowed for a window size of between 4 
and 6 spaces/counter (8 – 12 characters in terms of the board representation), any greater 
than a window size of 6 and the vertical and diagonal windows no longer fit on the board.  
Any match that is found is turned into an abstracted rule, each rule had 8 characters 
(assuming a window size of 4) to represent the pattern occurring on the board. Each rule 
also had to be assigned a move to play whenever that rule was used. The move assigned 
was always chosen from one of the playable spaces within the pattern. An example rule is 
'10,10,10,00:11’, which translate to 'if three red counters in a row and payable space in the 
next position, then play in the next position'. All rules entered the abstracted population 
with a win and accuracy of 50.  
Several limitations were placed upon what was considered a valid match for the Abstraction 
algorithm, including ignoring all unplayable areas. A valid pattern had to contain at least 
one playable space and no more than 2 playable spaces. Patterns without a playable space 
are useless because rules as they offer nowhere for a move to be played. The second 
limitation placed upon the abstraction process was that a valid rule could have a maximum 
of one unplayable space. This helps limit the generation of “empty” rules. Figure 3 shows an 
example of two windowing functions finding a match and generating an abstracted rule.  

 

Fig. 3. Example of Abstraction Algorithms generating a new rule.  

5.1 Base rule discovery  

As with the LCS, the Abstraction algorithm also had a GA that was run upon the population 
to generate new rules. It had a single point crossover and mutation; however it had no 
deletion algorithm as all the abstraction rules were kept. Duplication was prevented 
through a duplication check that was made each time a rule was to be inserted into the rule-
base, including those generated by crossover and mutation.  
A LCS can function alone, but the Abstraction algorithm cannot function without a rule-base 
to work on; hence it needs an LCS to function alongside it. How the two are combined and 
work together is detailed in this section.  
When the LCS with abstraction needs to play a move, the system searches the board for any 
matches within its abstracted rule set. The board is searched by passing the windowing 
function over the board (horizontally vertically and diagonally). A rule is then chosen out of 

www.intechopen.com



Abstraction for Genetics-Based Reinforcement Learning 

 

193 

all matched rules. When exploiting the rule with the best win score is chosen, whilst when 
exploring a roulette wheel based upon accuracy is used.  
The chosen abstracted rule also has a move associated with it, however unlike the LCS rules 
the move does not relate directly to the board. With a window size of 4 counters the rule 
could occur anywhere on the board, horizontally, vertically or diagonally. Therefore an 
extra calculation is required to translate the abstracted rules’ move into the corresponding 
move on the actual board.  
If no abstracted rule is found after the initial search of the board state, then control of 
playing the move is handed to the base LCS.  

6. Results  

The following section details the results found during the trials of the LCS and Abstraction 
algorithm. Initial trials investigated the difficulty of the problem domain with standard Q-
learning and XCS techniques. Preliminary tests of the Abstraction algorithm with XCS were 
followed by tests of the Abstraction algorithm with a modified XCS (mXCS) where the 
reinforcement learning complemented the abstraction. The use of abstraction as the training 
progressed was investigated. During these tests, each system was trained for 20,000 games 
against an opponent that played randomly. Finally, the robustness of the Abstraction 
algorithm to changes in the domain was tested by increasing the difficulty of the opponent.  

6.1 Q-Learning and standard XCS  

The Q-Learning Algorithm performed well in the initial 20,000 games (see figure 4), 
achieving an average win percentage of 69%. However, there was no progress in the wins as 
the 20,000 games progressed, with the win percentage always remaining at around 69%. 
This exhaustive search nature of the algorithm meant it took several weeks of computation 
on a 3GHz PC. Ideally, each test would have been repeated 10 times and the average results 
taken, but this was impractical due to time constraints.  
The XCS performance trend was similar, with an average win percentage of 62% reached 
quickly, but no further improvements. Analysis of the rules showed that they had become 
trapped in local optima. A few specific strategies had been learnt, such as initially trying to 
build a column of counters in a given column. However, if this column happened to be 
blocked, then the overall strategy failed.  

  

Fig. 4. Graphs of win percentages for the 3 algorithms Solid Line -Q-Learning Algorithm, 
square -XCS Algorithm, circle -mXCS with Abstraction.  

www.intechopen.com



Reinforcement Learning: Theory and Applications 

 

194 

When the Abstraction algorithm is added it produces a similar trend until 6000 trials. A 
significant improvement is noted after 8000 trials as the performance increases to 90%. This 
compares favorably with both Q-learning (69%) and standard XCS (62%).  
During testing the rules that the Abstraction algorithm produced were observed and an 
interesting pattern arose in the order in which the abstractions were discovered. In early 
generations no abstracted rules are found, whilst mXCS attempts to establish a set of good 
rules that have a win and accuracy of 100. The first abstracted rules found are not rules for a 
direct win (i.e. 3 in a row and play in the fourth). The first rules that emerge are those rules 
that cause a 3 in a row situation with an empty playable fourth space.  
Learning to form 3 in a row followed by learning to form 4 in a row is a novel example of 
incremental learning. Intuitively, it could be expected that learning to form 4 in a row, 
which is closer to obtaining the reward, would be achieved first. Incremental learning is 
hypothesized to be an important cognitive ability (Butz, 2004).  
Whilst there is no direct feedback from the abstraction rule-base to the mXCS rule-base, it is 
possible to see them evolve together and there is a definite dependency between the two. 
With the introduction of abstracted rules to make 3 in a row, this is likely to occur far more 
often (as abstracted rules take preference over mXCS rules). With 3 in a row occurring more 
often, mXCS has more opportunities to conceive of rules that directly give a win. Therefore, 
with more winning rules the Abstraction algorithm is more likely to come up with 
abstracted rules that lead to a direct win, greatly bolstering the winning ability of the 
algorithm.  

6.2 Effect of abstraction  

The use of abstracted rules as training progresses can be monitored, see figure 5. As outlined 
in section 5, the combined system always plays a matching abstracted rule in preference to a 
matching base rule. After 8000 trials the base rules were accurate enough to allow 
abstraction to start. Once abstraction had started, the performance of the system continued 
to improve beyond that of standard XCS and Q-learning (see figure 4). A further 8000 trials 
occur where the system uses a combination of both base and abstracted rules. After this 
period the system just uses abstracted rules in its decision-making. Small improvements in 
performance occurred due to the action of the genetic algorithm in the abstracted 
population.  

 

Fig. 5. Graph of percentage base rules versus abstracted rules (solid line) as training 
progresses (circle line).  

www.intechopen.com



Abstraction for Genetics-Based Reinforcement Learning 

 

195 

The random opponent still defeats the system in 10% of the games when it chances upon a 
good strategy. As there are multiple positions for good strategies to occur in, the system is 
rarely presented with them, which makes them difficult to learn. In order to determine the 
robustness and scalability of the techniques the difficulty of the opponent was increased.  

6.3 Robustness of the systems  

The opponent could now block a potentially winning three in a row state. The system has to 
learn to create multiple win situations. This is a significantly harder problem, especially as 
the opponent could win either randomly or in the act of blocking, which halts the game. All 
algorithms perform poorly as all win percentages are under 20%. If no good base rules are 
found, then the Abstraction algorithm will not start.  
Instead of training from the start with the harder opponent, it was decided to train first with 
the simple opponent and then switch to the harder opponent, see figure 6. After the switch, 
standard XCS performed better than the Q-Learning Algorithm, achieving a win percentage 
of 15%, it should be noted that the performance was less than the Q-Learning algorithm 
during the first 20000 games. Analysis of the Q-Learning algorithm testing showed that 
progressive training, from the easiest to the hardest opponent, caused it to get stuck in a 
local optimum with a win percentage of only 11%. The generality and adaptability of the 
standard XCS algorithm enables it to switch opponent without as great a penalty.  
The performance of the Abstraction algorithm was significant. Not only did it outperform 
standard XCS and Q-learning (53%, compared with 15% and 11% respectively), but it 
performed significantly better then when it had been trained only on the harder opponent 
(53% compared with 19%). This is a good example of incremental learning, where it is 
necessary to build up the complexity of the problem domain.  

 

Fig. 6. Change in opponent at 20x103 games played (Solid Line -Q-Learning Algorithm, 
square -XCS, circle -mXCS with Abstraction).  

The concept of abstraction has been applied to the alternative domain of the Multiplexer 
problem (Browne & Ioannides, 2007). This was to test if a different representation (alphabet) 
could be used between the initial population (e.g. binary alphabet) and the abstracted 
population (e.g. s-expression alphabet). Result showed on hypothesised base data that 
abstraction is capable of scaling well on the formed rules (max length 1034 bits compared 
with 84 bits for the Connect4 domain). A significant advantage was the compacting of the 
rule-based, see figure 7 and see table 1, compared with a bit string of 1034. Abstraction also 
selected the most appropriate functions within the s-expressions for the domain (two from a 
possible 10).  

www.intechopen.com



Reinforcement Learning: Theory and Applications 

 

196 

 

Fig. 7. Abstracted XCS with hypothesised base rules on 3-MUX ♦, 6-MUX ■, 135-MUX ▲, 
1034-MUX x problem  

MUX  Condition  Length  

3  VALUEAT OR 2 2  4  

3  VALUEAT AND 2 2  4  

3  VALUEAT ADDROF 2 2  4  

3  VALUEAT AND 2 POWEROF 1  5  

3  VALUEAT OR POWEROF 2 2  5  

3  VALUEAT OR POWEROF 1 2  5  

6  VALUEAT ADDROF 4 5  4  

6  VALUEAT ADDROF 5 4  4  

6  VALUEAT ADDROF 4 POWEROF 5  5  

6  VALUEAT ADDROF POWEROF 3 4  5  

6  VALUEAT ADDROF POWEROF 5 4  5  

135  VALUEAT ADDROF 128 134  4  

135  VALUEAT ADDROF 134 128  4  

135  VALUEAT ADDROF POWEROF 22 128  5  

135  VALUEAT ADDROF 128 PLUS 133 134  6  

1034  VALUEAT ADDROF 1033 1024  4  

1034  VALUEAT ADDROF PLUS 1029 1029 1024  6  

1034  VALUEAT ADDROF MULTIPLY 1025 324 1024  6  

1034  VALUEAT ADDROF PLUS 1029 1024 1024  6  

1034  VALUEAT ADDROF MULTIPLY 1029 324 1024  6  

1034  VALUEAT ADDROF PLUS 1033 1033 1024  6  

Table 1. Abstracted rules on 3-MUX, 6-MUX, 135-MUX & 1034-MUX problem  

www.intechopen.com



Abstraction for Genetics-Based Reinforcement Learning 

 

197 

7. Discussion  

Abstraction may appear a trivial task for humans and the positive results from this work 
intuitive, but abstraction has not been routinely used in genetics-based reinforcement learning.  
One reason is that the time each iteration requires is an important consideration and abstraction 
increases the time for each iteration. Typically XCS takes 20 minutes to play 1000 games (and 
remains constant), mXCS with abstraction takes 20 minutes for 100 games (although this can vary 
greatly depending on the choice of parameters) and the Q-Learning algorithm ranges from 5 
minutes for 1000 games initially to 90 minutes for 1000 games after 100,000 games training. 
However, given a fixed amount of time to train all three algorithms mXCS with abstraction 
would perform the best, once the initial base rules were found.  
The Q-Learning algorithm has to visit every single state at least once in order to form a successful 
playing strategy. Whilst the Q-Learning system would ultimately play a very good game, weeks 
of computation failed to achieve the level of success the Abstraction algorithm had in a very short 
space of time (hours rather than weeks). Although better Q-learning algorithms (including 
generalization capabilities) exist (Sutton & Barto, 1998) this choice of benchmark algorithm 
showed the scale of the problem, which is difficult to calculate.  
The improvement in abstraction performance from standard XCS to the modified XCS was due 
to using simpler reinforcement learning. The Widrow-Hoff delta rule converges much faster, 
which for simpler domains that can be solved easily is beneficial. However, slower and more 
graceful learning may be required in complex domains when interacting with higher level 
features.  
The abstracted rules allow the system to play on states as a whole, including those that have not 
been encountered, where these states contain a known pattern. This is useful in data-mining, but 
with the inherent dangers of interpolation and extrapolation. The abstracted rule-base is also 
compact as an abstracted rule covers more states than either a generalized LCS rule or a Q-
learning state. Unique states may still be covered by the base rules.  
Abstraction has been shown to give an improvement in a complex, but structured domain. It is 
anticipated that the Abstraction algorithm would be suited to other domains containing repeated 
patterns.  

8. Future work  

Instead of the current linear filters in the Abstraction algorithm, it is possible to vary the size and 
shape in order to represent and hopefully discover advantageous multi-win situations. The 
abstraction method is static and determined a priori, which is successful for this structured 
domain. The next stage is to evolve the abstracted rules and/or filters thus reducing the 
searching time.  
A process termed 'hypothesizing' is proposed (see figure 1) where the abstracted rules form a 
template in order to produce new rules for the base population, with the worth of the abstracted 
rule being determined by the success of their hypothesized rules.  

9. Conclusion  

A novel Abstraction algorithm has been developed to successfully improve the performance 
of a genetics-based machine learning technique in a complex multi-step problem. It is hoped 

www.intechopen.com



Reinforcement Learning: Theory and Applications 

 

198 

that this algorithm will help to fulfill the intended use of the LCS technique as a test bed for 
artificial cognitive processes.  

10. Acknowledgements  

Our thanks to the Nuffield Foundation for their support through grant NUF-URB04.  

11. References  

Allis, V. (1988). A Knowledge Based Approach of Connect 4. Masters Thesis, Vrije Universiteit, 
Netherlands.  

Anderson, JR.; Bothell, D.; Byme, MD.; Douglass, S.; Lebiere C. & Qin Y (2004). An 
integrated theory of the mind. Psychological Review 111 4, pp. 1036-1060.  

Browne, WN. & Scott, D. (2005). An abstraction agorithm for genetics-based reinforcement 
learning. GECCO 2005, editors Hans-Georg Beyer et al. Washington D. C., USA, pp. 
1875-1882.  

Browne, WN. & Ioannides, C. (2007) Investigating Scaling of an Abstracted LCS Utilising 
Ternary and S-Expression Alphabets. International Workshop on Learning Classifier 
Systems, London  

Browne, WN. (2004). The development of an industrial learning classifier system for data-
mining in a steel hot strip mill. Applications of Learning Classifier Systems. Bull, L. 
(Ed.), pp. 223-259, Springer, Berlin.  

Butz, M. & Wilson, SW. (2002). An algorithmic description of XCS. Soft Computing: a fusion of 
foundations, methodologies and applications, 6 pp. 162-170.  

Butz, M. (2004). Rule-base evolutionary online learning systems: learning bounds, classification and 
prediction. PhD thesis University of Illinois, Illinois.  

Holland, JH. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of 
Michigan press.  

Laird, J.; Newell, A. & Rosenbloom, P. (1987) Soar -An architecture for general intelligence. 
Artificial Intelligence 33 pp. 1-64.  

Lanzi, P-L. (2002). Learning classifier systems from a reinforcement learning perspective. 
Soft Computing: a fusion of foundations, methodologies and applications, 6 pp. 162-170.  

Miller, GA. (1956). The magical number seven, plus or minus two; Some limits on our 
capacity for processing information. Psychological Review, 63, pp. 81-97.  

NODCC. (2007) National Organization for Disorders of the Corpus Callosum 
http://www.nodcc.org  

Sutton,  RS. & Barto, AG. (1998). Reinforcement learning: An introduction. MIT Press, 
Cambridge, MA.  

Treffert, DA. & Christensen, DD. (2005) Inside the Mind of a Savant Scientific American pp. 
50-55.  

Tulving, E.; Kapur, S.; Craik, FIM.; Moscovitch, M. & Houle. S. (1994) Hemispheric 
encoding/retrieval asymmetry in episodic memory: positron emission tomography 
findings. Proc. Natl. Acad. Sci. U. S. A. 91, pp. 2016–2020  

Watkins, CJCH. (1989). Learning from Delayed Rewards. PhD thesis, King's College, 
Cambridge, England.  

 

www.intechopen.com



Reinforcement Learning

Edited by Cornelius Weber, Mark Elshaw and Norbert Michael Mayer

ISBN 978-3-902613-14-1

Hard cover, 424 pages

Publisher I-Tech Education and Publishing

Published online 01, January, 2008

Published in print edition January, 2008

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices.

Brain-like computation is about processing and interpreting data or directly putting forward and performing

actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing

actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement

learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement

learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers.

As learning computers can deal with technical complexities, the tasks of human operators remain to specify

goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in

terms of theory and applications and it shall stimulate and encourage new research in this field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Will Browne, Dan Scott and Charalambos Ioannides (2008). Abstraction for Genetics-Based Reinforcement

Learning, Reinforcement Learning, Cornelius Weber, Mark Elshaw and Norbert Michael Mayer (Ed.), ISBN:

978-3-902613-14-1, InTech, Available from:

http://www.intechopen.com/books/reinforcement_learning/abstraction_for_genetics-

based_reinforcement_learning



© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


