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Chapter

Single Axis Singularity Mapping
for Mixed Skew Angle,
Non-Redundant, Single Gimbaled
CMG Systems
Eryn A. Culton

Abstract

Control moment gyros are common spacecraft attitude control devices that can
be mounted at different orientations within a spacecraft. Some spacecraft need to
maximize their maneuverability around a particular axis and, therefore, benefit
from particular control moment gyro orientations. This report explains the physics
of control moment gyros as attitude control devices and defines a mathematical
singularity and its physical manifestation in the spacecraft body. The research
continues, analyzing the relation between a control moment gyro’s skew angle and
its effects on angular momentum magnitude leading to a conclusion defining the
best control moment gyro orientations to maximize a spacecraft’s yaw maneuver-
ability.

Keywords: rotational mechanics, adaptive control, nonlinear control, control
moment gyroscope, momentum exchange, singularity, physics-based control,
disturbance decoupling

1. Introduction

Mechanical control has developed over centuries [1–22], expanding original
theorems such as Chasle’s theorems of motion Phoronomics [23]. With increasing
strike capability, advancements in spacecraft technology, and rising political ten-
sions all over the globe, mechanical control has resurfaced as an important research
front in order to further current technologies. Opposed nations frequently use
satellites on orbit to gather critical intelligence on those around them, a mission that
requires precise pointing and an extensive and expansive understanding of the
mechanical control envelope provided by the spacecraft’s attitude control system.
Recent research has been conducted in order to increase the maneuverability of
spacecraft with control moment gyroscopes [24–32]. This research takes informa-
tion and lessons learned from these previous research efforts and builds upon them.

Depending on a spacecraft’s mission, it will likely execute a particular kind of
attitude maneuver many times during its life span. Characteristic attitude maneu-
vers should be considered when designing an attitude control system. The type and
number of attitude control devices as well as their position within the spacecraft are
design choices driven by the physical demands of the attitude maneuvers. These
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maneuvers should be considered in order to design an attitude control system that
ensures the most angular momentum can be generated around that favored axis
while also providing maneuverability in other directions.

Constant-speed, single-gimbaled control moment gyros (CMGs) are common
spacecraft attitude control devices that, like reaction wheels, are momentum
exchange devices that operate on the law of conservation of momentum in an
undisturbed system. Unlike reaction wheels, CMGs do not change their rotational
velocity to alter the spacecraft’s attitude but, rather, change their direction.
Although this ability allows CMGs to uniquely control spacecraft attitude, it also
poses challenges: CMGs can only provide torque in a plane orthogonal to their
gimbal axis. When a desired torque orthogonal to this plane is commanded, the
CMG encounters a mathematical singularity and attitude control is lost.

The locations of these singularities can be plotted 3-dimensionally in order to
gain an understanding of the singularity free angular momentum available to com-
mand. These singularity maps change based upon the CMG’s skew angle within the
spacecraft and can be optimized to maximize the singularity free, angular momen-
tum space about a particular axis.

2. Theory

It is necessary to understand how CMGs are commanded and how they physi-
cally affect the spacecraft in order to understand how a mathematical singularity
causes a spacecraft to lose control. Like any actuator system, a command is entered
and a trajectory is generated to reach the commanded position from the initial
position; applied to a CMG, a specific rotation is the command and Eq. (1) through
Eq. (3) are the equations used to generate the attitude maneuver trajectory [33].

θ ¼ A sin ωtð Þ (1)

ω ¼ Aω cos ωtð Þ (2)

_ω ¼ �Aω2 sin ωtð Þ (3)

where θ is the gimbal angle, ω is the gimbal rotational velocity, and _ω is the
gimbal rotational acceleration. To send a command to the CMG actuators, the
trajectory is plugged into a feedforward controller that calculates the commanded
torque required to set the spacecraft on the created trajectory. The best method of
calculating the commanded torque is to use the Newton-Euler equation written in
the body frame, represented as Eq. (4).

τ ¼ J _ω þ ω� Jω (4)

The feedforward uses Eq. (5), an adapted version of Eq. (4), to calculate this
torque command. Eq. (5) is the nonlinear feedforward control equation based off of
the Newton-Euler equation written in the body frame. Since Eq. (5) directly
describes the physics of the system, it is the best feedforward control to use.

uff ¼ Ĵ _ωd þ ωd � Ĵωd (5)

where Ĵ is the “best guess” spacecraft moment of inertia matrix, _ωd is the desired
rotational acceleration, and ωd is the desired rotation rate. Using this idealized feed
forward control eliminates phase lag in the system.
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At this point in the system topology, the torque command is converted to a
voltage or current and sent directly to the actuators. The actuators move and torque
is exerted on the spacecraft as described by Eq. (6).

J _ω ¼ �JCMG _ωCMGj j _̂ω CMG (6)

where _ω is the spacecraft’s rotational acceleration, JCMG is the CMG moment of
inertia, and _ωCMG is the CMG angular acceleration. As the direction of the CMG
angular momentum changes, the spacecraft’s rotation changes on the other side of
Eq. (6). In order to predict how changing the direction of the CMG angular
momentum affects the spacecraft, the CMG system orientation must be understood
and the angular momentum vectors must be resolved into the three body axes.

For analysis purposes, a simplified, non-redundant, single gimbaled CMG sys-
tem will be used. This system will consist of three CMG’s as pictured in Figure 1. To
note, the CMG skew angle is defined as the angle between a vertical line parallel to
the Z axis at each CMG location and the Z axis; in other words, the gimbal axis
would be pointing out from the spacecraft in the x-y plane when β = 0° or would be
pointing straight up when β = 90°. In Figure 1, β is annotated at its equivalent angle.
Also, each angular momentum vector is drawn at its initial position, θ = 0°.

Figure 1 provides a visual aid in generating a set of three equations that resolve
the angular momentum of each CMG into the x, y, and z axes. These equations are
described in Eqs. (7), (8), and (9).

hx ¼ cos θ3 � cos θ1 þ sin β2 sin θ2ð Þ∣H∣ (7)

hy ¼ sin β3 sin θ3 � sin β1 sin θ1 � cos θ2ð Þ∣H∣ (8)

hz ¼ cos β1 sin θ1 þ cos β2 sin θ2 þ cos β3 sin θ3ð Þ∣H∣ (9)

Figure 1.
¾ CMG system [34].
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where h is angular momentum about a particular axis, β is the skew angle of each
CMG, θ is the angle the momentum vector has rotated about the CMG gimbal axis,
and H is the maximum angular momentum a single CMG can produce.

The desired torque given from the system described in Eqs. (7), (8), and (9) can
be written as Eq. (10), where the desired torque is equal to the partial derivative of
angular momentum with respect to the gimbal angle multiplied by the time deriv-
ative of the gimbal angle.

τ ¼
∂H

∂θ

dθ

dt
(10)

The partial derivative of angular momentum with respect to the gimbal angle is
found by taking the spatial gradient of Eqs. (7), (8), and (9) which produces a
Jacobian matrix, the A matrix. The A matrix describes the components of torque
provided by each CMG in each axis; this is represented in Eq. (11).

A½ � ¼
∂H

∂θi
¼

sin θ1 sin β2 cos θ2 � sin θ3

� sin β1 cos θ1 sin θ2 sin β3 cos θ3

cos β1 cos θ1 cos β2 cos θ2 cos β3 cos θ3

2

6

6

4

3

7

7

5

(11)

Given the A matrix’s definition, Eq. (10) can be written inversely to find the
commanded gimbal rotation rates as Eq.(12) where the inverse of A is equal to the
reciprocal of the determinant of A multiplied by its cofactor [35].

_θ ¼
1

det Að Þ
CoF Að Þτ (12)

Eq. (12) encounters a mathematical singularity when the determinant of A
equals zero; within the control system, the computer will continually attempt to
calculate one over zero and, in the process, send the absurdly large results as torque
commands to the CMGs. The CMG actuators follow the randomly large commands
and the spacecraft loses attitude control. Physically, this kind of singularity is hit
when a particular combination of gimbal angles is reached and the CMG cannot
produce torque in the desired direction. These combinations of gimbal angles are
defined by the determinant of the A matrix. For the CMG system in Figure 1 when
all skew angles could be different, the determinant of A is evaluated in Eq. (13).

det A½ � ¼ sin θ1 sin θ2 cos β3 cos θ3 � sin β3 cos θ3 cos β2 cos θ2ð Þ

þ sin β2 cos θ2 � sin β1 cos θ1 cos β3 cos θ3 � cos β1 cos θ1 sin β3 cos θ3ð Þ

� sin θ3 � sin β1 cos θ1 cos β2 cos θ2 � sin θ2 cos β1 cos θ1ð Þ

(13)

There are a multitude of cases when Eq. (13) is equal to zero, causing a singu-
larity. Within each of these cases, at any chosen combination of skew angles, there
are numerous different gimbal angle combinations resulting in a singularity; each of
these gimbal and skew angle combinations produces a certain angular momentum
in the x, y, and z directions as calculated by Eqs. (7), (8), and (9) respectively. For a
particular skew angle combination, there is a gimbal angle combination such that a
singularity is hit with the smallest achievable angular momentum: this becomes the
maximum angular momentum the entire CMG system can reach before encounter-
ing a singularity at that particular skew angle combination set up.
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Although this reduction in the commandable angular momentum has been
applied to many spacecraft on orbit, it is extremely limiting. Figure 2 illustrates this
reduction with the black sphere representing the singularity free maximum angular
momentum space while the space enclosed with the blue surface represents all valid
angular momentum commands. Furthermore, the outer blue surface defines the
angular momentum saturation limit for its particular CMG setup. In Figure 2, the
CMG set up includes three CMGs at equivalent skew angles of 56°.

In an attempt to remove this limit, Sands created a mechanism with which to
penetrate this smallest angular momentum and expand the commandable angular
momentum to everything up until saturation [32, 36, 37]. This mechanism is called
singularity penetration with unit delay (SPUD) [32] and pierces the inner singular-
ity surfaces by sending the CMG actuators valid control commands while the
system passes through a singularity. This mechanism is critical in order to reach the
maximum angular momentum at a particular axis.

3. Analysis

Defining the maximum angular momentum achievable without encountering a
singularity for a CMG system over all possible skew angle combinations can be
calculated via two methods: numerically or analytically. To numerically define this
surface, the skew angle combinations are discretized and the associated minimum
angular momentum is calculated numerically. To analytically define the same sur-
face, each case that makes the determinant of A equal to zero is identified. The
equation defining each case is then evaluated for its minimum angular momentum
over all gimbal angle combinations for every skew angle. The minimum angular
momentum data for all cases is then plotted on a single graph and the minimum
angular momentum out of each case is taken as the maximum angular momentum
achievable for that skew angle combination.

For this research, numerically calculating the maximum angular momentum
without reaching a singularity for each discretized skew angle was chosen over the
analytical method because the numeric solution creates a conservative model. The
conservative nature of the numeric solution was determined by comparing a

Figure 2.
Restricted angular momentum sphere within entire command space [34].
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numerically calculated and analytically determined maximum angular momentum
plot when all skew angles were equivalent. To compare these methods, however, a
discretization size for the numeric solution had to be chosen. Three numeric solu-
tions were plotted with discretizations of 0.1, 1, and 2°. One degree was chosen
because using a smaller discretization, such as 0.1°, introduced noise into the plots
while using a larger discretization, such as 2°, missed critical data points leading to
important singularity locations. The 1° discretization plotted a smooth singularity
location line while not skipping any important values. The plots using 0.1 and 2° are
pictured in Figure 3 while the 1° discretization is plotted in Figure 4 with the
analytic solution derived and created in Sands’ dissertation [36].

Table 1 describes the mean error and standard deviation between the numeri-
cally obtained and analytically obtained data in Figure 4.

The numeric results vary from the analytic angular momentum values for most
skew angles from 1 to 55° as can be seen in Figure 4 and Table 1. After 55° however,
both the numeric and analytic data is equivalent; Figure 4 shows they plot along the
same line while Table 1 confirms the mean error and standard deviation between
the values are both approximately zero. Although the numerically obtained results
differ from the analytic values before 55°, the numeric results claim a lower possible

Figure 3.
0.1° discretization (left) versus 2° discretization (right) for numerically determined maximum angular
momentum [34].

Figure 4.
Numeric versus analytic determination of maximum angular momentum [34].
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angular momentum is possible before reaching a singularity. Using these data points
would provide a buffer between where the singularities are expected to be versus
where they actually are, protecting the attitude control system from hitting a sin-
gularity. Because this buffer is on the “safe” side, the maximum angular momentum
without hitting a singularity for a CMG system with different skew angles was
determined numerically.

Figure 4 plotted the maximum angular momentum in any direction for a non-
redundant CMG system with equivalent skew angles. In order to design an attitude
control system for a spacecraft with a characteristic maneuver, a similar figure can
be produced plotting only the maximum angular momentum in that favored axis.
This research aims to characterize skew angle combination effects on maximum
angular momentum around the spacecraft’s z axis, in other words, mixed skew
angle effects on yaw maneuverability. To analyze this relationship, the maximum
achievable angular momentum about the z axis was calculated for different skew
angle combinations using the numerical method used to produce Figure 4. When
creating the plots in Figures 5 and 6, the actual angular momentum values were
plotted instead of strictly their magnitude; as a result, the plots are negative.

In order to plot the maximum achievable angular momentum about the z axis
for all skew angle combinations, a four dimensional plot would be needed. Since this
is not achievable, skew angle one was held constant while skew angles two and three
were varied from 0 to 90°. Three dimensional plots were created as can be seen in
Figure 5. However, due to the difficulty of orienting each graph to show the angular
momentum magnitude, a color bar was employed instead. This allowed the same
data to plot in two dimensions as can be seen in Figure 6.

Data points μ σ

1–37 0.0333 0.0388

38–60 0.0811 0.0707

61–90 5.51e-5 1.15e-4

Total 0.0344 0.0530

Table 1.
Mean error and standard deviation between numeric and analytic data [34].

Figure 5.
3-D maximum angular momentum on the z axis for β1 = 1°, β2 = β3 = free [34].
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Figure 6.
Maximum angular momentum for β1 = 1°,15°, 30°, 45°, 60°, 75°, 90°, β2 = β3 = free [34].
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Figure 6 illustrates the same trend for all β1: maximum achievable angular
momentum is smallest when both β2 and β3 are close to 0° and largest when both β2
and β3 are equal to 90°. Additionally, the magnitude of achievable angular momen-
tum increases with β1. For small β1, such as 1°, the maximum angular momentum
when β2 and β3 are close to 0° is 0|H| while for large β1, such as 90°, the maximum
angular momentum when β2 and β3 are close to 0° is 1|H|. Table 2 lists the maxi-
mum angular momentum and associated skew angles for each plot in Figure 6.

Plotting the singularity maps for the skew angle combinations listed in Table 2
visualizes the commandable angular momentum on the z axis. These mixed skew
angle combinations produce the singularity maps pictured in Figure 7.

Within Figure 7, the highlighted blue surface in each plot contains the singular-
ity defining the maximum achievable angular momentum about the z axis. For skew
angle combinations with β1 lower than 45° and β2 and β3 equal to 90°, the saturation
limit on the z axis is defined by one of the inner singularity surfaces. For β1 larger
than 45° and β2 and β3 equal to 90°, the saturation limit is defined by the outer
singularity surface. As long as β1 is larger than 0°, there are no singularities exactly
on the z axis before the saturation limit because there are at least two CMG’s capable
of exerting maximum angular momentum in the z direction. Since angular
momentum can be commanded in that direction regardless of the orientation of the
third CMG, there is no singularity until the saturation limit.

4. Conclusion

Drawing from the key points of this research, it is clear that different skew
angles create drastically different singularity plots. These singularity plots map out
the unattainable torque commands for a particular CMG system, ultimately defin-
ing the attitude envelope a spacecraft can achieve within a defined amount of time.
As a result of this important relationship, CMG skew angles should be carefully
chosen when designing a spacecraft attitude control system.

When designing a non-redundant CMG attitude control system for a spacecraft
that needs to maximize its yaw maneuverability, a CMG system with all skew angles
equal to 90° would maximize the commandable angular momentum about the z axis
as Figure 6, Table 2, and Figure 7 all show. The next greatest combination would
be to set two of the skew angles equal to 90° and the third skew angle equal to
something greater than zero in order to avoid a singularity at the origin.

|H| β1 (°) β2 (°) β3 (°)

2.017 1 90 90

2.259 15 90 90

2.5 30 90 90

2.707 45 90 90

2.866 60 90 90

2.966 75 90 90

3 90 90 90

Table 2.
Maximum yaw maneuverability skew angle combinations [34].
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Figure 7.
Singularity maps [34].
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