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Abstract

Glyphosate-based herbicides (GBHs) are chemicals developed to control 
unwanted plants such as weeds or algae. These chemicals act on EPSPS enzyme that 
blocks the production of tyrosine, phenylalanine, and tryptophan amino acids caus-
ing plant death. This biochemical pathway exists only in plant organisms. Despite 
the target use, GBHs have been related to toxic effects on nonplant organisms, 
such as invertebrates, fishes, amphibians, reptiles, birds, and mammals, including 
humans. This chapter is focused on ecotoxicological effects of GBHs on aquatic 
environment, showing a perspective of studies since this kind of product was devel-
oped until nowadays, an analysis of how many studies for each taxonomic group. 
Furthermore, we analyzed specifically the toxic effect of GBHs on each taxon, and 
finally, we discuss future perspectives and suggestions for a better regulation and 
application for this chemical.

Keywords: ecotoxicology, water quality, weed control, Roundup®, Monsanto

1. Introduction

Herbicides are chemical compounds used mostly to control weed (i.e., unculti-
vated) plants in agriculture and forestry and also for algae control [1, 2]. Herbicide 
formulations are designed to affect mainly plants, affecting specific plant biochemi-
cal pathways. However, it is common that this kind of pesticides affects nontarget 
organisms such animals, including aquatic organisms [3, 4].

The most used herbicide worldwide is glyphosate-based herbicide (GBH), 
such as Roundup® from Monsanto, and its usage has been increased [5] mainly 
due to the development of transgenic glyphosate-resistant crops [6]. Glyphosate 
(N-(phosphonomethyl) glycine (CAS no. 1071-83-6)) is a weak organic acid with 
a molecular weight of 169.09 M and has a half-life of 7–142 days in water and 
76–240 in soil [6, 7]. Glyphosate has high solubility in water (10,000–15,700 mg L−1 
at 25°C), and it readily dissolves and disperses in an aquatic environment.
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Glyphosate affects a specific plant biochemical pathway, inhibiting the action of 
the enzyme 3-enolpyruvylshikimic acid 5-phosphate synthase (EPSPS) that is neces-
sary for biosynthesis of amino acids such as phenylalanine, tyrosine, and tryptophan 
[8] (Figure 1). Animals do not have this biochemical pathway, and hypothetically, 
they would be safe from glyphosate. However, the use of glyphosate requires that 
some other compounds as surfactants are added to the commercial formulation to 
increase adhesion to the leaf surface and absorbance by plants, trespassing the waxy 
cuticle [6]. There are a variety of surfactants, but the most common used on glypho-
sate-based formulations has been polyethoxylated amine (POEA). This surfactant is 
known to be more toxic to animals then glyphosate itself [6, 9].

As mentioned above, glyphosate per se has low toxicity when compared to its 
commercial formulation containing surfactants. However, those formulations are 
toxic to a large number of organisms due mainly to products added to the formulae. 
Many studies have reported tissue damages, DNA damages, enzyme inhibition such 
as acetylcholinesterase (AChE) and aromatase, endocrine disruption, development 
disruption causing malformations, and carcinogenesis caused by GBH in animals as 
fish, amphibians, and mammals, including humans [6, 10–17].

Figure 1. 
Glyphosate action on the biochemical pathway of plants inhibiting 3-enolpyruvylshikimic acid 5-phosphate 
synthase (EPSPS) enzyme and production of essential amino acids as phenylalanine, tyrosine, and tryptophan, 
causing plant death.
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In terrestrial animals, glyphosate reaches these organisms through direct appli-
cation and contaminated food consumption. However, application of GBH in an 
aquatic environment is not so common when compared to terrestrial environments. 
Despite this, GBH can reach the aquatic environment through many ways. It can be 
applied directly on water bodies for algae control, although the opposite effect can 
be found, with proliferation of some species of algae due to the increase of phos-
phorus levels [18]. GBH can also reach the aquatic environment through leaching, 
run-off, and contaminated food source [6].

As mentioned, glyphosate has high solubility in an aquatic environment. Some 
studies say that 50% of glyphosate in natural waters dissipates by water flow and 
decomposition in a few days to 2 weeks [19–21]. Despite that, glyphosate binds to 
soil particles and solid surfaces [22], which makes its dissipation difficult. The by-
products of glyphosate decomposition are sarcosine and aminomethylphosphonic 
acid (AMPA). The first one is known to be nontoxic [23] and the second one less 
or equally toxic for aquatic organisms than glyphosate [24, 25]. This substance 
has also a great solubility and dissipates in water in 7–14 days. POEA in natural 
environments degrades by microbial decomposition in 14 weeks and its half-life is 
estimated in 21–42 days [24].

Considering that glyphosate per se and the commercial formulations are widely 
used around the world, being the most popular herbicide, this chapter summa-
rizes the available data from the literature on the ecotoxicity of glyphosate and its 
formulation compounds, as well as its degraded products, to aquatic organisms 
(aquatic plants, invertebrates, fish, reptiles, amphibians, and birds) and analyzes 
the worldwide politics about glyphosate use and environment safety.

2.  Studies about glyphosate-based herbicides on the aquatic 
environment

One of the first studies that evaluated the effects of glyphosate and GBH in 
aquatic environments was performed by Folmar et al. [26]. According to Thomson’s 
ISI WoS (Institute for Scientific Information, Web of Science) database, using 
keywords as “glyphosate,” and “aquatic environment,” since 1979 to the present 
day, 233 papers have been published that evaluated the toxicological effects of 
glyphosate in aquatic environments (Figure 2). These papers addressed the toxic 
effects of glyphosate on various types of organisms. The invertebrate group was the 
most studied, with 52 published articles (21.3%), followed by fish with 51 (20.9%), 
amphibians 40 (16.4%), plant 31 (12.7%), and aquatic environment 30 (12.3%). 

Figure 2. 
Number of papers published per year. Black bars represent the number of papers published in each year. Grey 
bars represent the number of papers accumulated per year. (*) Papers published until August 2018.
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The other groups were present in 40 published articles (16.4%) (Figure 3). For the 
investigated period and database, there were no papers which have evaluated the 
toxicological effects of glyphosate in aquatic mammals and birds. This scarcity of 
studies demonstrates the lack of knowledge on the risk of exposure of these groups 
in aquatic environments contaminated by glyphosate.

2.1 Aquatic plants

Glyphosate in the aquatic environment causes the death of the macrophyte 
community, which serves as a microhabitat for zooplanktonic, phytoplanktonic, 
and periphytic communities, and this leads to top-down control of planktonic 
organisms, affecting refuge and feeding to fish [27], triggering a chain effect. 
Studies have evaluated the effects of glyphosate on aquatic lentils (Lemna gibba) 
[28] (Table 1), showing that larval mortality of tadpoles was caused by predation 
without their micro-habitats in the absence of macrophytes, due to contamination 
of water body by glyphosate.

Dörr [18] studied the effect of glyphosate on the growth and production of sec-
ondary metabolites by toxigenic strains of the cyanobacteria Microcystis aeruginosa 
and Cylindrospermopsis raciborskii. The author assessed the influence of different 
concentrations of glyphosate on the growth and production of these cyanobacteria 
and observed that toxin production and growth increased at 15 mg L−1. When 
exposed to 20 mg L−1, their growths and toxin production increased as well, while 
concentration above 20 mg L−1 prevented their growth. The species C. raciborskii 
was more resistant to GBH, and this species uses the metabolite AMPA as a source 
of nitrogen for its growth. Considering that microalgae and cyanobacteria are 
the principal primary producers in aquatic ecosystems, use of the herbicide can 
stimulate the growth and production of toxins of certain groups. This affects water 
quality and modifies the functionality of the ecosystem of interest.

The effects of herbicides on nontarget aquatic plants are emerging as a major 
conservation issue in aquatic biodiversity [29]. Ludwigia peploides, an aquatic 
macrophyte, showed that glyphosate bioaccumulates in water surface and can, 
therefore, be used as a biomonitoring organism to evaluate glyphosate levels in 
freshwater. This is because it increases the concentration of the herbicide in the leaf, 
facilitating its detection in the biological matrix instead of the water. In the study, 

Figure 3. 
Number of papers per organism group. Black bars represent the number of papers on toxicological effects 
of glyphosate published for each aquatic organism groups. Asterisk indicates lack of studies evaluating the 
toxicological effects of glyphosate in aquatic mammals and birds.
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Species Group Chemical Glyphosate concentration 

(μg L−1)

Effect Reference

Amphora veneta Catenulaceae Roundup® 8456 Increases mortality [36]

Anabaena sp. Nostocaceae Gly. (acid) 0.1–8.8 mM Increases growth [28]

Arthrospira fusiformis Phormidiaceae Gly. (acid) 0.005–0.048 mM Increases growth [2]

Chlorella vulgaris Chlorellaceae Gly. (acid) 293,000 Chlorophyll fluorescence/decreases PP [35]

Gomphonema parvulum Naviculaceae Roundup® 1000–10,000 Increases mortality [30]

Halophila ovalis Hydrocharitaceae DCMU Gly. (acid) 11,600 Decreases chlorophyll fluorescence [31]

Roundup® [30]

Lemna gibba Lemnaceae Roundup® 2800 Increases growth [2]

Gly. (acid) Roundup® 46,900 Increases growth [29]

Leptolyngbya boryana Leptolyngbyaceae Gly. (acid) 0.003–0.02 mM Increases growth [2]

Ludwigia peploides Onagraceae Gly. (acid) 4000 and 108,000 Bioaccumulation [2]

Microcystis aeruginosa Microcystaceae Gly. (acid) 3–37 Increases growth and toxin production [28]

[18]

Gly. (acid) 15,000 Increases growth and toxin production [2]

Myriophyllum aquaticum Haloragaceae Gly. (acid) Roundup® 840 Decreases root [30]

Gly. (n.c.) 220 Chlorophyll fluorescence [33]

Myriophyllum spicatum Haloragaceae Rodeo® 1000 Increases growth [34]

Nostoc punctiforme Nostocaceae Gly. (acid) >50 mM Increases growth [2]

Scenedesmus quadricauda Chlorophyceae Gly. (acid) 200,000 Chlorophyll fluorescence/decreases primary productivity 
(PP)

[2]

Spirulina platensis Nostocaceae Gly. (acid) 0.005–0.02 mM Increases growth [2]

Table 1. 
Ecotoxicity of glyphosate-based herbicide (GBH) to aquatic plants worldwide.
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surface water and sediment samples were collected at the same time to measure 
glyphosate and calculate both the bioconcentration factors (BCFs) and biota-
sediment accumulation factors (BSAFs). Glyphosate was detected in 94.11% in the 
leaves, presenting concentrations between 4 and 108 mg kg−1. In surface waters and 
sediments, it was detected in 75 and 100% of the samples at concentrations ranging 
from 0 to 1.7 mg L−1 and 5 and 10.50 mg kg−1 of dry weight, respectively. The mean 
BCF and BSAFs were 88.10 and 7.61 L kg−1, respectively. These results indicate that 
L. peploides bioaccumulates glyphosate that is mainly bioavailable in surface waters. 
Thus, since the plant accumulates the herbicide, the high concentrations in the 
organisms are evidence of the trophic levels that will feed or interact with the plant 
[28]. The researchers also observed that only 0.5 mg L−1 glyphosate was sufficient to 
inhibit the growth of Lemna gibba, change its shape, and lower chlorophyll content, 
decreasing its photosynthetic rate and consequently its metabolism.

Another important community in aquatic ecosystems that is also affected by the 
use of glyphosate is the periphyton. In terms of primary production, the periphyton 
has a photosynthetic contribution 77% higher than that of phytoplankton [30]. 
Among the most common and potentially toxic outcrossing cyanobacteria, M. aeru-
ginosa uses glyphosate as a source of phosphorus, growing uncontrollably and causing 
eutrophication of the aquatic ecosystem that modifies ecological conditions. As 
shown by Forlani and collaborators [31], there is a tolerance to glyphosate by cyano-
bacteria Spirulina platensis, Nostoc punctiforme, Arthrospira fusiformis, Anabaena sp., 
and Leptolyngbya boryana, and four of them were able to use phosphorus as the only 
source. Anabaena sp. presented the highest toxicity (C = 50 mg L−1). Vera and col-
laborators [32] observed that the interaction of the periphyton with other communi-
ties and also with the abiotic environment was low when the mesocosms were treated 
with glyphosate, presenting an imbalance in the trophic webs of the ecosystem.

The exposure to GBH reduced 78% of the primary productivity of phytoplank-
ton when used at low concentrations (0.125 mg L−1) [33] and at high concentrations 
(3.8 mg L−1) [34], causing a disturbance in the trophic levels. In freshwater systems, 
glyphosate at high levels stimulated eutrophication by increasing total phosphorus 
and favoring the growth of cyanobacteria on the periphyton, which altered the 
typology of the study ecosystem that was a mesocosm [32].

Species-based differences in sensitivity to GBH exposure may lead to decreased 
richness and abundance of ecosystem species [34]. Even though herbicides are 
thought to kill terrestrial plants, it can have an even more devastating effect in 
water, due to the imbalance that causes mortality of algae and aquatic plants. This 
causes an increase in decomposing organic matter in the water, which will reduce 
the concentrations of dissolved oxygen in the system and increase the stress of 
aquatic communities [35]. Thus, algae and aquatic plants are considered as nontar-
get organisms that are sensitive to the effects of glyphosate, and the damage to the 
balance of the aquatic environment is of concern. The damage of glyphosate on the 
aquatic plant community ranges from the death of the plant itself to the reduction 
of environmental heterogeneity promoted by the local plants. Consequently, this 
leads to the death of other aquatic species, causing an imbalance in the ecosystem.

2.2 Aquatic invertebrates

One of the pioneer studies of the effects of GBH on invertebrate organisms 
was carried out by Tsui and Chu [9] that studied the effects of this chemical on 
Ceriodaphnia dubia and Acartia tonsa, both crustaceans, in addition to other organ-
isms such as algae, bacteria, and protozoans. They found the toxicity of this pesticide 
to these organisms and the most sensible was A. tonsa with a LC50 of 1.77 mg L−1. 
There is a high variability of sensibility of invertebrate organisms to GBHs (Table 2).



7

Ecotoxicology of Glyphosate-Based Herbicides on Aquatic Environment
DOI: http://dx.doi.org/10.5772/intechopen.85157

Specifically about microinvertebrates (<35 μm), these organisms persist within 
resting eggs (or egg banks) in lake sediments [36]. They represent a major source 
of regenerative potential in lake ecosystems near agricultural areas, and play a 
key role in influencing the active population and community dynamics, seasonal 
succession, biogeographic patterns, and the evolution of populations [36, 37]. 
Despite the widely accepted importance of resting egg banks in the ecology of 
aquatic micro-invertebrates’ communities, recently, experimental studies have 
demonstrated that the extensive and inappropriate use of commercial GBH, 

Species Chemical Exposure 

time (h)

LC50 (μg L−1) Reference

Acartia tonsa Roundup® 48 1770 (1330–2340) [38]

Burnupia stenochorias Roundup® 96 4304 (2121–7902) [44]

Caridina nilotica Roundup® 96 2842 (2524–3190) [44]

Ceriodaphnia dubia Roundup® 48 5390 (4810–6050) [38]

Eskoba®, Panzer Gold®, 
Roundup Ultramax®, 

Sulfosato Touchdown®

48 250–16,770 [45]

Chironomus plumosus Roundup®, POEAE, 
Glyphosate acid

96 18,000 (9400–32,000) [46]

Chironomus riparius Rodeo®, X-77 Spreader®, 
ChemTrol®

48 1,216,000 
(996,000–1,566,000)

[47]

Daphnia magna Eskoba®, Panzer Gold®, 
Roundup Ultramax®, 

Sulfosato Touchdown®

48 2670–15,430 [45]

Roundup®, POEAE, 
Glyphosate acid

48 3000 (2600–3400) [46]

Eskoba®, Sulfosato 
Touchdown®

48 1620–31,410 [48]

Rodeo®, X-77 Spreader®, 
ChemTrol®

48 218,000 
(150,000–287,000)

[47]

Daphnia pulex Roundup® 96 657 (472–914) [44]

Gammarus 

pseudolimnaeus

Roundup®, POEAE, 
Glyphosate acid

48 62,000 
(40,000–98,000)

[46]

Roundup®, POEAE, 
Glyphosate acid

96 43,000 
(28,000–66,000)

[46]

Roundup® 96 340,000 [49]

Hyalella azteca Rodeo®, X-77 Spreader®, 
ChemTrol®

96 720,000 
(399,000–1,076,000)

[47]

Laeonereis acuta Roundup® 96 8199 (6690–9580) [50]

Nephelopsis obscura Rodeo®, X-77 Spreader®, 
ChemTrol®

96 1,177,000 
(941,000–1,415,000)

[47]

Notodiaptomus conifer Eskoba®, Sulfosato 
Touchdown®

48 1220–1,282,000 [48]

Ruditapes decussatus Roundup® 1440 2200 [51]

Tanytarsus flumineus Roundup® 96 12,240 (9454–22,360 [44]

Utterbackia imbecillis Roundup® 24 18.3 ± 12.9 [52]

Table 2. 
Ecotoxicity of glyphosate-based herbicide (GBH) to aquatic invertebrates, exposure time, LC50 value  
(lower-upper values), and reference.
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associated with agricultural activities, may impair the hatching of resting eggs 
in the sediment of lakes [38, 39]. Gutierrez and collaborators [38] indicated that 
the GBHs (Sulfosato Touchdown®) affect the hatching dynamics of micro-inver-
tebrates, and selectively alter the species richness and abundance of community 
hatched from lake sediment. Portinho and associates [39] extended these findings 
and indicated that commercial herbicides as Roundup® (a.i. glyphosate) separate 
or in combination with 2,4-dichlorophenoxyacetic acid (2,4-D) have the potential 
to suppress emergences of micro-invertebrates from resting egg banks from lake 
sediments.

The environmental implication of this scenario suggests that changes in micro-
invertebrates’ structure and composition induced by herbicides will occur, causing 
not only negative impacts on the process of recolonization from resting egg banks 
but also shifts in community composition. Recent attempts to develop guidelines for 
protecting aquatic organisms have focused on emergence from resting egg banks 
within the context of an ecological community [40], with potential implications 
for studies related to environmental risk to, and integrity assessment of, aquatic 
ecosystems.

2.3 Fish

Fish species are particularly vulnerable to GBH and their susceptibility depends 
on the commercial formulation, fish species, fish developmental stages, and 
exposure conditions, such as concentrations, exposure time, and route of exposure. 
Furthermore, gender-specific response of fish to GBH has been indicated in guppy 
P. reticulata exposed to glyphosate (50–73.2 mg L−1) and their metabolite AMPA 
(86.8–180 mg L−1) for 96 h [25], indicating the need for further studies about the 
molecular mechanisms of gender-specific effects.

In general, the surfactant and the commercial formulation showed higher toxicity 
to fish when compared to active ingredient (glyphosate pure) and their metabolite 
(AMPA). The 50% lethal concentration (i.e., LC50) of GBHs for fish has high vari-
ability, ranging from 1000 to 9750 μg L−1 [6, 41]. Chandrasekera and Weeratunga 
[42] found a LC50 of 976 μg L−1 for 48 h of exposure in fries of P. reticulata, while 
Sadeghi and Hedayati [43] found a LC50 = 12,640 μg L−1 in adults for a 41% commer-
cial formulation and Souza-Filho and collaborators [44] found 4212 μg L−1 for 48 h.

Glyphosate and formulation compounds can be taken by fish via gills and diges-
tive tract through ingestion of contaminated food or water [6, 45]. Once inside the 
organisms, glyphosate is absorbed and distributed to the whole body through blood 
circuit, reaching several tissues. GBHs can affect fishes in different ways, affect-
ing many organs and as well molecular levels. In liver, vacuolization process was 
reported in hepatocytes and nuclear pyknoses; in kidney, studies report Bowman 
capsule dilatation and accumulation of hyaline drops in tubular cells; and in gills, 
glyphosate causes hyperplasia, lamellar fusion and aneurism [46–50]. Besides that, 
Langiano and Martinez [49] showed activation of the stress axis, with increased 
blood glucose levels. Souza-Filho and collaborators [44] also showed genotoxic 
effects in fish cells. Concerning to enzymes, Sandrini and collaborators [17] 
showed that glyphosate impairs acetylcholinesterase activity in synapses, prevent-
ing detaching of acetylcholine from receptors, impairing electric transmission by 
neurons. This can impair muscle contraction and information transmittance. GBH 
in sub-lethal levels can also impair fish feeding behavior as shown by Giaquinto and 
collaborators [51]. Also, a recent in vitro study [52] showed that low concentrations 
of GBH, even those allowed by the USA, Canadian, and Brazilian laws (50 μg L−1) 
kill yellowtail tetra fish (Astyanax lacustris) sperm cells, compromising fish repro-
duction and natural population persistence.
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OMIC technologies, such as proteomics, transcriptomics, and metabolomics, 
have been applied to investigate the molecular mechanisms and toxicity of GBHs on 
fish. For example, proteomics-based methods (two-dimensional gel electrophoresis 
associated with mass spectrometry and bioinformatics) were used to complement 
the knowledge about the ecotoxicity of GBH on P. reticulata [53, 54]. The female 
guppy exposed to GBH (1.82 mg L−1) for 24 h changed different cell processes in 
the gills (energy metabolism, regulation and maintenance of cytoskeleton, nucleic 
acid metabolism, and stress response) [53] and liver (cellular structure, motility 
and transport, energy metabolism, and apoptosis) [54], confirming tissue-specific 
responses at molecular levels.

2.4 Herpetofauna

The herpetofauna is composed of reptiles and amphibians, and due to the low 
mobility, physiological requirements, and habitat specificity, this group has become 
ideal models for environmental conservation studies [55]. Amphibians are sensitive 
to exposure to contaminants and are considered good bioindicators in monitoring 
water quality [56]. Characteristics such as permeable skin, reproduction, and larval 
stages dependent on the aquatic environment make anuran amphibians highly 
vulnerable to pesticide contamination [57]. Evidence suggests that anuran species 
decline is related to the intensive use of pesticides [58–60].

The decline of amphibian populations is related to the increase of environmen-
tal pollutants, the influence of climate change, habitat fragmentation, exposure 
to ultraviolet radiation, and human-induced environmental changes [61, 62]. 
Contamination of water bodies next to agricultural areas generally increases during 
the rainy season, that is, widely used to breed by most species of amphibians, and 
many species use temporary ponds and small streams adjacent to agricultural areas 
as part of their life cycle, harming the reproductive period and larval develop-
ment [57, 58, 63]. During the rainy season, the agrochemical present in the soil are 
susceptible to be transported down the soil profiles and/or surfaces/underground 
water bodies and consequently affect the amphibian population [58] and other 
environmental (a) biotic elements [6, 64].

Herbicides may delay or inhibit the metamorphosis of amphibians directly 
impacting their reproduction [57]. According to Walker and collaborators [65], the 
main routes of herbicide absorption in anuran amphibians are through contaminated 
food ingestion and skin absorption of pollutants dissolved or suspended in water. 
After absorption, the substance is transported to different compartments of the 
body through blood. The effect of herbicides on tadpoles is less known when com-
pared to adult amphibians, since the larvae of the anurans are less visible, and unlike 
adults, they do not have vocalization. Tadpoles of various species have not yet been 
described, which makes it even more difficult to study these organisms in depth [66].

The reduction in larval survival due to exposure to glyphosate was observed 
by Simioni and collaborators [67], Figueiredo and Rodrigues [68], and Costa and 
collaborators [69] in larvae of Physalaemus albonotatus, Physalaemus centralis, and 
Physalaemus cuvieri [70]. Rissoli and collaborators [71] also observed that the expo-
sure of bullfrog tadpoles to Roundup Original® causes damage to the epithelium 
causing hypoxia in these animals. In the last 30 years, populations of amphibians 
have been suffering a great decline or even being extinct; almost half of the species 
are experiencing some population decline. On the basis of toxicity studies, sensitiv-
ity to glyphosate differs among species; however, there are several variations in 
experimental conditions and pesticide formula (different commercial formulations 
of glyphosate, different exposure times, different surfactant substances, number of 
replicates, abiotic conditions in the experiment, and stage of development) which 
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make it difficult to compare and define which groups or species are more tolerant to 
contamination [67, 72, 73]. The LC50 values for the herpetofauna species are shown 
in Table 3.

Reptiles are extremely sensitive to herbicide formulations and may exhibit changes 
in their behavior after exposure of these xenobiotics [74]. This group is fairly uniform 
and exposure to GBHs may affect its energy storage process [75, 76]. Schaumburg 
and collaborators [77] found that exposure to sublethal concentrations of glyphosate 
during the embryonic phase of Salvator merianae may cause an increase in genetic 
damage. Therefore, it is assumed that glyphosate is capable of causing DNA dam-
age, promoting chromatin fragmentation of epidermal cells, impairing cell division. 
Exposure to glyphosate does not alter the thermoregulatory behavior of lizards of 
the species Oligosoma polychroma [78]. Sub-lethal concentrations of the commercial 
glyphosate formulation (Roundup®) cause genotoxic damage and chromosome 
breaks in Anguilla anguilla. The increase in the damage index in this species can cause 
reproductive damage and adverse effects in the long term [79].

Currently in the Neotropical region, about 40 studies relate the indiscriminate 
use of herbicides based on glyphosate with the risk to biodiversity of herpetofauna. 
Schiesari and collaborators [80] reported that some species of amphibians, includ-
ing tadpoles and adults and some reptiles are sensitive to exposure to formula-
tions based on glyphosate. Exposure to sublethal concentrations of glyphosate is 

Species Chemical Exposure time (h) LC50 mg a.i./L Reference

Anaxyrus americanus Roundup® 384 0.55–2.52 [31]

Roundup® 96 0.8–2.0 [80]

Anaxyrus boreas Roundup® 96 0.8–2.0 [31]

Crinia insignifera Roundup® 48 2.9–11.6 [31]

Dendropsophus minutus Roundup® 96 0.28 [85]

Heleioporus eyrei Roundup® 48 2.9–11.6 [31]

Hyla versicolor Roundup® 384 0.55–2.52 [31]

Roundup® 96 0.8–2.0 [31]

Litoria moorei Roundup® 48 2.9–11.6 [31]

Lithobates sylvaticus Roundup® 384 0.55–2.52 [31]

Roundup® 96 0.8–2.0 [31]

Lithobates pipiens Roundup® 384 0.55–2.52 [31]

Roundup® 96 0.8–2.0 [31]

Lithobates clamitans Roundup® 384 0.55–2.52 [31]

Roundup® 96 0.8–2.0 [31]

Lithobates catesbeianus Roundup® 384 0.55–2.52 [31]

Roundup® 96 0.8–2.0 [31]

Limnodynastes dorsalis Roundup® 48 2.9–11.6 [31]

Pseudacris crucifer Roundup® 96 0.8–2.0 [31]

Rana cascadae Roundup® 96 0.8–2.0 [31]

Rhinella arenarum Roundup® 48 2.42 [83]

Scinax nasicus Roundup® 48 1.74 [82]

Table 3. 
Ecotoxicity of glyphosate-based herbicide (GBH) to herpetofauna, exposure time, and LC50 value.
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sufficient to cause irreversible damage to the DNA of amphibians and reptiles, so 
the use of GBH should be controlled in arable areas avoiding the decline of species 
that make up the herpetofauna group.

2.5 Aquatic birds

Glyphosate when used in recommended rates is considered not bioaccumulative 
and of low toxicity in birds [81]. However, the present acquaintance is not enough 
to make affirmation about low toxicity risk and low exposure of birds to herbicide 
considering the possible complex process behind the movement and accumulation 
of glyphosate, additives, and waste in the environment. Moreover, even the few 
available studies [82–96] have found direct and indirect effects of glyphosate on bird 
species (Figure 4). Among those, only five studies along years 1994 and 2017 on 
Google Scholar database have analyzed effects on aquatic bird species. Direct effects 
have been analyzed on male ducks (Anas platyrhynchos) that receive two different 
concentrations of Roundup dissolved in distilled water according to the body weight 
(5 and 100 mg kg−1). There was a decrease in testosterone level in blood plasma of 
about 90%. Moreover, anatomical and histological changes in seminiferous tubes 
and anatomical changes in the epididymis region have also been found [82].

Indirect effects have been found in wetlands where the glyphosate is used 
to control the increase of Typha spp. population [83–85]. Species of blackbirds 
and wren can be affected by habitat changes in target and nontarget plant com-
munities that decrease available places to sheltering, nesting, and feeding. The 
lacks of those places lead birds to starvation, strong competition for resources, 
or leave the environment [84]. Part of control in coastal dunes of invasive species 
Chrysanthemoides monilifera ssp. rotundata is due to glyphosate. An 8-year study 
has found that a typical bird from coastal region, Myzomela sanguinolenta, was the 
rarest in places that receive the handling herbicide [86]. Environmental heterogene-
ity (e.g., microclimate and flora) and specific vegetation that is dead by glyphosate 
can be very important for conservation of some bird populations in the environ-
ment [85]. Sometimes, there is the increase of some bird populations after the 

Figure 4. 
Ecotoxicity of glyphosate-based herbicide (GBH) to aquatic birds. Direct (continuous arrows) and indirect 
(dashed arrows) effects of GBH on birds.
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glyphosate application. However, it can be related with an immediate advantage due 
the removal of abundant plant species and other changes in the environment and in 
available food. Under those circumstances, other population traits, like reproduc-
tive success, could have been affected but not detected [83].

The direct effect of glyphosate on aquatic plants and macroalgae [87] can also 
affect aquatic birds once they make up the varied and plentiful diet of many of 
those birds. Changes in physiological, histological, and behavioral levels and lethal 
cases have been documented in fishes due to use of glyphosate [87, 88]. In this way, 
piscivorous birds can also be suffering indirect effects. In fact, all aquatic birds’ 
food chain can be affected by glyphosate once effects on invertebrates [81, 87, 88], 
amphibians [89], and reptiles [90] have already been confirmed.

Birds are very similar in their physiology and anatomy. Then, studies that have 
tested direct and indirect effects of glyphosate on nonaquatic birds can be also 
considered here. In Japanese quails (Coturnix japonica), the low food consumption 
due to reduced palatability and the low absorption of nutrients in the digestive 
tract are responsible for body weight loss. Moreover, those birds have been fed with 
high glyphosate doses (250 and 500 mg kg−1 of food) and have exposed clinical 
symptoms of behavioral changes, malformed feathers, and slow development 
[91]. A total of 57.5% of dead embryos from chicken eggs have received glyphosate 
solution (0.1 ml with 2% Glialka Star) inside shell [92]. Herbicides can also act in 
synergy with other agrochemicals turning these toxic effects more complex. In this 
way, the combined effect between glyphosate and other chemicals on birds has been 
analyzed and all studies have demonstrated the increase of potential toxicologi-
cal: 97.5% of dead embryos (0.1% of lead acetate plus 2% of glyphosate) [92] and 
decrease of hemoglobin and leucocytes (indoxacarb, an insecticide, plus glypho-
sate) [91]. Indirect effects on nonaquatic birds due the low vegetation complexity 
have also been reported: habitat loss replacing shrub by trees, for example, [93]; 
imbalance in the population structure (i.e., sex ratio) eliminating only habitats of 
one bird group [94, 95]; and changes in richness of the communities benefiting only 
birds related to sparse vegetation [96].

Therefore, the controlled and scaled use of glyphosate in large areas is necessary 
to contribute to conservation of environmental heterogeneity and biological diver-
sity avoiding the plausible effects on bird communities [83–85, 94]. To know what 
plants are important to bird diet and to promote techniques that do not eliminate all 
of those plants from the place are important activities before glyphosate application 
[91]. More studies that aim to analyze the bird contamination by herbicides are 
also necessary [97]. Long-term studies that encourage collaborative work between 
ecologist, toxicologist, and chemist are more pertinent [98].

2.6 Aquatic mammals

For the best of our knowledge, GBH or glyphosate only was not tested in aquatic 
mammals. Searching on Web of Science website for the terms “Glyphosate AND 
mammal AND aquatic,” there is no study reported to date. Despite that, mammals 
in general are considered less sensible to GBH damages than other groups due to 
reduced contact with the environment of mammals when compared to other groups 
as fishes, amphibians, or aquatic invertebrates [99]. The main way that GBH or the 
active ingredient glyphosate reaches mammals’ bodies is through the digestive tract. 
However, it seems to be poorly absorbed and is excreted essentially nonmetabolized 
[100]. Essentially, mammals that were tested were rats, mice, and dogs [101], tested 
through injection or ingestion. Some studies report glyphosate in humans in medical 
case studies. Reported direct effects of GBH on mammals are described as a “wide 
range of clinical manifestations” such as skin and throat irritation, hypotension, 
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or death [102] and include heart arrhythmias and atrioventricular block, cardiac 
electrophysiological changes and conduction blocks [103], pregnancy problems 
[104], disrupt transcriptional expression of the steroidogenic acute regulatory 
protein in testicle [105] and aromatase activity, alter mRNA levels, and interact with 
enzymes [106]. Indirect effects on mammals can be due to reduction of vegetation 
and animals that are a source of food such as invertebrates [101] and fishes. Although 
these mentioned studies were conducted in nonaquatic mammals, it is expected 
that aquatic mammals have similar or even more accentuated effect, since they have 
intense contact with water, and if it is contaminated, the exposure will be higher.

3. Regulations and perspectives

Despite the fact that GBHs were developed to control weeds, acting specifically 
in a restrict plan biochemical pathway, several studies demonstrated that there are 
many side effects on nontarget organisms in all great groups as reported extensively 
here. Looking to control these side effects, governments for many countries around 
the world established limits for usage and concentrations in water bodies. The USA, 
for example, allows 700 μg L−1 in water bodies, while Canada allows 280 μg L−1 in 
drink water. The Brazilian law is a little more restrictive, allowing 65 μg L−1 in water 
bodies class 2 that is used for crop and recreation of first degree (direct contact) 
[107]. However, we could check here that these maximum concentrations allowed 
are not safe for biodiversity conservation. Considering the Brazilian law, the more 
restrictive in American countries, populations of yellowtail tetra fish (A. lacustris) 
are not safe since sperm cells of this species are dead in lower concentrations than 
65 μg L−1 [52]. In this way, European regulations are more plausible, because it 
is more restrictive (0.1 μg L−1) [108] and can be more precise on conservation of 
aquatic biodiversity.

However, even with all those regulations, it is not being obeyed, since there 
is a large range of glyphosate and its metabolite (e.g., AMPA) concentrations in 
hydroresources [6, 64]. Therefore, another way of action for environment safety 
is preserving marginal forests of rivers, surveillance, and environment education. 
Another sustainable way to achieve this goal is changing the crop production matrix 
from large scale, that is, conventional-based production model to a smaller inte-
grative-/organic-based production system, with controlled or restrictive usage of 
pesticides and other agrochemicals.
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