
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter

Cooperative Adaptive Learning
Control for a Group of
Nonholonomic UGVs by Output
Feedback
Xiaonan Dong, Paolo Stegagno, Chengzhi Yuan and Wei Zeng

Abstract

A high-gain observer-based cooperative deterministic learning (CDL) control
algorithm is proposed in this chapter for a group of identical unicycle-type
unmanned ground vehicles (UGVs) to track over desired reference trajectories. For
the vehicle states, the positions of the vehicles can be measured, while the velocities
are estimated using the high-gain observer. For the trajectory tracking controller,
the radial basis function (RBF) neural network (NN) is used to online estimate the
unknown dynamics of the vehicle, and the NN weight convergence and estimation
accuracy is guaranteed by CDL. The major challenge and novelty of this chapter is
to track the reference trajectory using this observer-based CDL algorithm without
the full knowledge of the vehicle state and vehicle model. In addition, any vehicle in
the system is able to learn the knowledge of unmodeled dynamics along the union of
trajectories experienced by all vehicle agents, such that the learned knowledge can
be re-used to follow any reference trajectory defined in the learning phase. The
learning-based tracking convergence and consensus learning results, as well as
using learned knowledge for tracking experienced trajectories, are shown using the
Lyapunov method. Simulation is given to show the effectiveness of this algorithm.

Keywords: cooperative control, deterministic learning, neural network,
multi-agent systems, distributed adaptive learning and control,
unmanned ground vehicles

1. Introduction

The two-wheel-driven, unicycle-type vehicle is one of the most common mobile
robot platforms, and many research results have been published regarding this
system [1–4]. There are two major challenges for controlling this system: the
knowledge of all state variables, and the actuate modeling of the system. For the
unicycle-type vehicle that we use in this chapter, the vehicle position and velocity
are both required for the trajectory tracking control. The position of the vehicle can
be obtained using cameras or GPS signals, while direct measurement of the vehicle
velocity is difficult. State observer has been proposed to estimate the full state of the
system using the measured signals [5, 6], however, traditional observers require the
knowledge of the system model for accurate state estimations. High-gain observer
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has been proposed to estimate the unmeasured state variables in case that the
system model is not fully known to the observer, and the estimated states can be
used for control purposes [7–10]. In this chapter, we follow the standard high-gain
observer design method [8] to obtain the estimation of vehicle velocity using the
measured vehicle position.

For the second challenge, adaptive control has been introduced to deal with
system uncertainties [11, 12], in which neural network (NN) based control is able to
further deal with nonlinear system uncertainties [13, 11]. Though tracking control
can be achieved by NN-based adaptive control, however, traditional NN-based
control methods failed to achieve parameter (NN weight) convergence. This short-
age requires the controller to update the system parameter (NN weight) all the time
when the controller is operating, which is time consuming and computational
demanding. To overcome this deficiency, a deterministic learning (DL) method has
been proposed to model the system uncertainties under the partial persistency of
excitation (PE) condition [14]. To be more specific, it has been shown that the
system uncertainties can be accurately modeled with a sufficient large number of
radial basis function (RBF) NNs, and local NN weights online updated by DL will
converge to their optimal values, provided that the input signal of the RBFNNs
is recurrent.

Since the RBFNN estimation is locally accurate around the recurrent trajectory,
this becomes a disadvantage when there exists multiple tracking tasks. The learned
knowledge of the system uncertainties, presented by the RBFNNs, cannot be
directly applied on a different control task, and it will need a significant amount of
storage space for a large number of different tasks. In recent years, distributed
control is a rising topic regarding the control of multiple coordinated agents
[15–20]. In this chapter, we took the idea of communicating inside the multi-agent
system (MAS) and apply it on DL, such that in the learning phase, any vehicle in
the MAS is able to learn the unmodeled dynamics not only along its own trajectory,
but along the trajectories of all other vehicle agents in this MAS as well. In other
words, the NN weight of any vehicle in this MAS will converge to a common
constant, which presents the unmodeled dynamics along the union trajectory of all
vehicles, and any vehicle in the MAS is able to use this knowledge to achieve
trajectory tracking for any control task learned in the learning phase.

The main contributions of this chapter are summarized as follows.

i. A high-gain observer is introduced to estimate the vehicle velocities using the
measurement of vehicle position.

ii. An observer and RBFNN-based adaptive learning control algorithm is
developed for a multi-vehicle system, such that each vehicle agent will be able
to follow the desired reference trajectory.

iii. An online cooperative adaptive NN learning law is proposed, such that the
RBFNN weight of all vehicle agents will converge to one common value,
which represents the unmodeled dynamics of the vehicle along the union
trajectories experienced by all vehicle agents.

iv. An observer and experience-based controller is developed using the common
NN model obtained from the learning phase, such that vehicles are able to
follow the reference trajectory experienced by any vehicle before with
improved control performance.

In the following sections, we briefly describe some preliminaries on graph the-
ory and RBFNNs based DL method, then present the vehicle dynamics and the
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problem statement, all in Section 2. The main results of this chapter, including the
high-gain observer design, CDL-based trajectory tracking control, accurate
cooperative learning using RBF NNs, and experience-based trajectory tracking
control, are provided in Section 3, respectively. Simulation results of an example
with four vehicles running three different tasks are provided in Section 4. The
conclusions are drawn in Section 5.

Notations. R, Rþ and ℤþ denote, respectively, the set of real numbers, the set of
positive real numbers and the set of positive integers; Rm�n denotes the set of m� n
real matrices; Rn denotes the set of n� 1 real column vectors; In denotes the n� n
identity matrix; Om�n denotes the zero matrix with dimension of m� n; Subscript

�ð Þk denotes the kth column vector of a matrix; ∣ � ∣ is the absolute value of a real
number, and k � k is the 2-norm of a vector or a matrix, i.e., kxk ¼ xTx

� �1
2; _z denotes

the total derivative of zwith respect to the time; ∂=∂z denotes the Jacobian matrix as
∂

∂z ¼ ∂

∂z1
⋯ ∂

∂zn

h i

.

2. Preliminaries and problem statement

2.1 Graph theory

In a graph defined as G ¼ V; ε;Að Þ, the elements of V ¼ 1; 2;…; nf g are called
vertices, the elements of ε are pairs i; jð Þ with i, j∈V, i 6¼ j called edges, and the
matrix A is called the adjacency matrix. If i; jð Þ∈ ε, then agent i is able to receive
information from agent j, and agent i and j are called adjacent. The adjacency matrix

is thus defined as A ¼ aij
� �

n�n
, in which aij>0 if and only if i; jð Þ∈ ε, and aij ¼ 0

otherwise. For any two nodes vi, vj ∈V, if there exists a path between them, then the
graph G is called connected. Furthermore, the graph G is called fixed if ε and A do
not change over time, and called undirected if ∀ i; jð Þ∈ ε, pair j; ið Þ is also in ε.

According to [21], for the Laplacian matrix L ¼ lij
� �

n�n
associated with the undi-

rected graph G, in which lij ¼
∑n

j¼1, j 6¼iaij i ¼ j

�aij i 6¼ j
:

 

If the graph is connected, then L

is a positive semi-definite symmetric matrix, with one zero eigenvalue and all other
eigenvalues being positive and hence, rank Lð Þ≤ n� 1.

2.2 Localized RBF neural networks and deterministic learning

The RBF networks can be described by f nn Zð Þ ¼ ∑Nn
i¼1wisi Zð Þ ¼ WTS Zð Þ [22],

where Z ∈ΩZ ⊂R
q is the input vector, W ¼ w1;⋯;wNn½ �T ∈RNn is the weight vec-

tor, Nn is the NN node number, and S Zð Þ ¼ s1 kZ � μ1kð Þ;⋯; sNn kZ � μNn
k

� �� �T
,

with si �ð Þ being a radial basis function, and μi i ¼ 1; 2;⋯;Nnð Þ being distinct points

in state space. The Gaussian function si kZ � μikð Þ ¼ exp � Z�μið ÞT Z�μið Þ
σ2

h i

is one of the

most commonly used radial basis functions, where μi ¼ μi1; μi2;⋯; μiq

h iT
is the

center of the receptive field and σi is the width of the receptive field. The Gaussian
function belongs to the class of localized RBFs in the sense that si kZ � μikð Þ ! 0 as
kZk ! ∞. It is easily seen that S Zð Þ is bounded and there exists a real constant
SM ∈Rþ such that kS Zð Þk≤ SM [14].

It has been shown in [22, 23] that for any continuous function f Zð Þ : ΩZ ! R

where ΩZ ⊂R
q is a compact set, and for the NN approximator, where the node
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number Nn is sufficiently large, there exists an ideal constant weight vector W ∗ ,

such that for any ϵ
∗>0, f Zð Þ ¼ W ∗TS Zð Þ þ ϵ,∀Z ∈ΩZ, where ∣ϵ∣ < ϵ ∗ is the ideal

approximation error. The ideal weight vectorW ∗ is an “artificial” quantity required
for analysis, and is defined as the value of W that minimizes ∣ϵ∣ for all Z ∈ΩZ ⊂R

q,

i.e., W ∗≔argminW ∈RNn supZ ∈ΩZ
jf Zð Þ �WTS Zð Þj

n o

. Moreover, based on the locali-

zation property of RBF NNs [14], for any bounded trajectory Z tð Þ within the
compact set ΩZ, f Zð Þ can be approximated by using a limited number of neurons

located in a local region along the trajectory: f Zð Þ ¼ W ∗T
ζ Sζ Zð Þ þ ϵζ, where ϵζ is the

approximation error, with ϵζ ¼ O ϵð Þ ¼ O ϵ
∗ð Þ, Sζ Zð Þ ¼ sj1 Zð Þ;⋯; sjζ Zð Þ

� �T
∈RNζ ,

W ∗
ζ ¼ w ∗

j1 ;⋯;w ∗
jζ

h iT
∈RNζ , Nζ <Nn, and the integers ji ¼ j1,⋯, jζ are defined by

∣sji Zp

� �

∣>θ (θ>0 is a small positive constant) for some Zp ∈Z kð Þ.
It is shown in [14] that for a localized RBF network WTS Zð Þ whose centers are

placed on a regular lattice, almost any recurrent trajectory Z kð Þ (see [14] for
detailed definition of “recurrent” trajectories) can lead to the satisfaction of the PE
condition of the regressor subvector Sζ Zð Þ. This result is recalled in the following
Lemma.

Lemma 1 [14, 24]. Consider any recurrent trajectory Z kð Þ: ℤþ ! R
q. Z kð Þ remains in

a bounded compact set ΩZ ⊂R
q, then for RBF network WTS Zð Þ with centers placed on a

regular lattice (large enough to cover compact setΩZ), the regressor subvector Sζ Zð Þ consisting
of RBFs with centers located in a small neighborhood of Z kð Þ is persistently exciting.

2.3 Vehicle model and problem statement

As shown in Figure 1, this unicycle-type vehicle is a nonholonomic system, with
the constraint force preventing the vehicle from sliding along the axis of the actu-
ated wheels. The nonholonomic constraint can be presented as follows

AT qi

� �

_qi ¼ 0 (1)

in which A qi

� �

¼ sin θi � cos θi 0½ �T, and qi ¼ xi yi θi
� �T

is the general

coordinates of the ith vehicle (i ¼ 1, 2,…, n, with n being the number of vehicles in

Figure 1.
A unicycle-type vehicle.
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the MAS). (xi, yi) and θi denote the position and orientation of the vehicle with
respect to the ground coordinate, respectively.

With this constraint, the degree of freedom of the system is reduced to two.
Independently driven by the two actuated wheels on each side of the vehicle, the

non-slippery kinematics of the ith vehicle is

_qi ¼
_xi

_yi
_θ i

2

6

4

3

7

5
¼

cos θi 0

sin θi 0

0 1

2

6

4

3

7

5

vi

ωi

� �

¼def J qi

� �

ui (2)

where vi and ωi are the linear and angular velocities measured at the center

between the driving wheels, respectively. The dynamics of the ith vehicle can be
described by [25].

M qi

� �

€qi þ C qi; _qi

� �

_qi þ F qi; _qi

� �

þ G qi

� �

¼ B qi

� �

τi þ A qi

� �

λi, (3)

in which M∈R3�3 is a positive definite matrix that denotes the inertia, C∈R3�3

is the centripetal and Coriolis matrix, F∈R3�1 is the friction vector, G∈R3�1 is the

gravity vector. τi ∈R
2�1 is a vector of system input, i.e., the torque applied on each

driving wheel, B ¼ 1
r

cos θi cos θi

sin θi sin θi

R �R

2

6

4

3

7

5
∈R3�2 is the input transformation matrix,

projecting the system input τ onto the space spanned by x; y; θð Þ, in which D ¼ 2R is
the distance between two actuation wheels, and r is the radius of the wheel. λi is a

Lagrange multiplier, and Aλi ∈R
3�1 denotes the constraint force.

Matrices M and C in Eq. (3) can be derived using the Lagrangian equation with

the follow steps. First we calculate the kinetic energy for the ith vehicle agent

Ti ¼
m _x2

ic þ _y2ic
� �

2
þ I _θ2ic

2
(4)

where m is the mass of the vehicle, I is the moment of inertia measured at the
center of mass, xic, yic, and θic are the position and orientation of the vehicle at
the center of mass, respectively. The following relation can be obtained from
Figure 1:

xic ¼ xi þ d cos θi

yic ¼ yi þ d sin θi

θic ¼ θi

,

_xic ¼ _xi � d _θ sin θi

_yic ¼ _yi þ d _θ cos θi

_θ ic ¼¼ _θ i

8

>

>

<

>

>

:

8

>

>

<

>

>

:

(5)

Then Eq. (4) can be rewritten into

T qi; _qi

� �

¼
m _xi � d _θ sin θi
� �2 þ _yi þ d _θ cos θi

� �2
h i

2
þ I _θ2i

2

¼ 1

2
m _x2

i þm _y2i þ md2 þ I
� �

_θ2 � 2md sin θ _xi
_θ i þ 2md cos θ _yi

_θ i
� �

¼ _qT
i M qi

� �

_qi
2

(6)
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in which M ¼
m 0 �md sin θi

0 m md cos θi

�md sin θi md cos θi md2 þ I

2

6

4

3

7

5
. It will be shown later that

the inertia matrix M shown above is identical to that in Eq. (3). Then the dynamics
equation of the system is given by the following Lagrangian equation [26],

d

dt

∂L

∂ _qi

� 	T

� ∂L

∂qi

� 	T

¼ A qi

� �

λi þQ i (7)

in which L qi; _qi

� �

¼ T qi; _qi

� �

� U qi

� �

is the Lagrangian of the ith vehicle, U qi

� �

is the potential energy of the vehicle agent, λ∈Rk�1 is the Lagrangian multiplier,

and ATλ is the constraint force. Q i ¼ B qi

� �

τi � f uið Þ½ � denotes the external force,
where τi is the force generated by the actuator, and f uið Þ is the friction on the
actuator. Then Eq. (7) can be rewritten into

M qi

� �

€qi þ _M _qi �
∂Ti

∂qi

� 	T

þ ∂Ui

∂qi

� 	T

þ B qi

� �

f _qi

� �

¼ A qi

� �

λi þ B qi

� �

τi (8)

By setting C qi; _qi

� �

_qi ¼ _M _qi � ∂Ti

∂qi


 �T
, F qi; _qi

� �

¼ B qi

� �

f _qi

� �

, and

G qi

� �

¼ ∂Ui

∂qi


 �T
, Eq. (8) can be thereby transferred into Eq. (3). Notice that the

form of Cn�n is not unique, however, with a proper definition of the matrix C, we

will have _M � 2C to be skew-symmetric. The i; jð Þth entry of C is defined as
follows [26].

cij ¼ ∑
n

k¼1

cijk _qk (9)

where _qk is the k
th entry of _q, and cijk ¼ 1

2
∂mij

∂qk
þ ∂mik

∂qj
� ∂mjk

∂qi


 �

is defined using the

Christoffel symbols of the first kind. Then we have the centripetal and Coriolis

matrix calculated as C ¼
0 0 �md _θ i cos θi

0 0 �md _θ i sin θi

0 0 0

2

6

4

3

7

5
. Since the vehicle is operating on

the ground, the gravity vector G is equal to zero. The friction vector F is assumed
to be a nonlinear function of the general velocity ui, and is unknown to the
controller.

To eliminate the nonholonomic constraint force A qi

� �

λi from Eq. (3), we left

multiplying JT qi

� �

to the equation, it yields:

JTMJ _ui þ JT M _J þ CJ
� �

ui þ JTF þ JTG ¼ JTBτi þ JTAλi (10)

From Eqs. (1) and (2), we have JTA ¼ 02�1, then the dynamic equation of ui is
simplified as

M qi

� �

_ui þ C uið Þui þ F uið Þ þ G qi

� �

¼ τi, (11)

6
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where

M ¼ JTMJ ¼
m 0

0 md2 þ I

" #

, C ¼ JT M _J þ CJ
� �

¼
0 �md _θ i

md _θ i 0

" #

,

F ¼ JTF, G ¼ JTG ¼ 02�1, τi ¼
τvi

τωi

" #

¼ JTBτi ¼
1=r 1=r

R=r �R=r

" #

τi:

The degree of freedom of the vehicle dynamics is now reduced to two. Since JTB
is of full rank, then for any transformed torque input τi, there exists a unique

corresponding actual torque input τi ∈R
2 that applied on each wheel.

The main challenge for controlling the system includes (i) the direct measure-
ment of the linear and angular velocities is not feasible, and (ii) system parameter

matrices C and F are unknown to the controller.
Based on the above system setup, we are ready to formulate our objective of this

chapter. Consider a group of n homogeneous unicycle-type vehicles, the kinematics
and dynamics of each vehicle agent are described by Eqs. (2) and (11), respectively.
The communication graph of such n vehicles is denoted as G. Regarding this MAS,
we have the following assumption.

Assumption 1. The graph G is undirected and connected.
The objective of this chapter is to design an output-feedback adaptive learning

control law for each vehicle agent in the MAS, such that

i. State estimation: The immeasurable general velocities ui ¼ vi ωi½ �T can be
estimated by a high-gain observer using the measurement of the general

coordinates qi ¼ xi yi θi
� �T

.

ii. Trajectory tracking: Each vehicle in the MAS will track its desired reference

trajectory, which will be quantified by xri tð Þ; yri tð Þ; θri tð Þ
� �

; i.e.,

limt!∞ xi tð Þ � xri tð Þð Þ ¼ 0, limt!∞ yi tð Þ � yri tð Þ
� �

¼ 0,

limt!∞ θi tð Þ � θri tð Þð Þ ¼ 0.

iii.Cooperative Learning: The unknown homogeneous dynamics of all the vehicles
can be locally accurately identified along the union of the trajectories
experienced by all vehicle agents in the MAS.

iv. Experience based control: The identified/learned knowledge from the
cooperative learning phase can be re-utilized by each local vehicle to perform
stable trajectory tracking with improved control performance.

In order to apply the deterministic learning theory, we have the following
assumption on the reference trajectories.

Assumption 2. The reference trajectories xri tð Þ, yri tð Þ, θri tð Þ for all i ¼ 1,⋯, n are
recurrent.

3. Main results

3.1 High-gain observer design

In mobile robotics control, the position of the vehicle can be easily obtained in
real time using GPS signals or camera positioning, while the direct measurement of

7
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the velocities is much more difficult. For the control and system estimation pur-
poses, the velocities of the vehicle are required for the controller. To this end, we
follow the high-gain observer design method in [8, 9], and introduce a high-gain
observer to estimate the velocities using robot positions. First, we define two new
variables as follows

pxi ¼ xi cos θi þ yi sin θi

pyi
¼ yi cos θi � xi sin θi

(12)

Notice that the operation above can be considered as a projecting the vehicle
position onto the a frame whose origin is fixed to the origin of ground coordinates,
and the axes are parallel to the body-fixed frame of the vehicle. The coordinates of

the vehicle in this rotational frame is pxi ; pyi


 �

and hence, pxi and pyi
can be

calculated based on the measurement of the position and the orientation. The

rotation rate of this frame equals to the angular velocity of the vehicle _θ i ¼ ωi. Based
on this, we design the high-gain observer for ω as

_̂
θ i ¼ ω̂i þ

l1
δ

θi � θ̂ i
� �

_̂ωi ¼
l2

δ2
θi � θ̂ i
� �

(13)

in which δ is a small positive scalar to be designed, and l1 and l2 are parameters to

be chosen, such that
�l1 1

�l2 0

� �

is Hurwitz stable. The time derivative of this

coordinates defined in Eq. (12) is given by _pxi
¼ vi þ pyi

ωi, and _pyi
¼ �pxiωi, then

we design the high-gain observer for v as

_̂pxi
¼ v̂i þ pyi

ω̂i þ
l1
δ

pxi � p̂xi


 �

_̂vi ¼
l2

δ2
pxi � p̂xi


 �

(14)

To prevent peaking while using this high-gain observer and in turn improving
the transient response, parameter δ cannot be too small [9]. Due to the use of a
globally bounded control, decreasing δ does not induce peaking phenomenon of the
state variables of the system, while the ability to decrease δ will be limited by
practical factors such as measurement noise and sampling rates [7, 27]. According to
[8], it is easy to show that the estimation error between the actual and estimated

velocities of the ith vehicle zi ¼ ui � ûi will converge to zero, detailed proof is
omitted here due to space limitation.

3.2 Controller design and tracking convergence analysis

After obtaining the linear and angular velocities from the high-gain observer, we
now proceed to the trajectory tracking. First, we define the tracking error ~qi by

projecting qri � qi onto the body coordinate of the ith vehicle, with the x axis set to
be the front and y to be the left of the vehicle, as shown in Figure 2.

8

Multi Agent Systems - Strategies and Applications



~qi ¼
~xi

~yi
~θ i

2

6

4

3

7

5
¼

cos θi sin θi 0

� sin θi cos θi 0

0 0 1

2

6

4

3

7

5

xri � xi

yri � yi
θri � θi

2

6

4

3

7

5
, (15)

using the constraint Eq. (1) and kinematics Eq. (2), we have the derivative of the
tracking error as follows

_~xi ¼ vri cos ~θ i þ ωi~yi � vi
_~yi ¼ vri sin ~θ i � ωi~xi

_~θ i ¼ ωri � ωi

(16)

where vi and ωi are the linear and angular velocities of the ith vehicle,
respectively.

In order to utilize the backstepping control theory, we treat vi and ωi in Eq. (16)
as virtual inputs, then following the methodology from [28], we can design a
stabilizing virtual controller as

uci ¼
vci
ωci

� �

¼ vri cos ~θ i þ Kx~xi

ωri þ vriKy~yi þ Kθ sin ~θ i

" #

, (17)

in which Kx, Ky, and Kθ are all positive constants. It can be shown that this
virtual velocity controller is able to stabilize the closed-loop system Eq. (16) kine-
matically by replacing vi and ωi with vci and ωci , respectively. To this end, we define

the following Lyapunov function for the ith vehicle

V1i ¼
~x2
i

2
þ ~y2i

2
þ 1� cos ~θ i
� �

Ky
(18)

Figure 2.
Projecting tracking error onto the body-fixed frame.
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and the derivative of V1i is

_V1i
¼ ~xi

_~xi þ ~yi
_~yi þ

sin ~θ i
Ky

_~θ i

¼ ~xi vri cos ~θ i þ ωi~yi � vci
� �

þ ~yi vri sin
~θ i � ωi~xi

� �

þ sin ~θ i
Ky

ωri � ωcið Þ

¼ ~xi ωi~yi � Kx~xi

� �

þ ~yi vri sin
~θ i � ωi~xi

� �

þ sin ~θ i
Ky

�vriKy~yi � Kθ sin ~θ i
� �

¼ �Kx~x
2
i �

Kθ

Ky
sin 2~θ i ≤0

(19)

Since _V 1i is negative semi-definite, then we can conclude that this closed-loop

system is stable, i.e., the tracking error ~qi for the i
th vehicle will be bounded.

Remark 1. In addition to the stable conclusion above, we could also conclude the

asymptotic stability by finding the invariant set of _V 1i ¼ 0. By setting _V 1i ¼ 0, we have

~xi ¼ 0 and sin ~θ ¼ 0. Applying this result into Eqs. (16) and (17), we have the invari-

ant set equals to ~xi ¼ 0;~yi ¼ 0; sin ~θ ¼ 0g∪ ~xi ¼ 0; sin ~θ ¼ 0;~yi 6¼ 0; vri ¼ 0;
��

ωri ¼ 0g. With the assumption 2, the velocity of the reference cannot be constant over

time, then we can conclude that the only invariant subset of _V 1i ¼ 0 is the origin ~qi ¼ 0.
Therefore, we can conclude that the closed-loop system Eqs. (16) and (17) is asymptoti-
cally stable [29].

With the idea of backstepping control, we then derive the transformed torque

input τi for the i
th vehicle with the following steps. By defining the error between

the virtual controller uci and the actual velocity ui as ~ui ¼ ~vi ~ωi½ �T ¼ uci � ui, we
can rewrite Eq. (16) in terms of ~vi and ~ωi as

_~xi ¼ vri cos ~θ i þ ωi~yi � vci þ ~vi ¼ �Kx~xi þ ωi~yi þ ~vi

_~yi ¼ �ωi~xi þ vri sin ~θ i

_~θ i ¼ ωri � ωci þ ~ωi ¼ �vriKy~yi � Kθ sin ~θ i þ ~ωi

(20)

Then we define a new Lyapunov function V2i ¼ V1i þ
~uT

i M~u i

2 for the closed-loop
system Eq. (20), whose derivative can be written as

_V 2i ¼ ~xi
_~xi þ ~yi

_~yi þ
sin ~θ i
Ky

_~θ i þ ~uT
i M

_~ui

¼ ~xi �Kx~xi þ ωi~yi þ ~vi
� �

þ ~yi �ωi~xi þ vri sin ~θ i
� �

þ sin ~θ i
Ky

�vriKy~yi � Kθ sin ~θi þ ~ωiÞ
�

þ ~uT
i M

_~ui

¼ �Kx~x
2
i �

Kθ

Ky
sin 2~θ i þ ~uT

i

~xi

sin ~θ i
Ky

2

6

4

3

7

5
þM _~ui

0

B

@

1

C

A
(21)
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To make the system stable, the term ~uT
i

~xi

sin ~θ i
Ky

2

6

4

3

7

5
þM _~ui

0

B

@

1

C

A
needs to be negative

definite. From the definition of ~ui and Eq. (11), we have

M _~ui ¼ M _~uci �M _ui ¼ M _~uci þ Cui þ F � τi (22)

Motivated from the results of [9], it is easy to show that this term is negative
definite if τi is designed to be

τi ¼ M _uci þ Cui þ F þ Ku~ui þ
~xi

sin ~θ i
Ky

2

6

4

3

7

5
, (23)

where Ku is a positive constant. Since the actual linear and angular velocity of
the vehicle is unknown, we use v̂i and ω̂i generated by the high-gain observer
Eqs. (13) and (14) to replace vi and ωi in Eq. (23). From the discussion in previous
subsection, the convergence of velocities estimation is guaranteed.

In Eq. (23), C uið Þ and F uið Þ are unknown to the controller. To overcome this
issue, RBFNN will be used to approximate this nonlinear uncertain term, i.e.,

H Xið Þ ¼ C uið Þui þ F uið Þ ¼ W ∗TS Xið Þ þ ϵi, (24)

in which S Xið Þ is the vector of RBF, with the variable (RBFNN input) Xi ¼ ui,
W ∗ is the common ideal estimation weight of this RBFNN, and ϵi is the ideal
estimation error, which can be made arbitrarily small given sufficiently large num-

ber of neurons. Consequently, we proposed the implementable controller for the ith

vehicle as follows

τi ¼ M _uci þ ŴT
i S Xið Þ þ Ku

vci � v̂i

ωci � ω̂i

� �

þ
~xi

sin ~θ i
Ky

2

6

4

3

7

5
, (25)

For the NN weights used in Eq. (25), we propose an online NN weight updating
law as follows

_̂W i ¼ ΓS Xið Þ~uT
i � γŴ i � β ∑

n

j¼1
aij Ŵ i � Ŵ j

� �

, (26)

where Γ, γ, and β are positive constants.
Theorem 1. Consider the closed-loop system consisting of the n vehicles in the MAS

described by Eqs. (2) and (11), reference trajectory qri
tð Þ, high-gain observer Eqs. (13)

and (14), adaptive NN controller Eq. (25) with the virtual velocity Eq. (17), and the
online weight updating law (26), under the Assumptions 1 and 2, then for any bounded

initial condition of all the vehicles and Ŵ i ¼ 0, the tracking error ~qi converges asymp-
totically to a small neighborhood around zero for all vehicle agents in the MAS.

Proof:We first derive the error dynamics of velocity between uci and ui using
Eqs. (22) and (25)
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_~ui ¼ M
�1

~W
T

i S Xið Þ þ εi � Ku

vci � v̂i

ωci � ω̂i

� �

�
~xi

sin ~θ i
Ky

2

6

4

3

7

5

2

6

4

3

7

5
(27)

where ϵi ¼ ϵvi ϵωi½ �T and ~W i ¼ W ∗ � Ŵ i. Notice that the convergence of ûi to
ui is guaranteed by the high-gain observer. Then we derive the error dynamics of
NN weight as follows

_~W i ¼ � _̂W i ¼ �ΓS Xið Þ~uT
i þ γŴ i þ β ∑

n

j¼1
aij Ŵ i � Ŵ j

� �

Þ (28)

For the closed-loop system given by Eqs. (20), (27), and (28), we can build a
positive definite function V as

V ¼ ∑
n

i¼1

~x2
i

2
þ ~y2i

2
þ 1� cos ~θ i
� �

Ky
þ ~uT

i M~ui

2
þ
trace ~W

T

i
~W i


 �

2Γ

2

4

3

5 (29)

whose derivative is equal to

_V ¼ ∑
n

i¼1

~xi
_~xi þ ~yi

_~yi þ
sin ~θ i
Ky

_~θ i þ ~uT
i M

_~ui þ
trace ~W

T

i
_~W i


 �

Γ

2

4

3

5 (30)

By using Eqs. (27) and (28), the equation above is equivalent to

_V ¼ ∑
n

i¼1
~xi ~vi þ ωi~yi � Kx~xi

� �

þ ~yi vri sin
~θ i � ωi~xi

� �

þ sin ~θ i
Ky

~ωi � vriKy~yi � Kθ sin ~θ i
� �




þ ~uT
i

~W
T

i S Xið Þ þ εi � Ku~ui �
~xi

sin ~θ i
Ky

2

6

4

3

7

5

2

6

4

3

7

5

þ trace ~W
T

i �S Xið Þ~uT
i þ γŴ i

Γ
þ β

Γ
∑
n

j¼1
aij Ŵ i � Ŵ j

� �

" # !)

¼ ∑
n

i¼1
�Kx~x

2
i �

Kθ

Ky
sin 2~θi � Ku~u

T

i ~ui þ ~uT
i εi þ ~uT

i
~W

T

i S Xið Þ
h i




� trace ~W
T

i S Xið Þ
h i

~u
T

i

� 	

þ trace
γ ~W

T

i Ŵ i

Γ

 !)

� trace ∑
n

i¼1

β

Γ

~W
T

i ∑
n

j¼1
aij Ŵ i � Ŵ j

� �

 !

¼ ∑
n

i¼1
�Kx~x

2
i �

Kθ

Ky
sin 2~θi � Ku~u

T

i ~ui þ ~uT
i εi þ

γ

Γ
trace ~W

T

i Ŵ i


 �


 �

� β

Γ
trace ~WT L⊗Ið Þ ~W Þ

�

(31)

where L is the Laplacian matrix of G, and ~W ¼ ~W
T

1
⋯ ~W

T

n

h iT

. Since β and Γ are

all positive, and L is positive semi-definite, then we have β

Γ
trace ~W

T
L⊗Ið Þ ~W


 �

≥0.

Notice that the estimation error can be made arbitrary small with a sufficient large
number of neurons, and γ is the leakage term chosen as a small positive constant.
Therefore, we can conclude that the closed-loop system Eqs. (20), (27), and (28) is

stable, i.e., _V ≤0, if the following condition stands
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Kx~x
2
i þ

Kθ

Ky
sin 2~θi þ Ku~u

T

i ~ui ≥ ~uT
i ϵi þ

γ

Γ
trace ~W

T

i Ŵ i


 �

(32)

Hence, the closed-loop system is stable, and all tracking error are bounded. Since

all variables in Eq. (31) are continuous (i.e., €V is bounded), then with the applica-

tion of Barbalat’s Lemma [30], we have limt!∞
_V ¼ 0, which implies that the track-

ing error ~qi for all agents will converge to a small neighborhood of zero, whose size

depends on the norm of ~uT
i ϵi þ γ

Γ
trace ~W

T

i Ŵ i


 �

. Q.E.D.

3.3 Consensus convergence of NN weights

In addition to the tracking convergence shown in the previous subsection, we
will show that all vehicles in the system is able to learn the unknown vehicle
dynamics along the union trajectory (denoted as ∪n

i¼1ζi Xi tð Þ½ �) experienced by all
vehicles in this subsection.

By defining ~v ¼ ~v1…~vn�
T

h

, ~ω ¼ ~ω1…~ωn�
T

h

, ~Wv ¼ ~W1,1…
~Wn,1�

T
h

, and

~Wω ¼ ~W1,2…
~Wn,2�

T
h

, we combine the error dynamics in Eqs. (27) and (28) for all

vehicles into the following form:

_~v
_~ω
_~W v

_~Wω

2

6

6

6

6

4

3

7

7

7

7

5

¼ A B

C D

� �

~v

~ω

~W v

~Wω

2

6

6

6

4

3

7

7

7

5

þ E (33)

in which

A2n�2n ¼
�Ku

m
In 0

0 �Ku

I
In

2

6

6

4

3

7

7

5

, B2nN�2n ¼

ST

m
0

0
ST

I

2

6

6

6

4

3

7

7

7

5

,

C2n�2nN ¼
�ΓS 0

0 �ΓS

" #

, D2nN�2nN ¼
�β L⊗INð Þ 0

0 �β L⊗INð Þ

" #

,

where S ¼ diag S X1ð Þ; S X2ð Þ;…; S Xnð Þð Þ, and

E 2nNþ2nNð Þ�1 ¼

E1

E2

E3

E4

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

, E1 ¼
1

m

ϵv1 � ~x1

⋮

ϵvn � ~xn

2

6

6

6

4

3

7

7

7

5

, E2 ¼
1

I

ϵω1 �
sin ~θ1
Ky

⋮

ϵωn
� sin ~θn

Ky

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

,

E3 ¼
γ

m

Ŵ 1,1

⋮

Ŵ n,1

2

6

6

6

4

3

7

7

7

5

, E4 ¼ γ

m

Ŵ 1,2

⋮

Ŵ n,2

2

6

6

6

4

3

7

7

7

5

:
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As is shown in Theorem 1, the tracking error ~qi will converge to a small neigh-
borhood of zero for all vehicle agents in the MAS. Furthermore, the ideal estimation
errors ϵvi and ϵωi can be made arbitrarily small given sufficient number of RBF
neurons, and γ is chosen to be a small positive constant, therefore, we can conclude
that the norm of E in Eq. (33) is a small value. In the following theorem, we will
show that W i ¼ W i,1 W i,2½ � converges to a small neighborhood of the common
ideal weight W ∗ for all i ¼ 1,…, n under Assumptions 1 and 2.

Before proceeding further, we denote the system trajectory of the ith vehicle as ζi
for all i ¼ 1,⋯, n. Using the same notation from [14], �ð Þζ and �ð Þζ represent the parts
of �ð Þ related to the region close to and away from the trajectory ζ, respectively.

Theorem 2. Consider the error dynamics Eq. (33), under the Assumptions 1 and 2,

then for any bounded initial condition of all the vehicles and Ŵ i ¼ 0, along the union of

the system trajectories ∪n
i¼1ζi Xi tð Þ½ �, all local estimated neural weights Ŵ ζi used in

Eqs. (25) and (26) converge to a small neighborhood of their common ideal value W ∗
ζ ,

and locally accurate identification of nonlinear uncertain dynamics H X tð Þð Þ can be

obtained by ŴT
i S Xð Þ as well as WT

i S Xð Þ for all X ∈∪n
i¼1ζi Xi tð Þ½ �, where

W i ¼ mean
tai ≤ t≤ tbi

Ŵ i tð Þ (34)

with tai ; tbi½ � (tbi>tai>Ti) being a time segment after the transient period of track-
ing control.

Proof: According to [14], if the nominal part of closed loop system shown in

Eq. (33) is uniformly locally exponentially stable (ULES), then ~v, ~ω, ~Wv, and
~Wω

will converge to a small neighborhood of the origin, whose size depends on the
value of kEk.

Now the problem boils down to proving ULES of the nominal part of system
Eq. (33). To this end, we need to resort to the results of Lemma 4 in [31]. It is stated
that if the Assumptions 1 and 2 therein are satisfied, and the associated vector Sζ Xið Þ
is PE for all i ¼ 1,⋯, n, then the nominal part of Eq. (33) is ULES. The assumption 1
therein is automatically verified since S is bounded, and Assumption 2 therein also

holds, if we set the counterparts P ¼ Γ
m 0

0 I

� �

and Q ¼ �2Γ
KuIn 0

0 KuIn

� �

. Fur-

thermore, the PE condition of Sζ Xið Þ will also be met, if Xi of the learning task is
recurrent [14], which is guaranteed by Assumption 2 and results from Theorem 1.

Therefore, we can obtain the conclusion that ~v, ~ω, ~Wv, and
~Wω will converge to a

small neighborhood of the origin, whose size depends on the small value of kEk.
Similar to [24], the convergence of Ŵ ζi to a small neighborhood of W ∗

ζ implies

that for all X ∈∪n
i¼1ζi Xi tð Þ½ �, we have

H Xð Þ ¼ W ∗T
ζ þ ϵζ ¼ ŴT

ζi
Sζ Xð Þ þ ~W

T

ζi
Sζ Xð Þ þ ϵζi ¼ ŴT

ζi
Sζ Xð Þ þ ϵ1ζi (35)

where ϵ1ζi ¼ ~W
T

ζiSζ Xð Þ þ ϵζi is close to ϵζi due to the convergence of ~Wζi. With

the W i defined in Eq. (34), then Eq. (35) can be rewritten into

H Xð Þ ¼ ŴT
ζi
Sζ Xð Þ þ ϵ1ζi ¼ W

T
ζi
Sζ Xð Þ þ ϵ2ζi (36)

where W
T
ζi
¼ w1ζ ⋯ wkζ

� �T
is a subvector of W i and ϵ2ζi is the error using

W
T
ζiSζ Xð Þ as the system approximation. After the transient process, kϵ1ζik � kϵ2ζik is

small for all i ¼ 1,⋯, n.
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On the other hand, due to the localization property of Gaussian RBFs, both Sζ

and W
ζ
Sζ Xð Þ are very small. Hence, along the union trajectory ∪n

i¼1ζi Xi tð Þ½ �, the

entire constant RBF network W
T
S Xð Þ can be used to approximate the nonlinear

uncertain dynamics, demonstrated by the following equivalent equations

H Xð Þ ¼ W ∗T
ζ Sζ Xð Þ þ ϵζ

H Xð Þ ¼ Ŵ
T

ζi
Sζ Xð Þ þ Ŵ

T

ζi
Sζ Xð Þ þ ϵ1i ¼ ŴT

i S Xð Þ þ ϵ1i

H Xð Þ ¼ W
T
ζi
Sζ Xð Þ þW

T
ζi
Sζ Xð Þ þ ϵ2i ¼ W

T
i S Xð Þ þ ϵ2i

(37)

where kϵ1ik � kϵ1ζik and kϵ2ik � kϵ2ζik are all small for all i ¼ 1,⋯, n. Therefore,
the conclusion of Theorem 2 can be drawn. Q.E.D.

3.4 Experience-based trajectory tracking control

In this section, based on the learning results from the previous subsections, we
further propose an experience-based trajectory tracking control method using the
knowledge learned in the previous subsection, such that the experience-based con-
troller is able to drive each vehicle to follow any reference trajectory experienced by
any vehicle on the learning stage.

To this end, we replace the NN weight Ŵ i in Eq. (25) by the converged constant

NN weightW i for the i
th vehicle. Therefore, the experience-based controller for the

ith vehicle is constructed as follows

τi ¼ M _uci þW
T
i S Xið Þ þ Ku

vci � v̂i

ωci � ω̂i

� �

þ
~xi

sin ~θ i
Ky

2

6

4

3

7

5
, (38)

in which _uci is the derivative of the virtual velocity controller from Eq. (17), and

W i is obtained from Eq. (34) for the ith vehicle. The system model Eqs. (2) and (11),
and the high-gain observer design Eqs. (14) and (13) remain unchanged.

Theorem 3. Consider the closed-loop system consisting of Eqs. (2) and (11), refer-
ence trajectory qri ∈∪n

j¼1qj tð Þ, high-gain observer Eqs. (14) and (13), and the experience-

based controller Eq. (38) with virtual velocity Eq. (17). For any bounded initial condi-
tion, the tracking error ~qi converges asymptotically to a small neighborhood around zero.

Proof: Similar to the proof of Theorem 1, by defining ~qi and ~ui to be the error

between the position and velocity of the ith vehicle and its associated reference

trajectory, we have the error dynamics of the ith vehicle as

_~xi ¼ vri cos ~θ i þ ωi~yi � vi ¼ ~vi þ ωi~yi � Kx~xi

_~yi ¼ vri sin ~θ i � ωi~xi

_~θ i ¼ ωri � ωi ¼ ~ωi � vriKy~yi � Kθ sin ~θ i

_~ui ¼ M
�1

H Xið Þ �W
T
i S Xið Þ � Ku

vci � v̂i

ωci � ω̂i

" #

�
~xi

sin ~θ i
Ky

2

6

4

3

7

5

2

6

4

3

7

5

(39)

With the same high-gain observer design used in the learning-based tracking,
the convergence of ûi to ui is also guaranteed. For the closed-loop system shown
above, we can build a positive definite function as
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V i ¼
~x2
i

2
þ ~y2i

2
þ 1� cos ~θ i

Ky
þ ~uT

i M~ui

2
(40)

and the derivative of V i is

_V i ¼ ~xi
_~xi þ ~yi

_~yi þ sin
~θi
Ky

_~θ i þ ~uT
i M

_~ui

¼ ~xi ~vi þ ωi~yi � Kx~xi

� �

þ ~yi vri sin
~θ i � ωi~xi

� �

þ sin ~θi

Ky
~ωi � vriKy~yi � Kθ sin ~θ i
� �

þ ~uT
i ϵ2i � Ku~ui �

~xi

sin ~θ i
Ky

2

6

4

3

7

5

0

B

@

1

C

A

¼ �Kx~x
2
i �

Kθ

Ky
sin 2~θ i � Ku~u

T
i ~ui þ ~uT

i ϵ2i

(41)

where ϵ2i ¼ H Xið Þ �W
T
i S Xið Þ. Then following the similar arguments in the

proof of Theorem 1, given positive Kx, Ky, Kθ, and Ku, then we can conclude that

the Lyapunov function V i is positive definite and _V i is negative semi-definite in the

region Kx~x
2
i þ Kθ

Ky
sin 2~θi þ Ku~u

T

i ~ui ≥ ~uT
i ϵi. Similar to the proof of Theorem 1, it can

be shown that limt!∞
_V i ¼ 0 with Barbalat’s Lemma, and the tracking errors will

converge to a small neighborhood of zero. Q.E.D.

4. Simulation studies

Consider four identical vehicles, whose unknown friction vector is assumed to

be a nonlinear function of v and ω as follows F ¼ 0:1mvi þ 0:05mv2i
0:2Iωi þ 0:1Iω2

i

" #

, and since

we assume the vehicles are operating on the horizontal plane, the gravitational

vector G is equal to zero. The physical parameters of the vehicles are given as
m ¼ 2kg, I ¼ 0:2kg �m2; R ¼ 0:15m, r ¼ 0:05m and d ¼ 0:1m. The reference
trajectories of the three vehicles are given by

xr1 ¼ � sin t

yr1 ¼ 2 cos t

xr2 ¼ 2 cos t

yr2 ¼ sin t

xr3 ¼ �2 sin t

yr3 ¼ 3 cos t

xr4 ¼ 3 cos t

yr4 ¼ 2 sin t

8

<

:

8

<

:

8

<

:

8

<

:

(42)

and for all vehicles, the orientations of reference trajectories and vehicle veloci-
ties satisfy the following equations

tan θri ¼
_yri
_xri

, vri ¼
ffiffiffi

_x
p 2

ri þ _y2ri,ωri ¼
_xri€yri � €xri _yri

_x2
ri þ _y

2

ri

: (43)

The parameters of the observer Eqs. (13) and (14) are given as δ ¼ 0:01, and
l1 ¼ l2 ¼ 1. The parameters of the controller Eq. (25) with Eq. (17) are given as
Kx ¼ Ky ¼ Kθ ¼ 1, and Ku ¼ 2. The parameters of Eq. (26) are given as Γ ¼ 10,

γ ¼ 0:001, and β ¼ 10. For each i ¼ 1; 2; 3;4, since Xi ¼ vi ωi½ �T, we construct the
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Gaussian RBFNN Ŵ iS Xið Þ using N ¼ 5� 5 ¼ 25 neuron nodes with the centers
evenly placed over the state space 0;4½ � � 0;4½ � and the standard deviation of the
Gaussian function equal to 0:7. The initial position of the vehicles are set at the
origin, with the velocities set to be zero, and the initial weights of RBFNNs are also
set to be zero. The connection between three vehicles is shown in Figure 3, and the
Laplacian matrix L associated with the graph G is

L ¼

2 �1 0 �1

�1 2 �1 0

0 �1 2 �1

�1 0 �1 2

2

6

6

6

4

3

7

7

7

5

: (44)

Simulation results are shown as following. Figure 4a shows that the observer
error will converge to a close neighborhood around zero in a very short time period,
and Figure 4b shows that all tracking errors ~xi and ~yi will converge to zero, and
Figures 5a–f show that all vehicles (blue triangles) will track its own reference
trajectory (red solid circles) on the 2-D frame. Figure 6b shows that the NN weights
of all vehicle agents converge to the same constant, and Figure 6a shows that all
RBFNNs of three vehicles are able to accurately estimate the unknown dynamics, as
the estimation errors converging to a small neighborhood around zero.

To demonstrate the results of Theorem 3, which states that after the learning
process, each vehicle is able to use the learned knowledge to follow any reference
trajectory experienced by any vehicle on the learning stage. In this part of our
simulation, the experience-based controller Eq. (38) will be implemented with the

Figure 3.
Connection between four vehicles.

Figure 4.
Observer errors and tracking errors using observer-based controller. (a) Observer errors using observer (13) and
(14). (b) Tracking errors using controller (25) with (17) and (26).
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same parameters as those of the previous subsection, such that vehicle 1 will follow
the reference trajectory of vehicle 3, vehicle 2 will follow the reference trajectory of
vehicle 1, and vehicle 3 will follow the reference trajectory of vehicle 2. The initial
position of the vehicles are set at the origin, with all velocities equal to zero.

Simulation results are shown as following. Figure 7a shows that the observer
error will converge to a close neighborhood around zero in a very short time period.
Figures 8a–c show that all vehicles (blue triangles) will track its own reference
trajectory (red solid circles), and Figure 7b shows that all tracking errors ~xi and ~yi
will converge to zero.

Figure 5.
Snapshot of trajectory tracking using controller Eq. (25) with Eqs. (17) and (26). (a) time at 0 seconds. (b)
time at 1 seconds. (c) time at 4 seconds. (d) time at 9 seconds. (e) time at 16 seconds. (f) time at 25 seconds.

Figure 6.
Estimation errors and NN weight convergence. (a) Estimation errors using controller (25) with(17) and (26).
(b) Weight vector 1-norm of Wv and Ww.
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5. Conclusion

In this chapter, a high-gain observer-based CDL control algorithm has been
proposed to estimate the unmodeled nonlinear dynamics of a group of homoge-
neous unicycle-type vehicles while tracking their reference trajectories. It has been
shown in this chapter that the state estimation, trajectory tracking, and consensus
learning are all achieved using the proposed algorithm. To be more specific, any
vehicle in the system is able to learn the unmodeled dynamics along the union of
trajectories experienced by all vehicles with the state variables provided by mea-
surements and observer estimations. In addition, we have also shown that with the
converged NN weight, this knowledge can be applied on the vehicle to track any
experienced trajectory with reduced computational complexity. Simulation results
have been provided to demonstrate the effectiveness of this proposed algorithm.

Figure 7.
Observer errors and tracking errors using observer-based controller. (a) Observer errors using observer (13) and
(14). (b) Tracking errors using controller (38) with (17).

Figure 8.
Snapshot of trajectory tracking using controller Eqs. (38) with Eq. (17). (a) time at 0 seconds. (b) time at
4 seconds. (c) time at 16 seconds.
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