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Chapter

Twin Boundary in hcp Crystals:
Quantum and Thermal Behavior
Victor A. Lykah and Eugen S. Syrkin

Abstract

The 180° twin boundary (TB) (stacking fault) is investigated in the hexagonal
close-packed (hcp) light materials. It is shown that atomic symmetry inside the
twin boundary is lower than in hcp phase due to interatomic interaction between
neighbors. In the case of quantum or thermal behavior, for the isosurfaces, an initial
spherical form (in hcp phase) transforms into ellipsoid (in the boundary). We
introduce the isosurface deformation parameter. The self-consistent description is
developed to estimate the parameters of the thermodynamic potential, and the
models of hard spheres and ellipsoids are used. It is shown that the quantum or
thermal behavior of the boundary atoms causes the following effects: (i) the
increase of degree of overlap of the atomic wave functions or trajectories within the
twin boundaries, (ii) the increase of diffusion inside the twin boundaries, and (iii)
the decrease of energy and broadening of the quantum boundary in comparison
with the classical case.

Keywords: solid helium, twin boundary, stacking fault, hard ellipsoids,
quantum diffusion
PACS numbers: 61.72.Mm, 61.72.Nn, 64.75.Gh, 66.30.Ma

1. Introduction

Helium crystals have unique quantum properties and are useful for the investi-
gation of dynamic and kinetic behavior of atomic crystals [1]. In experiments, the
structure phase transition between body-centered cubic (bcc) and hcp phase was
found for both metals and solid 4He [2, 3]. The coherent phase boundary (PB) and
twin boundary (TB) or stacking fault (SF) was investigated theoretically in the
frame of one order parameter (OP) model [4, 5]. The two-OP theory of PB [6, 7]
was developed on the basis of the Burgers mechanism. In work [5] we proposed the
three-OP theory that combines Sanati [6, 7] and Kaschenko [8] treatments; so we
take into account the changes of volume and pressure under the phase transition.
The three-OP and one-OP descriptions of PB and TB are uniquely related. In
different models of coherent bcc-hcp boundary, the local oscillations spectra of OP
in 4He were investigated in [9].

In the experiment [10], a glass formation under deformation of solid helium was
investigated. Usually the deformation of crystals generates the different defects
[11], including stacking faults. In the nuclear magnetic resonance (NMR) experi-
ments [12], the great role of the interface in increasing the quantum diffusion was
found. In work [13] for single hcp crystal 4He, the stacking fault energy was
measured.
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The present work is devoted to the development of the self-consistent descrip-
tion of quantum behavior of 4He atoms in twin boundary proposed in work [14].
We apply this treatment to quantum and thermal description of twin boundary in
some metals.

2. Model of the twin boundary

In the hcp phase of crystal 4He, we consider the twin boundary under transition
from the close packing layers ABAB … (see Figure 1a,b) to the close packaging
ACAC …. The twin boundary (TB) corresponds to stacking faults (SF). The atomic
plane A creates different positions (potential wells) B and C for neighbor layers (see
Figure 1a,b).

The twin boundary was researched in works [4, 5] where the triple-well
thermodynamic potential was used. Far from the bcc-hcp transition, the double-
well free energy can be applied:

F ξð Þ ¼
Z

α

2

dξ

dz

� �2

þ k4ξ
4

4
� k2ξ

2

2

" #

dv, (1)

where the integration is over the volume v, square brackets contain the volume
energy density, z is a coordinate in the direction of heterogeneity, α is a dispersion
parameter responsible for the boundary width, and phenomenological parameters
k4, k2 are positive. In hexagonal lattice, ξ is the order parameter which means the
relative displacement of the atomic layers between positions B and C (see Figure 1a,b).
For the homogeneous part of the free energy Eq. (1), the maximum and minima
positions are

Figure 1.
(a, b) The close pack of the atomic layers (0001) ABAB… for hcp phase. Layer A is shown by solid lines, and
layer B is shown by dotted lines. (a) The view perpendicular to the layers. (b) The view along the layers. Points
B and C are atomic equilibrium positions in corresponding layer. (c, d) The change in the close packing of the
atomic ellipsoids inside TB under quantum effects is accounted.
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ξmax ¼ 0; F ξmaxð Þ ¼ 0;

ξmin ¼ �ξ0; F ξminð Þ ¼ �V
k4ξ

4
0

4
; ξ0 ¼

ffiffiffiffiffi

k2
k4

s

:
(2)

where ∣ξ0∣ is the minimum position as displacement between the maximum and
minimum positions (B and C in Figure 1a, b). The difference between the maximum
and minimum energies gives the height h of the potential barrier per unit volume:

h ¼ 1

V
F ξmaxð Þ � F ξminð Þ½ � ¼ k4ξ

4
0

4
¼ k2ξ

2
0

4
: (3)

For further analysis it is convenient to write the free energy Eq. (1) in terms of
ξ0 and h:

F ξð Þ ¼
Z

α

2

dξ

dz

� �2

þ h

ξ40
ξ2 � ξ20
� �2 � h

" #

dv: (4)

The free energy Eq. (4) gives rise to such one-dimensional inhomogeneity as
twin boundary [9, 15] which has shape

ξ ¼ �ξ0tanh
z

lT
; (5)

lT ¼
ffiffiffiffiffi

2α

k2

r

¼ 1

ξ0

ffiffiffiffiffi

2α

k4

r

: (6)

where the boundary center is chosen at z ¼ 0 and lT is the characteristic width of
the boundary. The shear dependence on coordinate Eq. (5) can be substituted into
relation Eq. (4). The surface energy density of the twin boundary is obtained by
further integration:

WT ¼

ffiffiffiffiffiffiffiffiffiffi

2αk32

q

3k4
¼ 4

3
lTh: (7)

It is expressed through parameters α; k2; k4ð Þ of the microscopic double-well
potential or macroscopic parameters lT ; hð Þ. The parameters of the thermodynamic
potential Eq. (1) can be transformed into the microscopic ones:

k21 ¼
4h1
ξ20

; k41 ¼
4h1
ξ40

;

h1 ¼ hv1; k21 ¼ k2v1; k41 ¼ k4v1:

(8)

Here h1, k21, and k41 are the barrier height Eq. (3), parameters k2 and k4 Eq. (1)
normalized per unit cell. These equalities are obtained by multiplying h and k2 or k4
to the unit cell volume v1. The characteristic width Eq. (6) lT ≃ 1:5nm was obtained
by molecular dynamic method in [16].

3. Atomic potential in continual description

In hcp lattice, one can find the symmetry axes (along 0z) of third and sixth
orders. In the close-packed layers x; yð Þ, hcp demonstrates isotropic properties of
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macroscopic tensors [11, 17]. The isotropic macroscopic tensors exist at appropriate

relations c=a ¼
ffiffiffi

8
p

=3 of unit cell sizes [1, 11]. Inside the perfect hcp phase, an atom
is in high symmetric (isotropic) potential:

Uis rð Þ ¼ 1

2
kis x2 þ y2 þ z2
� �

: (9)

where kis is isotropic rigidity. The harmonic approximation Eq. (9) is satisfied
better for heavier inert atoms or light metals; however, the helium crystal has
pronouncedly anharmonic atomic potential [18]. Nevertheless in helium crystals,
the harmonic approximation is successfully applied [19, 20].

The isotropic rigidity kis can be divided into two contributions: kis ¼ kp þ kpn,
where kp is rigidity in the plane and kpn is rigidity from the interaction with the
neighbor planes.

Inside the twin boundary, the neighbor layers are shifted from the symmetric
positions, and it causes an anisotropic atomic potential. The previous spherical
potential is broken. Then inside the twin boundary, the initial isotropic atomic
potential transforms into

Uan1 rð Þ ¼ Uis y; zð Þ þ Uan1 xð Þ;

Uis y; zð Þ ¼ 1

2
kis y2 þ z2
� �

; Uan1 xð Þ ¼ Up xð Þ þUpn x; ξð Þ;

Up xð Þ ¼ 1

2
kpx

2
; Upn x; ξð Þ ¼ k41 ξ� xð Þ4

4
� k21 ξ� xð Þ2

2
:

(10)

where the isotropic potential Eq. (9) splits into two terms. The first term Uan1 xð Þ
is an anisotropic and nonlinear part of the potential in the shift direction Ox. The
second term Uis y; zð Þ is the rest of the isotropic part which is perpendicular to the
shift direction. Further, the potential Uan1 xð Þ is divided too into Up xð Þ, the isotropic
part, and Upn x; ξð Þ, the anisotropic one from the neighbor atomic planes. The last
turn depends on the layer shift ξ and the small deviation x. Therefore, only term
Upn x; ξð Þ changes inside TB which is shown in Figure 2. The analysis (see [14]) of
the term Upn x; ξð Þ allows to write the anisotropic atomic potential Eq. (10) in the
following simple form:

Uan1 r; ξð Þ≃U0 ξð Þ þ c ξð Þxþ 1

2
kb ξð Þx2 þ 1

2
kis y2 þ z2
� �

;

kb ξð Þ ¼ kp þ kpn ξð Þ ¼ kis þ 3k21
ξ2

ξ20
� 1

 !

; kpn ξð Þ ¼ þk21 3
ξ2

ξ20
� 1

 !

:
(11)

Figure 2.
Smooth changed parts of the potential in dependence on the coordinates ξ and x according to Eqs. (10) and
(11): Upn 0; ξð Þ is a lower double-well curve and Uan1 x; ξð Þ is a set of parabolas.
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where kb ξð Þ is rigidity coefficient inside TB, U0 ξð Þ is a varied bottom level, and
c ξð Þx is the linear part. In the limit points ξ ¼ �ξ0, Eq. (11) transforms into isotropic
hcp phase Eq. (9) with kpn ξ0ð Þ ¼ þ2k21. Inside TB ξ ¼ 0, the rigidity takes value
kpn 0ð Þ ¼ �k21. Thus, the rigidity coefficients in phase kisð Þ and in the middle of TB

kb 0ð Þð Þ are represented by the rigidity coefficients inside the plane kp
� �

with two

adjacent k21ð Þ planes:

kis ¼ kp þ kpn ξ0ð Þ ¼ kp þ 2k21; (12)

kb 0ð Þ ¼ kp þ kpn 0ð Þ ¼ kp � k21: (13)

Inside the boundary the potential is considerably softer in direction Ox because
of kb ξð Þ < kis (see Figure 2). The difference in these rigidity coefficients is too high
kis � kb 0ð Þ ¼ 3k21. For further analysis, we need especially the quadric form in
Eq. (11).

The ratio of the rigidity coefficients in the relation Eq. (10) can be related to the
ratio of the elastic modules which are shown in Table 1. The macroscopic tensor
components C11C33 describe the longitudinal deformation along the axes 0x and 0z,
respectively. In solid 4He, the ratio of the elastic modulus C33=C11 ¼ 1:37 gives
anisotropy of the rigidity coefficients kelz=kis in the basal plane and axis 0z. Uniaxial
compression-tension in the basal plane of 0xy corresponds to the elastic modulus of
C11 and atomic rigidity coefficient kis. The shuffle of the basal planes in an arbitrary
direction corresponds to elastic modulus C44 and atomic rigidity coefficients 2k21.
Therefore, we have the following inequality:

2k21
kis

¼ 2k21
kp þ 2k21

≲
C44

C11
: (14)

4. The atomic potential and hard sphere model in hcp phase

The geometry of the hcp lattice is shown in Figure 1a. In the hard sphere model
for the hcp plane A (see Figure 1a,b), the coordinates of atomic centers are

0;�R0;0ð Þ; �R0

ffiffiffi

3
p

;0;0
� �

; (15)

where R0 is the atomic radius, x is a coordinate along the shift direction of the
atomic plane B, z is a coordinate along the direction perpendicular to the atomic
plane, and y is a coordinate along the atomic plane perpendicular to the shift
direction. (0,0,0) is the touch point of the spheres in plane A. Then the sphere

Element C11, GPa C33, GPa C13, GPa C44, GPa

4He [21]a 4:05�10�2 5:54�10�2 1:05�10�2 1:24�10�2

7Li [22]b 14.2 — — 10.7

9Be [23]b 292 349 6 163

24Mg [23]b 59.3 61.5 21.4 16.4

aThe elastic moduli of hcp 4He are found at T � 1K and molar volume 20.97�10�6m3=mo1 [21].
bAt room temperature.

Table 1.
The experimental values of the elastic moduli of some hcp materials in the notation of Voigt Cik following [11].
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centers of the shifting atomic plane B can move over the following four spherical
surfaces:

x2 þ y� R0ð Þ2 þ z2 ¼ 2R0ð Þ2;
x� R0

ffiffiffi

3
p� �2 þ y2 þ z2 ¼ 2R0ð Þ2;

(16)

The equilibrium points for the atom of the shifting neighbor atomic plane B can
be found from the geometry of the system (Eq. (16) at y ¼ 0):

xRe ¼ �R0
1
ffiffiffi

3
p ; yRe ¼ 0; zRe ¼ R0

ffiffiffi

8

3

r

: (17)

Signs – and + in xRe describe positions B and C in plane B, respectively. From the
first Eq. (16), the saddle point coordinates for an atom of plane B are

xRs ¼ 0; yRs ¼ 0; zRs ¼ R0

ffiffiffi

3
p

: (18)

For the hard sphere model, the microscopic parameters ξ0, h1 are

ξ0R ¼ ∣xRe∣; h1�R ¼ 1

2
gkis zRs � zReð Þ2 (19)

where h1�R is the potential barrier between B to C position (see Figure 1).
Coefficient g � 1 evaluates the quasielastic energy. In the middle of TB, the neigh-
bor number is 4, which is less than 6 once inside the phase. This is a microscopic
reason for the quasielastic energy behavior.

For the hard sphere model, the substitution of relations (19) into Eqs. (3) and
(8) gives the parameters of the microscopic interatomic potential:

k21�R ¼ 4h1�R

ξ20R
; k41�R ¼ 4h1�R

ξ40R
: (20)

For comparison, Eq. (11) allows us to find the rigidity coefficients in the phase
kis and in the middle of the boundary kb 0ð Þ .

5. Quantum atomic spheres and ellipsoids in hcp phase
and in the twin boundary

Inside the perfect hcp phase, a 4He atom is in highly symmetric potential of
neighbor atoms. In isotropic harmonic approximation [19, 20], the atomic potential
can be presented as [24]

Uis rð Þ ¼ 1

2
mω2r2; λ ¼ mω

ℏ
: (21)

where m, r and λ are mass, radius vector of 4He atom and parameter of the

quantum oscillator. The potential Eq. (12) gives mω2 ¼ kis; λ
2 ¼ kism=ℏ2.

The Schrodinger equation splits into three equivalent independent equations

with the constant k2 ¼ k2X þ k2y þ k2z ¼ 2mW=ℏ2 where ki are wave numbers. The

ground state solution [24] has total zero-point energy W0is ¼ 3
2ℏω. In isotropic

harmonic approximation, a distribution of probability density ρ ¼ ψ x; y; zð Þj j2 of
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helium atom has spherical symmetry. Hence, the equation of probability isosurface
(sphere of radius R) is

x2 þ y2 þ z2 ¼ R2
; R2 ¼ Nρis

λ
; Npis ¼ ln

ffiffiffiffiffiffiffiffiffi

λ3

ρ2π3

s

: (22)

The probability density at a distance of R0 that equals to the radius of the atom in
the hcp phase (half the distance between the centers of neighboring atoms in the
crystal) is

ρ0 ¼

ffiffiffiffiffi

λ3

π3

s

exp �κ20
� �

; Nρis R0ð Þ � κ20 ¼ R2
0λ: (23)

Here we have introduced the dimensionless parameter κ0 that is important for
further consideration. This parameter is proportional to the atomic radius κ0 � R0

and depends on the isotropic rigidity of the atomic lattice κ0 � λ1=2 � k
1=4
is . In respect

to a huge change in the volume of solid helium [1], the parameter κ0 can vary widely.
An anisotropic harmonic potential can be written as [24]

Uanis rð Þ ¼ 1

2
m ω2

Xx
2 þ ω2

yy
2 þ ω2

zz
2

� �

;

λX ¼ mωX

ℏ
; λy ¼

mω3

ℏ
; λz ¼

mωz

ℏ
:

(24)

The parameters λi are related to the rigidity coefficients:

λ2X ¼ m

ℏ
2 kxel; λ2y ¼

m

ℏ
2 kyel; λ2z ¼

m

ℏ
2 kzel: (25)

In the hcp phase, an anisotropic harmonic approximation is more adequate.
Then the rigidity coefficients satisfy inequality kxel ¼ kyel ¼ kis < kzel. If we use iso-

tropic harmonic approximation in the hcp phase, then inside of the twin boundary,
an atom 4He is in a uniaxial potential of neighboring atoms of Eq. (13):
kxel ¼ kb ≤ kyel ¼ kzel ¼ kis.

The equation splits also into three independent equations with known solutions
[24]. Inside TB for the ground state, the distribution of the probability density of
the helium atom loses its spherical symmetry. The probability isosurface is ellipsoid
with semiaxes a≥ b≥ c:

a2 ¼ Nρ

λX
; b2 ¼ Nρ

λ0
; c2 ¼ Nρ

λz
; Np ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λXλ0λz

ρ2π3

s

: (26)

Parameter Nρ describes the probability density. If the probability density equals
ρ0 at the atomic radius R0 in the hcp phase Eq. (23), then N ρð Þ takes the following
value:

Nρ0
¼ κ20 þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λXλ0λz

λ3

r

: (27)

Thus, the relations Eqs. (26) and (27) describe the probability density
isosurfaces to find an atom in the anisotropic case. On appropriate limit λi ¼ λ, these
relations describe the isotropic case.
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6. Classic atomic thermal spheres and ellipsoids in hcp phase
and the twin boundary

Inside the perfect hcp phase, an atom is positioned in highly symmetric potential
of neighbor atoms (see Eq. (9)) and quantum analogue Eq. (21). For any direction,
the average thermal energy of an atom is kBT=2 where kB and T are the Boltzmann
constant and temperature.

In isotropic harmonic approximation Eq. (9), the average thermal energy of an
atom corresponds to the average potential isosurface (sphere of radius R):

x2 þ y2 þ z2 ¼ R2
; R2 ¼ kBT

kis
; (28)

The general anisotropic potential has form Eq. (10). In anisotropic harmonic
case, the potential can be written with corresponding rigidity coefficients as (com-
pare with Eq. (24))

Uanis rð Þ ¼ 1

2
k2Xx

2 þ k2yy
2 þ k2zz

2
� �

;

kX ¼ kxel; ky ¼ kyel; kz ¼ kzel:
(29)

Then inside of the twin boundary, an atom is in the uniaxial potential of
neighboring atoms Eq. (13): kxel ¼ kb ≤ kyel ¼ kzel ¼ kis.

The motion equation splits also into three independent equivalent equations.
The equation of the potential isosurface is ellipsoid with semiaxes a≥ b≥ c
(compare with Eq. (26)):

x2

a2
þ y2

b2
þ z2

c2
¼ 1;

a2 ¼ kBT

kX
; b2 ¼ kBT

ky
; c2 ¼ kBT

kz
:

(30)

Thus, the relation Eq. (30) describes the atomic potential isosurfaces in the aniso-
tropic case, i.e., inside TB. In the limit case ki ¼ kis, it corresponds to the isotropic
case, i.e., hcp phase Eq. (28). The thermal potential isosurfaces (ellipsoids) have to be
in order less than the quantum atomic spheres and ellipsoids normalized at R0. We
emphasize that in this section the average thermal motion of atoms was considered.

7. The self-consistent description of the twin boundary

The classic description of TB uses two coefficients of the thermodynamic
potential Eq. (1):

k21 ¼ const; k41 ¼ const; or h1 ¼ const; ξ0 ¼ const: (31)

They can be corresponded to the hard sphere model (see Eqs. (15)–(20)).
The quantum and thermal description of TB is self-consistent, i.e., the param-

eters Eq. (31) are varied as a function of some parameter q that, in its turn, is a
function of these parameters:

h1 ¼ h1 qð Þ; ξ0 ¼ ξ0 qð Þ; q ¼ q h1; ξ0ð Þ: (32)
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Let us introduce the isosurface deformation parameter q as a geometric factor
which describes the deformation of the atomic sphere Eqs. (22) and (28) into the
one-axis ellipsoid Eqs. (26) and (30):

q ¼ 1� c2

a2
� ε2; 0≤ ε2 ≤ 1: (33)

where ε is the eccentricity of the ellipse. Earlier in the paper [14], we introduced
the quantum deformation parameter qq. Here we generalize the parameter qq to the

cases of either quantum or thermal motion of an atom and introduce the isosurface
deformation parameter q.

Now we present the self-consistent scheme of description for the twin boundary.
(0) Zero approximation. An atom is a hard classic sphere Eq. (32) or quantum
isotropic oscillator:

R0 ¼ a ¼ b ¼ c; ρ ¼ ρ0; q ¼ 0: (34)

(1) The first approximation. An atom is considered as a quantum anisotropic
uniaxis oscillator. The potential Eq. (10) has been obtained in zero
approximation. In the general case, the ellipsoid parameters and the isosurface
deformation parameter are described by Eqs. (26), (27), and (33),
respectively. The long ellipsoids axis is oriented along the shift direction 0x:

b1 ¼ c1 < a1; ρ ¼ ρ0; ε2c1 ¼ q1 ¼ 1� c21
a21
>0: (35)

The further variations of parameters Eq. (31) can be obtained in the hard
ellipsoid model. The hard ellipsoids have the isosurfaces with the same probability
density ρ0 as the hard spheres in the hcp phase, and the isosurface deformation
parameter can be obtained. For a vacancy, the nearest neighbors form similar
ellipsoids [25].

(2) The second approximation. An atom is considered as an anisotropic three-
axis oscillator (the isosurface is three-axis ellipsoid). The first approximation
gives the rigidity coefficients of the potential. Different ellipses are formed in
the planes ab and ac, and their eccentricities equal

b2 6¼ c2 < a2; ε2b2 ¼ qb2 ¼ 1� b22
a22
>0; ε2c2 ¼ qc2 ¼ 1� c22

a22
>0: (36)

Now all three axes of the atomic ellipsoid are different. The softest potential and
the longest axis a2 are still oriented along the shift direction. The hard ellipsoid
model Eq. (35) is used to obtain a new local atomic potential and a new ellipsoid
shape.

(i) The third and further ith steps qualitatively replicate the previous steps in the
same way. The second and further steps are more cumbersome and
complicated.

8. Atom as anisotropic harmonic oscillator in the boundary, one axis

In continual description inside the boundary, we have found a change of the
atomic potential Eq. (10) with the corresponding rigidity constants. Therefore,
constants λi in Eq. (25) take the following forms:

9
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λX ¼ 1

ħ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m kis þ 3k21
ξ2

ξ20
� 1

 !" #

v

u

u

t ≤ λ; λy ¼ λz ¼ λ ¼ 1

ℏ

ffiffiffiffiffiffiffiffiffi

mkis
p

: (37)

Using Eqs. (26) and (27), the atomic isosurface can be described by ellipsoid
with semiaxes:

a21 ¼
Nρ01

λX
; b21 ¼ c21 ¼

Nρ01

λ
; Nρ01 ¼ κ20 þ ln

ffiffiffiffiffi

λX

λ

r

: (38)

For fixed λy, λz ¼ λ and reduced stiffness coefficient λX along axis 0x, the
semiaxes of the ellipsoid change as follows: a1 >R0; b1 ¼ C1 <R0. Then the
isosurface deformation parameter q1 Eq. (35) takes the following dependence on the
order parameter ξ and coordinate

q1 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3
k21
kis

1

cosh 2 z=lTð Þ

s

: (39)

We obtain the same result for the thermal excitations; however, instead of
relation Eq. (37), we use the rigidity constants Eq. (30):

kX ¼ kis þ 3k21
ξ2

ξ20
� 1

 !

≤ kis: (40)

In Table 2, evaluations of different parameters are shown according to Table 1
and relation Eqs. (14), (39), (42), and (43); the sources are shown in round
brackets on top of columns.

In He and Mg (see Table 2), the transverse components of the elastic module
C44 are much smaller than the longitudinal ones C11. Accordingly in these materials,
the isosurface deformation parameters in the middle point of TB qmax take relatively
small value.

In Li and Be (see Table 2), the transverse and longitudinal components of the
elastic moduli are closer. Hence, in these materials, the parameters qmax are consid-
erably greater. Moreover in Li, the parameter qmax can reach 1 or even take complex
(imaginary root) values. This indicates a possible instability of Li crystal lattice (see
further consideration). This, seemingly unexpected, result is quite understandable

Element C44

C11
, (Table 1, (14)) 3 k21

kis
, Eq. (14) qmax, Eq. (39) κ20, Eq. (42) Λ, Eq. (43)

4He ≃0:306 ≤0:46 ≃0:27 ≃ 3:77 ≃0:0663a

7Lib ≃0:75 ≤ 1:13 ! 1 ≃ 151:3 ≃0:0017c

9Beb ≃0:558 ≤0:84 ≃0:60 ≃ 127:4 ≃0:0020c

24Mgb ≃0:277 ≤0:41 ≃0:23 ≃ 353:4 ≃0:0007c

aEvaluation of the de Boer parameter Λ ¼ 0:45 for 4He at �1 K [2].
bAt room temperature.
cEvaluation of the de Boer parameter at � 1K (present work).

For all materials the parameters κ20 and Λ are evaluated with the same R0.

Table 2.
Evaluation of the elastic moduli relations, rigidity relations, the isosurface deformation parameter in the middle
point of TB qmax, and the de Boer parameter Λ of some hcp materials.

10

Solid State Physics - Metastable, Spintronics Materials and Mechanics of Deformable…



if considerably gentle upper parabolas (stronger interaction between the crystal
planes in comparison with in-plane interaction) are taken into account which are
shown in Figure 2.

In the quantum case, we can evaluate the minimal increase of the exchange
integral due to the increase of overlapping wave functions caused by the elliptic
deformations [14]:

ΔI ¼ ΔI0 ¼ 1

cosh 4 z=lTð Þ ;

ΔI0 ¼ 3

16
ffiffiffi

π
p 1

4
ffiffiffiffiffi

κ50

q

k21
kis

� �2

exp �κ20
� �

;

(41)

Increasing overlapping volumes ΔV with high probability can be evaluated by
segments of the crossing ellipsoids. Amplitude ΔI0 depends on two parameters κ0
and k21=kis only.

In the basal hcp plane, the exchange integral is varied depending on the quan-
tum deformation parameter q; the wave function tails are the most sensitive, espe-
cially in the overlapping region. Evaluations Eq. (41) take into account only space
changing but not the amplitude one. The amplitude changing can achieve several
orders because of exponential dependence. The exchange integral I uniquely defines
the diffusion coefficient [26]. In the interphase boundaries in solid helium, NMR
experiment [12] shows the quantum diffusion increasing. The interphase and twin
boundaries are similar [5]. So for the quantum diffusion case in TB, the predicted
and the experimentally observed arising values are closely related. Experiments
show thermal diffusion arising at boundaries [11]; the found thermal ellipsoids’
deformation qualitatively explains these facts.

Now we can point out conditions when exchange integral Eq. (41) increases. We
need minimal κ20 Eq. (42) in exponent Eq. (41). The parameter κ0 or λ can be
defined by Eqs. (23) and (37) and analyzed in dependence on different factors. In
[14] using atomic mass ma and evaluation of atomic radius R0, the parameter κ20
value was estimated:

κ20 ≃
1

ℏ
R
5=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
πmaE

r

: (42)

where elastic module E ¼ C11 is related to the rigidity coefficient kis ≃ πR0E=2. In
solid 4He, the atomic radius R0 is the soft parameter, especially under low pressure.
So, a high value of exchange integral can be achieved. Compressibility is small in
metals, first of all, in light ones (lithium, beryllium, magnesium). Minimal rigidity
kis gives rise in the exchange integral too. The van der Waals interaction in 4He is
3–4 orders of magnitude less than in metal (see Table 1).

Another way to estimate κ20 is to compare it with de Boer parameter Λ, the
fundamental characteristic of quantum crystal. The de Boer parameter gives the
probability density to find an atom in the site of a neighboring atom (at distance
al ¼ 2R0) [26]:

ρ alð Þ � exp � 1

Λ

� �

¼ exp �λa2l
� �

; κ20 ¼ 1

4Λ
: (43)

The de Boer parameter Λ ¼ 0:45 for 4He [26] gives evaluation κ20 ≃0:59. Pres-

sure growing leads to more difficult tunneling of atoms and different κ20 evaluations
in Eqs. (42) and (43). Using the data in Table 1, for solid 4He we obtain R0 [14],
κ20 ≃ 3:77, and Λ≃0:07 (see Table 2).
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We can make the following conclusion. The softening of the effective atomic
potential is anisotropic inside the twin boundary which increases the exchange
integral and tunneling probability in the selected shear direction. As a result the
quantum diffusion along the boundary plane increases.

9. The self-consistent correspondence of the potential and the uniaxial
hard ellipsoid model

Inside the twin boundary, the arising anisotropic atomic potential transforms an
atomic probability isosurface from sphere to ellipsoid. Let us introduce the hard
ellipsoid model as analogue of the hard sphere model. Then coefficients’ local values
for the potential can be found inside TB. We suppose that the twin boundary does
not change symmetry and positions of the atomic centers inside a shifting plane. So,
the atomic plane A keeps the atomic centers’ coordinates Eq. (15) under shifting
(see Figure 1c, d). In the shifting neighbor atomic plane B, the atomic isosurface
equation is defined by Eq. (22). Then for the shifting atomic plane B, the atomic
(ellipsoids) center moves over the great ellipsoidal surfaces:

x

2a1

� �2

þ y� R0

2c1

� �2

þ z

2c1

� �2

¼ 1;

x� R0

ffiffiffi

3
p

2a1

� �2

þ y

2c1

� �2

þ z

2c1

� �2

¼ 1;

(44)

where the equilibrium and saddle points for an atom are located. Only four

ellipsoids with centers 0;�R0;0ð Þ and �R0

ffiffiffi

3
p

;0;0
� �

are described. Axis 0x is
directed along the shift (see Figure 1c, d).

Relations Eq. (26), (27), and (35) define the ellipsoid’s semiaxes as function of
R0, q:

a21 ¼
Np

λX
; q1 ¼ 1� λX

λ
;

b21 ¼ c21 ¼ R2
0γ1 q1
� �

; γ1 q1
� �

¼ 1þ 1

κ20
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q1
p

:

(45)

Accounting these relations and condition y ¼ 0 (see Figure 1), we obtain solu-
tion for the equation system Eq. (44) and the equilibrium point coordinates for the
atom of the plane B. So, in the hard ellipsoid model, we find the microscopic
parameters Eqs. (2) and (3) of the atomic potential:

ξ0�1 ¼ ∣x1�e∣ ¼ ξ0
2� 3q

2 1� qð Þ ; h1�1 �
1

2
kis z1�s � z1�eð Þ2 ¼

¼ 3h1�R

3�
ffiffiffi

8
p� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4γ1 qð Þ � 1
q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4γ1 qð Þ � 1� 1

12

2� 3qð Þ2
1� q

s
2

4

3

5

2 (46)

where h1�R is defined in Eq. (19). These results are valid in the range 0≤ q≤ 2=3.

At q1 ! 2=3 we have ξ0�1, h1�1 ! 0 and semiaxis relation a1=c1 ¼ 1=
ffiffiffi

3
p

. At q ¼ 2=3
the hard ellipsoid model needs transition in another state (see [14]). Therefore,
inside TB, the change of the atomic wave function leads to the following change of
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the interaction potential: the equilibrium displacement and the potential barrier
height decrease (see Figure 3). However, the potential barrier height decreases
much faster. The resulting evolution of the potential Eq. (46) is shown in Figure 4.
Then from Eqs. (3) and (46), the coefficients of the potential are

k21�1 ¼
4h1�1

ξ201
; k41�1 ¼

4h1�1

ξ401
: (47)

Thus, the coefficients of the potential (1) for the shift in the direction 0x reduce
k21 > k21�1 qð Þ and k41 > k41�1 qð Þ. It means softening of the potential in the direction
of the plane shuffle. The correspondence between the hard ellipsoid model and the
atomic microscopic potential Eqs. (4), (8), and (46) is shown in Figure 3. Elliptical
deformation of the probability isosurface leads to the transformation of the
potential energy of the atom in Eq. (10):

Uan2 rð Þ ¼ Uan2 y; zð Þ þ Up2 xð Þ þUpn2 x; ξð Þ ;

Uan2 y; zð Þ ¼ 1

2
kxe2z

2 þ 1

2
kye2y

2
; Up2 xð Þ ¼ 1

2
kp2x

2
;

Upn2 x; ξð Þ ¼ k41�1 ξ� xð Þ4
4

� k21�1 ξ� xð Þ2
2

;

(48)

Figure 3.
Comparison of the hard ellipsoids model and the atomic microscopic potential. The red double-well curve shows
the potential as a function of ξ0�1 and h1�1. Small solid red ellipsoids show atomic isosurfaces at κ0. Big dot
black ellipsoids show the cross sections of the surfaces Eq. (44) at y ¼ 0 and quantum parameter values
(a) q = 0, (b) q = 0.2, (c) q = 0.4, and (d) q = 0.6.

Figure 4.
The cross sections of the potential density according to Eqs. (46), (47), and (39). The quantum boundary has
lower potential peak and shorter distance between shallower wells ξ0�1ð Þ as q grows (0, 0.2, 0.4, 0.6). The
barrier in the middle of wall (TB) decreases.
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All terms are changed in the potential Eq. (48) in comparison with Eq. (10).
Isotropy is broken in atomic planes A or B-C due to superposition of the ellipsoids in
the shear direction.

For the classical and quantum cases, the free energy density relation Eq. (4) was
analyzed analytically in [14]. It was shown that the classical and quantum bound-
aries have different properties. In particular, from Figure 5, it is qualitatively clear
why the classical and quantum boundaries have different potential barrier and
energy density. In TB both the width and the height of the barrier decrease to zero,
according to Eqs. (46) and (47) (see Figure 4). In Figure 3, they are shown as
higher smooth curves. Simultaneously the space width of the boundary

lT ¼ 1=ξ0ð Þ
ffiffiffiffiffi

2α
p

=k4 grows by Eq. (6). The dependence lT qð Þ causes further widening
of region with q ! qmax and a minimal barrier height.

To estimate the energy of the twin boundary (stacking fault) from Eq. (7), we
must know the following parameters: α, k2, k4 or lT, h.

The characteristic width (half width) of TB Eq. (6) lT ≃ 1:5 nm was obtained by
molecular dynamic method in [16]. We estimate the dispersion parameter α by
comparing the differential equations for the transverse sound and shuffling waves:

ρ ∗ ∂
2ξ

∂t2
� α

∂
2ξ

∂z2
¼ 0;

∂
2U

∂t2
� s2

∂
2U

∂z2
¼ 0; (49)

where ρ ∗ ¼ ρ=2 is the effective density of the oscillating shuffled subsystem,
ρ is the density of helium-4, ξ is the shuffling order parameter, u is macroscopic

displacement, and s ¼
ffiffiffiffiffiffiffiffi

C44

p
=p≃ 255m=s is the transverse sound velocity in the

shuffle direction (Oz axis). The velocities of transverse sound and shuffling wave

have close values. So the dispersion parameter is α≃C44=2 ¼ 6:2 � 106J=m3 where
value of module C44 is given in Table 1.

According to relation Eq. (5), it is possible to estimate the parameter of the

thermodynamic potential k2 ¼ 2α=l2T ≃ 8:27 � 1024J=m5. As follows from Eq. (2) to
evaluate the parameter k4 of the potential, it is necessary to know the maximum

displacement of the atom Eq. (17) ξ0 ¼ R0=
ffiffiffi

3
p

≃ 1:17 � 10�10m. Here atomic radius

is related to atomic volume: Vm=NA ≃ 4=3ð ÞπR3
0. Then

k4 ¼ 2α= ξ0lTð Þ2 ¼ 6:04 � 1044J=m7. So, for the classical model of the twin boundary
(stacking fault), it is possible to estimate bulk density of the barrier height h and the
surface energy density WT according to Eqs. (3) and (7):

h ¼ k2ξ
2
0

4
≃ 2:83 � 104J=m3

; WT ¼ 4

3
lTh≃0:057mJ=m2

; (50)

Figure 5.
The smooth double-well potential according to Eqs. (10) and (11). Instead of a set of parabolas in Figure 2, we
see only ones at the bottom and the peaks of the potential and their quantum levels. The relationship between the
barriers for the atomic displacement in the classical hc and quantum hq boundaries is hc > hq.
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The surface energy density calculated here for the classical model can be com-
pared with the valueWSFex ¼ 0:07 � 0:02ð ÞmJ=m2 found in the optical experiments
at 0.2 K [13].

Above, we have predicted the local reduction of the barrier height h and a local
increase in the width lT of the boundary in the quantum description of the twin
boundary (stacking fault). In general for the defect, the surface energy density
value WT � lTefhTef in Eq. (50) can be close to the classical case. In different

experiments and theoretical estimates, a wide variation of the values may be caused
by variations of temperatures and pressures.

We have discussed the change of zero vibrations of atoms in the twin boundary
(stacking fault) and the related effects. For 3He we can expect the same order of
magnitude for all parameters of the twin boundary (stacking fault). The qualitative
difference between the pure hcp crystals of isotopes 4He and 3He, apparently,
cannot be obtained in the proposed model.

The difference between quantum statistics of the isotopes should address deeper
and more delicate quantum properties of the defects. We note briefly below only
the most striking manifestation of different statistics and problems arising in this
regard.

10. Discussion and conclusion

The quantum self-consistent treatment to twin boundary (stacking faults), pro-
posed in [14] for solid 4He, is developed here for metals and their quantum and
thermal description. The relation between discrete models of hard spheres and
continuum interatomic potential is used as a sample for a similar relationship in the
case of the hard ellipsoid models. As we move deeper into the defect, the transition
from one model to another is accomplished.

In the hcp phase, the potential of an atom, created by its neighbors, has spherical
symmetry (initial approximation). In the hcp phase, an atom is an isotropic quan-
tum oscillator. In the twin boundary, an atom is an anisotropic quantum oscillator.
It is shown that in the twin boundary, the potential of the atom is softer in the
direction of shuffle of the atomic planes.

The quantum parameter qq and its generalization and the isosurface deformation
parameter q are introduced. These parameters have simple and visual meaning: q
equals to the square of the eccentricity of the cross section of the probability density
ellipsoid (or the thermal ellipsoid). We have shown that parameter q is associated
with de Boer parameter, the fundamental characteristic of quantum crystal, and
anisotropy in the boundary. Evaluations for different materials show that the
isosurface deformation parameter q can achieve values 0:2÷1 (see Table 2). Mean-
while at q ¼ 2=3 the structure instability takes place in the system of the atomic
ellipsoids. From this point of view, the properties of TB in lithium are especially
interesting because the parameter achieves high value q ! 1.

The overlap of the atomic wave functions and the exchange integral value can be
described in terms of the quantum parameter q. Inside the twin boundary, the
quantum diffusion increases which was observed in the phase boundary (see
experiment [12]). The estimation Eq. (50) of the defect energy is in good agreement
with experiment [13]. We have shown that the quantum deformation of atoms
leads to the space broadening of the twin boundary and to its energy decreasing.

In conclusion we note that local oscillations spectra of the order parameter in
different models of coherent bcc-hcp boundary in 4He were investigated in [9]. For
small values of the perturbations, dynamical differential equations (reduced to
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Schrodinger equations) were obtained and solved. The characteristic frequencies
(energy levels) and shape were found and estimated (see Figure 6). For the ground
state in TB, the local vibration shape can be written as

η0 z ∗ð Þ ¼ A0

cosh 2z ∗
; z ∗ ¼ z

lT
: (51)

where A0 is an amplitude. For the local vibration ground state (51) and for the
isosurface deformation parameter q Eq. (39), both shapes coincide qualitatively. In
the limit q < < 1, both coincide completely. The local vibration of the order param-
eter describes a correlated motion of the atomic layers in twin boundary. Mean-
while, the quantum and thermal treatments give probabilistic descriptions of the
atomic motion. The results (the found smooth arising of the atomic motion ampli-
tude in TB) give evidence that different probabilistic (quantum and thermal) and
dynamic methods lead to qualitatively identical features of the atomic basic state
inside TB.
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Figure 6.
Local modes of the order parameter at TB [9]. Dash dot line shows the local potential which has local energy
levels 0, 1, and 2 (dash). Solid lines show corresponding local oscillations’ shape dependence on normalized
coordinate z ∗ .
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