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Chapter

Connexin-Based Channels 
and RhoA/ROCK Pathway 
in Angiotensin II-Induced 
Kidney Damage
Gonzalo I. Gómez, Victoria Velarde and Juan C. Sáez

Abstract

The incidence of chronic kidney diseases is increasing worldwide, and there 
is no efficient therapy to reduce this phenomenon. The main therapies currently 
available focus on the control of blood pressure and the optimization of the block-
ade of the renin-angiotensin system (RAS). In addition, it is known that in several 
models of kidney damage, the amounts of connexins are altered. On the other hand, 
fasudil, a selective ROCK blocker, has shown renoprotective effects. The beneficial 
effects of blocking the RhoA/ROCK pathway in renal function may be related to 
its action of reducing macrophage infiltration, inflammation, and oxidative stress 
(OS), its expression of extracellular matrix genes and proteinuria, or to its effects 
on connexin abundance. Even though a correlation has been found between renal 
damage, caused by an increase in the RAS activity, connexins, and the RhoA/ROCK 
signaling pathway, it has not yet been possible to clearly determine its functional 
significance. Moreover, it has not been possible to identify the preponderance of 
this signaling pathway in the development of chronic kidney diseases. Here, we 
describe the advances in this subject.

Keywords: hypertensive nephropathy, oxidative stress, fibrosis, inflammation,  
Cx43, fasudil

1. Introduction

Chronic kidney disease (CKD) is a worldwide public health problem whose 
prevalence is persistently increasing. It is estimated that about 10% of adults in 
developed countries suffer some degree of kidney damage [1]. Patients with CKD 
usually develop a progressive kidney damage characterized by glomerular sclerosis 
and/or tubulointerstitial fibrosis, which eventually leads to end-stage renal disease, 
the last stage of this condition [2]. The detrimental effect of this process includes 
the progressive reduction of glomerular filtration rate (GFR) given by an increase 
in damaged nephrons, which eventually leads to organ failure [3]. CKD has differ-
ent etiologies, including diabetic nephropathy, hypertensive nephrosclerosis, and 
glomerulonephritis. However, regardless of the initial cause, the morphological 
characteristics, such as tubular necrosis and glomerular sclerosis, are similar [4, 
5]. This condition induces the partial destruction of nephrons and the progressive 
failure of renal function [4, 5].
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2. Hypertensive nephropathy

Hypertension is the second cause of end-stage renal disease (ESRD) [6, 7]. 
Hypertensive nephropathy starts in the glomeruli due to an increase in intraglomer-
ular pressure. These initial events activate and damage mesangial cells, epithelial 
cells, and podocytes within the glomerulus. In turn, these cells produce vasoactive 
and pro-inflammatory mediators, which increase cell damage and favor fibrosis, 
reducing renal blood flow and glomerular filtration rate [8]. The renal corpuscle, 
formed by Bowman’s capsule and glomerulus, is the fundamental structure in the 
filtration process. The glomerulus is formed mainly by blood capillaries, podocytes, 
and the mesangium. The mesangium plays a key role in the structural and func-
tional stability of the glomerulus, allowing it to successfully fulfill its filtering func-
tion [9]. The mesangial cells (MCs) constitute 30–40% of the cellular population 
of the glomerulus, and their function is to support the glomerulus and participate 
in the maintenance of the opening of its capillaries, regulation of the glomerular 
filtration rate, and synthesis and degradation of extracellular matrix proteins [9].

The renin-angiotensin system (RAS) is the prototype of a classic systemic endo-
crine network whose actions in the kidney and adrenal gland include regulation of 
blood pressure, intravascular volume, and electrolyte balance [10]. The RAS plays 
an integral role in the homeostatic control of arterial pressure, tissue perfusion, and 
extracellular volume. This pathway is initiated by the regulated secretion of renin 
from the kidney, the rate-limiting processing enzyme [11]. RAS begins with the 
biosynthesis of renin by the juxtaglomerular (JG) cells. Active renin secretion is regu-
lated mainly by (1) the renal baroreceptor mechanism in the afferent arteriole that 
senses changes in renal perfusion pressure; (2) changes in delivery of NaCl (sensed 
as changes in Cl concentration) to the macula densa cells of the distal tubule, which 
lie close to the JG cells and form the JG apparatus; (3) sympathetic nerve stimula-
tion via beta-1 adrenergic receptors; and (4) negative feedback by a direct action of 
angiotensin II (AngII) on the JG cells [11]. Renin secretion is stimulated by a fall in 
perfusion pressure or in NaCl delivery and by an increase in sympathetic activity [11, 
12]. Angiotensinogen is secreted constitutively by the liver and reacts with renin, 
ending transformed into the inactive decapeptide angiotensin I (AngI) [11]. AngI is 
hydrolyzed by angiotensin-converting enzyme (ACE), which removes the C-terminal 
dipeptide to form AngII, a potent vasoconstrictor [11, 12]. AngII is the primary 
effector of a variety of RAS-induced physiological and pathophysiological actions 
[11]. AngII, via the AT1 receptor, stimulates the production of aldosterone by the zona 
glomerulosa in the adrenal gland [11]. Aldosterone is a major regulator of sodium and 
potassium ion (Na+ and K+, respectively) balance and thus plays a major role in regu-
lating extracellular volume [11, 12]. It enhances the reabsorption of Na+ and water in 
the distal tubules and collecting ducts (as well as in the colon and salivary and sweat 
glands) and thereby promotes K+ (and hydrogen ion) excretion [11, 12].

The vasoconstriction and the increase in blood pressure mediated by AngII 
represent only part of the pleiotropic actions of this peptide. AngII stimulates aldo-
sterone secretion, cell infiltration, proliferation and migration, thrombosis, super-
oxide ion production, and other factors involved in nephropathy [8]. When MCs 
are stimulated with AngII, the synthesis of extracellular matrix is increased and 
accumulates in the extracellular space [13]. Activated MCs produce more reactive 
oxygen species (ROS) [14, 15] and synthesize and release more pro-inflammatory 
cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) and 
chemokines, such as the macrophage chemoattractant protein (MCP-1) and trans-
forming growth factor β (TGF-β) [13, 15–17]. In addition, high concentrations of 
AngII maintained for long periods of time in mice induce an inflammatory response 
characterized by the expression of pro-inflammatory cytokines such as IL-1β and 
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TNF-α [18], infiltration of macrophages (positive ED-1) [19], tubular overexpres-
sion of osteopontin (OPN) [19], and the expression of other pro-inflammatory 
cytokines, chemokines, and adhesion molecules [8, 20]. AngII also increases the 
expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX), one of 
the main enzymes in the generation of ROS, contributing to the onset of oxidative 
stress (OS), independent of the action of pro-inflammatory cytokines [21, 22]. The 
sum of these alterations leads to an activation of the transcription factor nuclear 
factor-NF-κB, which increases the synthesis and release of extracellular matrix 
protein, such as type IV collagen, laminin, and fibronectin [13, 16], inducing the 
formation of mesangial nodules with lesions that extend to the interstitial areas, 
hindering the adequate function of the glomerulus [9, 13, 15, 16]. In summary, 
intrarenal RAS is an important factor in the pathophysiology of hypertension and 
hypertensive nephropathy [23].

2.1 Angiotensin II and RhoA/ROCK pathway in renal damage

Two receptors, AngII II receptor type 1 (AT1R) and type 2 (AT2R), both coupled 
to different G proteins, mediate the actions of AngII. The AT1 receptor activates small 
G proteins, including Ras, Rac1, RhoA, and the Rho kinase system (ROCK) [24], 
while the AT2 receptor inhibits RhoA [25]. The Rho family of small GTPases (Rho 
GTPase) is constituted by monomeric G proteins of 20–40 kDa considered as molecu-
lar switches, which cycle between two conformational states, an active state bound to 
GTP and an inactive state bound to GDP. In mammals, this family is composed of 20 
members, of which the most studied are Rac1, Cdc42, and RhoA. The latter being the 
most studied member of this family [26]. ROCK, an effector downstream of RhoA, 
is a serine–threonine kinase of around 160 kDa, which in mammals is present in two 
isoforms, ROCK1 and ROCK2 [27, 28]. ROCK is composed of an amino terminal 
kinase domain, followed by a super-coiled helix region, which contains the Rho-GTP 
binding site and a carboxy-terminus, which contains an internal domain rich in cys-
teine residues [27]. ROCK1 and ROCK2 are highly homologous, sharing an identity of 
approximately 65% in their amino acid sequences and approximately 92% homology 
in their amino terminal kinase domain [27, 28].

The RhoA/ROCK pathway has received considerable attention because of its 
implication in a wide variety of pathophysiological states present in cardiovascular 
diseases, pulmonary hypertension, Alzheimer’s disease, and glaucoma [27]. The 
RhoA/ROCK pathway plays an important role in renal pathophysiology, where 
RhoA/ROCK participates in the regulation of pro-inflammatory cytokines (e.g., 
TNF-α and IL-1β) [24, 29] and increases the amount of TGF-β and NFκB [27]. On 
the other hand, great interest has been generated in the use of fasudil, a selective 
ROCK inhibitor, as regulator in a wide variety of animal models of kidney damage, 
including unilateral ureteral obstruction, hypertensive glomerulosclerosis, acute 
renal failure induced by ischemia–reperfusion or by contrast-induced acute kidney 
injury, and renal failure induced by AngII [27, 30]. Fasudil, a ROCK inhibitor, pre-
vents kidney damage by reducing the expression of extracellular matrix genes, OS, 
pro-inflammatory cytokines, and macrophage infiltration and inhibiting the cascade 
of events that leads to these effects. Thus, both RhoA and ROCK could be considered 
as therapeutic targets to prevent hypertension and kidney damage [24, 27, 29, 31].

2.2 Connexins in hypertensive nephropathy

Gap junctions (GJs) are conglomerates of intercellular channels that result from 
docking of two HCs or connexins, each one contributed by one of the cells in contact 
and formed by six connexins (Cxs). GJs allow direct ion exchange (explaining the 
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electrical coupling), small metabolites (e.g., nicotinamide adenine dinucleotide: 
NAD+, glucose, lactate, and glutamate), and second messengers (e.g., cyclic adenos-
ine monophosphate [cAMP] and inositol trisphosphate [IP3]) between adjacent cells 
(explaining metabolic coupling) [32, 33]. There are 21 isoforms of Cxs in humans 
and 20 in rodents. Each Cx is named according to its approximate molecular weight, 
and its transmembrane structure identifies four transmembrane domains connected 
by two extracellular loops and one intracellular loop, which implies that the C and N 
terminals are in the intracellular space [34]. HCs are fundamental pathways for the 
exchange of ions and small molecules between the intra- and extracellular compart-
ments. These structures can be opened under physiological and pathophysiological 
conditions, allowing the release of paracrine and autocrine signaling molecules to 
the extracellular medium (e.g., adenosine triphosphate [ATP], glutamate, NAD+, 
and prostaglandin E2 [PGE2]) [35]. Each type of channel formed by the Cxs has 
unique gate properties, in addition to a characteristic conductance and permeability 
features [36–38].

The kidney regulates blood pressure mainly through excretion of Na+ and water, 
depending on the hormonal action of the RAS and other hormone systems with 
renal action [39]. However, in order to fulfill this function, the kidney requires the 
coordinated action of different cell types, including vascular and tubular cells [39]. 
This intrarenal coordination has not yet been well established, but, since connexins 
(Cxs) are present in the kidney, the existence of direct communication between the 
different cell types of the nephron has been proposed to occur through gap junc-
tions (GJs) and/or hemichannels (HCs) [39]. In mammalian kidneys, nine types of 
Cxs have been detected (Cx26, Cx30.3, Cx31, Cx32, Cx37, Cx40, Cx43, Cx45, and 
Cx46), which are located in the vasculature or in different segments of the renal 
tubule, where most likely fulfill different functions [39].

In cortical astrocytes, it has been demonstrated that two pro-inflammatory 
cytokines, TNF-α and IL-1β, reduce intercellular communication mediated by GJs 
and increase the permeability of the membrane through HCs formed by Cx43 (Cx43 
HCs) [40]. This opposed regulation of Cx43 GJs and HCs also occurs in cultures 
of proximal tubule cells treated with metabolic inhibitors or pro-inflammatory 
cytokines, where an increase in the activity of Cx HCs has been demonstrated in 
response to these stimuli [41, 42]. In pathological conditions such as hyperten-
sion, the amount of renal Cxs is altered. For example, in the two-kidney one-clip 
model (2K1C), an increase in the amount of Cx43 mRNA and protein in the 
glomerulus was observed [43]. Recently Oliveira et al. showed for the first time 
that bone marrow mononuclear cell (BMMC) transplantation in clipped kidney 
of the 2K1C rats significantly increased N-cadherin, E-cadherin, connexin40, 
and nephrin expression accompanied by improved renal morphology and func-
tion and decreased fibrosis [44]. This cell-based therapy, especially using the 
mononuclear cell fraction, has shown to improve regeneration of multiple tissues 
under pathological conditions [44]. A recent study provided evidence that both 
Cx40 and Cx37 participate in endothelial nitric oxide synthase (eNOS) regulation 
in vivo, where in mice subjected to the 2K1C procedure, the interaction of Cx40 
and Cx37 with eNOS was enhanced, resulting in increased nitric oxide (NO) release 
[45]. Mice lacking Cx40 featured decreased levels of eNOS [45], and in different 
models of hypertension, Cx37 selectively participates from an altered expres-
sion of AT2R [46]. In addition, the amount of Cx43 is increased in inflammatory 
processes in damaged renal tubules and in interstitial cells in human kidneys [47]. 
Toubas et al. observed in three different models of CKD (i.e., the transgenic renin 
[Ren+/+] model, the administration of antibodies against the glomerular basement 
membrane [α-GMB], and the unilateral obstructive uropathy) an increase in the 
amount of renal Cx43. Consequently, they postulated that this change in Cx43 was 
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altered by the development of inflammation in the damaged kidney [36]. Therefore, 
Cx43 is considered a new mediator of renal disease involved in central processes 
of inflammation and fibrosis, while its inhibition even after the initiation of the 
disease attenuates renal damage and preserves renal function in animal models of 
vascular, tubular, and glomerular CKD [48]. Although renal tissue expresses several 
Cxs, only a few studies have described the involvement of GJs and HCs in kidney 
damage, and no signaling pathway has been clearly associated with these changes 
[36, 41, 42]. Therefore, the role of Cx-based channels in normal renal tissue or in 
the development and progression of kidney damage remains largely unknown.

2.3  Connexin43 and the RhoA/ROCK pathway participate in angiotensin 
II-induced kidney damage

The main therapies for CKD currently available focus on the control of blood 
pressure and the optimization of the blockade of the renin-angiotensin system (RAS) 
[49]. The renal afferent arterioles are primarily responsible for regulating preglo-
merular resistance, renal blood flow, and GFR. Elevated renal vascular resistance and 
preglomerular reactivity are observed in AngII-induced hypertension [50]. Although 
many systemic, neural, paracrine, and autoregulatory mechanisms contribute to 
afferent arteriolar dynamics, in AngII-dependent hypertension, a direct effect has 
been observed between the RhoA/ROCK pathway and the endogenous production 
of AngII [50]. In our studies we have observed that, although treatment with fasudil 
does not reduce systolic blood pressure (SBP), the establishment of irreversible renal 
damage is prevented (Figure 1, Table 1), reducing inflammation, OS, and fibrosis, 
and also kept the amount of Cx43 and phosphorylated myosin phosphatase target 
subunit-1 (MYPT-1) at normal levels [51] (Figure 2). We have also identified the 
timepoint when renal damage turns irreversible and, as such, independent of the 
cause [51]. We considered that kidney damage became irreversible after 4 weeks of 
treatment with AngII since SBP, inflammation, OS, fibrosis, the amount of Cx43, 
and phosphorylation status of MYPT-1 remained high even after 2 weeks of AngII 
withdrawal [51]. On the contrary, these parameters were reversed in animals infused 
with AngII for 3 or less weeks, which indicates that AngII can generate alterations that 
can be compensated by kidney tissue that was not affected by AngII and/or recovery 
thanks to the small regeneration capacity of kidney tissue [51].

Figure 1. 
Fasudil does not modify the SBP in rats treated with AngII for 4 weeks but prevents the decrease in renal 
function. (A) Protein (UProt) and creatinine (UCrea) were measured in urine samples to assess renal function 
from ratio UProt/UCrea. (B) The bars represent the means ± SE of a n ≥ 4 rats per experimental group. The 
differences between the subgroups of each of the three groups were evaluated by an ANOVA followed by a 
Tuckey test. ***p < 0.001, **p < 0.01, and * p < 0.05 vs. AngII group.
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The activity of the RhoA/ROCK pathway has been widely investigated in the 
pathogenesis of hypertension, where this pathway would fulfill an important role 
in the regulation of smooth muscle contraction. Other cellular processes such 
as proliferation, hypertrophy, adhesion, and migration of vascular cells are also 
mediated by the RhoA/ROCK pathway. These changes could lead to an increase in 
peripheral vascular resistance, which is one of the critical characteristics of several 
models of hypertension [52]. Therefore, inhibition of the RhoA/ROCK pathway 
represents a new approach in the prevention and treatment of hypertension [52]. 
The protective effect of fasudil in vivo is partly explained by its pleiotropic action 
in different systems. Therefore, considering that ROCK inhibitors were developed 
as antihypertensive drugs, it is striking that in our model of rats treated with 
AngII for 6 weeks, fasudil did not affect SBP, but did reduced the progression of 
kidney damage [51]. Similar to our observations, several studies have established 
that fasudil is renoprotective without affecting blood pressure, establishing a 

Figure 2. 
The increase in the amounts of phosphorylated MYPT and Cx43 is prevented with fasudil in rats treated with 
AngII for 6 weeks. Four groups of animals, two control groups (Ctrl and Ctrl+fasudil) and two experimental 
groups (AngII administered for 6 weeks and AngII+fasudil administered for the last 4 weeks), were studied. 
Fasudil (100 mg/kg/day) was given in the drinking water. Graphs show phosphorylation of MYPT-1 (A) and 
the relative amount of Cx43 (B). Under the graph representative pictures of phosphorylated MYPT (p-MYPT), 
unphosphorylated MYPT and Cx43 positive bands and its loading control (α-tubulin) are shown. The bars 
represent the means ± SE of n ≥ 4 rats per experimental group. The differences between the subgroups of each of 
the three groups were evaluated by an ANOVA followed by a Tuckey test. ***p < 0.001 vs. AngII group.

Groups Weight 

(gr)

Proteinuria 

(mg/day)

Creatinine 

clearance  

(ml/min)

FE Na + (%) FE K+ (%)

Ctrl 482 ± 31 2.7 ± 1.1*** 1.4 ± 0.3*** 0.2 ± 0.0*** 12.0 ± 2.7***

Ctrl+fasudil 480 ± 36 3.6 ± 1.1*** 2.1 ± 0.1*** 0.1 ± 0.0*** 12.5 ± 0.3***

AngII 364 ± 42 214.0 ± 19.0 0.7 ± 0.0 2.2 ± 0.4 162.0 ± 23.0

AngII+fasudil 368 ± 17 19 ± 7.2*** 1.9 ± 0.2*** 0.5 ± 0.1*** 30 ± 7.2***

***p< 0.001 vs. AngII groups (n≥4/all groups).

Table 1. 
Values for weight, proteinuria, creatininuria, creatininemia, creatinine clearance, and fractional excretion 
(FE) for Na+ and K+ in the experimental groups.
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controversy regarding the use of fasudil and its antihypertensive action [53–56]. In 
view of these results, it would be interesting to develop a line of research that could 
explain why fasudil does not prevent the increase in SBP, even when it prevents 
kidney damage.

Hypertensive nephropathy begins in the glomerulus by increasing intraglomeru-
lar pressure. These early events activate and damage mesangial cells, epithelial cells, 
and podocytes in the glomerulus [42]. In turn, these cells produce vasoactive and 
pro-inflammatory agents, which increase cell damage and promote fibrosis, reduc-
ing renal blood flow and glomerular filtration [8]. In afferent arteriolar cells from 
rats treated with AngII, the activation of NF-κB is mediated by the RhoA/ROCK 
pathway, and the ROCK/NF-κB axis contributes to the upregulation of angiotensin-
ogen, leading to an increase in the amount of intrarenal AngII [50]. We found that 
AngII increases the membrane permeability of MES cells, a mesangial glomerular 
cell line via AT1 receptors, as well as the activation of a RhoA/ROCK-dependent 
intracellular signaling pathway, followed by the upregulation of three nonselective 
channels, and the generation of OS and pro-inflammatory cytokines [42]. In MES-
13 cells, AngII promotes a feedforward mechanism in which three nonselective 
channels (Cx43 HCs, Pannexin 1 channels, and P2X7 receptors) maintain or even 
amplify inflammatory and oxidative responses, causing damage to kidney cells [42].

Xie et al. explored the mechanism of the reduction in the amount of Cx43 
induced by RhoA/ROCK signaling in high glucose-treated glomerular mesangial 
cells (GMCs) [57]. Their results indicate that activated RhoA/ROCK signal-
ing induced Cx43 degradation in GMCs cultured in high glucose via a pathway 
dependent on F-actin regulation that promoted the association between ZO-1 
and Cx43 [57]. Interestingly, we found changes in RhoA/ROCK activity and also 
found that ROCK inhibitors prevented increases in the amount of Cx43 induced 
by AngII [51]. Since the expression and activation of RhoA/ROCK and Cx43 HCs, 
respectively, occur in the same direction, it is likely that they are regulated by 
the same transduction mechanism and intracellular signaling pathway activated 
by AngII. Therefore, it was postulated that changes in RhoA/ROCK pathway 
and Cx43 precede renal damage in this model of hypertensive nephropathy [51]. 
A comparable response has been found in fibroblasts, and a direct relationship 
has been demonstrated between the activation of the RhoA/ROCK pathway and 
the increase in the amount of Cx43. In these cells, the expansion mechanisms 
in response to stretching involve the release of ATP to the extracellular medium 
through the RhoA/ROCK pathway and the activation of Cx HCs [58]. In addition, 
treatment with Y-27632, another inhibitor of the RhoA/ROCK pathway, or with 
blockers of Cx HCs, such as octanol or carbenoxolone, inhibits the increase of ATP 
in the extracellular medium and the growth of fibroblast [58]. Nevertheless, this 
direct relationship is not observed in all cell types. For instance, in corneal epithe-
lial cells, where a RhoA/ROCK-dependent pathway is involved in the formation of 
Cx43 GJs, inhibition of RhoA/ROCK-dependent pathway results in greater cell–cell 
communication mediated by Cx43 GJs [59].

Therefore, we propose that blocking AngII-induced damage progression in 
mesangial cell could be accomplished by inhibiting the RhoA/ROCK as previously 
demonstrated. Moreover, the effective reduction of initial AngII-induced altera-
tions in cell membrane permeability leading to activation of several metabolic 
pathways that promote OS and generation of pro-inflammatory cytokines can be 
accomplished with selective and potent inhibitors of nonselective channels [42, 51].

The differences between the subgroups in each of the three groups were evaluated 
by an ANOVA followed by a Tuckey test. **p < 0.01, ***p < 0.001 vs. AngII groups 
(n ≥ 4/all groups).
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3. Conclusions

In conclusion in the hypertensive nephropathy, inflammation, oxidative stress, 
fibrosis, changes in amount and cell membrane permeability of Cx43 HCs, and 
activity of the RhoA/ROCK pathway are important in the progression of damage 
induced by AngII. These alterations are prevented by fasudil, revealing a close rela-
tionship between activation of a RhoA/ROCK-dependent pathway and Cx43 in CKD.
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Appendices and nomenclature

CKD chronic kidney diseases
RAS renin-angiotensin system
ESRD end-stage renal disease
GFR glomerular filtration rate
MCs mesangial cells
JG juxtaglomerular cells
AngI angiotensin I
ACE angiotensin-converting enzyme
AngII angiotensin II
IL-1β interleukin-1β

TNF-α tumor necrosis factor-α

MCP-1 macrophage chemoattractant protein
TGF-β transforming growth factor-β

ED-1 infiltration of macrophages
OPN osteopontin
NOX nicotinamide adenine dinucleotide phosphate oxidase
ROS reactive oxygen species
OS oxidative stress
AT1 angiotensin II receptor type 1
AT2 angiotensin II receptor type 2
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ROCK Rho kinase system
Rho GTPase Rho family of small GTPases
NFκB nuclear factor-κB
GJs gap junctions
Cxs connexins
HCs hemichannels
BMMC bone marrow mononuclear cell
2K1C two-kidney and one-clip rat model
eNOS endothelial nitric oxide synthase
SBP systolic blood pressure
MYPT-1 myosin phosphatase target subunit-1
MES-13 mesangial glomerular cells line
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