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Chapter

Aptamers for Infectious Disease 
Diagnosis
Soma Banerjee and Marit Nilsen-Hamilton

Abstract

Aptamers are in vitro-selected, nucleic acids with unique abilities to bind 
strongly and specifically to their selective targets (ligands) based on their three-
dimensional structures. Target binding is generally associated with a change in 
aptamer structure, which provides a means of linking many output signals to the 
binding event. Being synthetic, aptamers are less expensive compared to antibodies. 
Aptamers are also more easily modified chemically or their sequence changed to 
optimize properties such target specificity, storability and stability. In this chapter 
we will discuss the potential benefits of applying aptamers to diagnostics with a 
focus on infectious disease and the unique challenges posed by aptamers for their 
successful incorporation into reliable aptasensors.

Keywords: aptamers, SELEX, aptasensors, portable diagnostic tools,  
electrochemical impedance spectroscopy

1. Introduction

Aptamers, first disclosed in 1990 by three groups [1–3], are ssDNA or RNA 
molecules capable of binding strongly and specifically to their target (ligand) 
molecules. Their target binding specificities and affinities are based on their 
sequence-specific 3D structures. Such properties of aptamers make them analogues 
of antibodies with unique advantages. For example, aptamers are relatively small 
(diam. ~2 nm) compared to antibodies (diam. ~15 nm), which allows them to bind 
targets that are inaccessible to the larger antibodies. Like antibodies, their proper-
ties are defined by the ionic conditions and pH in which they are placed. However, 
being shorter polymers, aptamers are generally more sensitive than antibodies to 
their physical and chemical environment.

In contrast to the time-consuming and expensive production and screening pro-
cedures for antibodies, aptamers can be produced faster and more cost effectively 
by a procedure known as Systemic Evolution of Ligands by Exponential Enrichment 
(SELEX). Once an aptamer sequence has been identified, its further production is 
by chemical synthesis, for which variation is negligible compared with the batch to 
batch variation of antibodies generated in animals or by cell culture. Their syn-
thetic production makes aptamers accessible for selective chemical modifications 
to enhance their binding specificity or to increase their resistance to degradation. 
With such advantages over antibodies, aptamers have emerged as new generation 
molecular recognition elements [4]. In the current chapter, we focus on their impact 
in diagnosis of infectious disease agents. The reader is referred to other reviews of 
the application of aptamers to therapy, biosensing and molecular probing [5–10].
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2. Aptamers in diagnostics

Fast and accurate diagnosis is a key factor for the treatment of infectious disease. 
Molecular recognition by aptamers can be highly discriminatory such that they 
can distinguish between two closely related molecules, including conformational 
isomers [11] or highly related proteins [12–14]. One-to-one comparison between 
aptamers and antibodies as recognition elements for the same target molecule, 
demonstrated that aptamers can equal antibodies in their sensitivity and selectivity 
[15]. As an added advantage, aptamers showed tolerance to repeated regeneration 
and recycling after ligand binding.

The small sizes and homogeneous structures of aptamers allow them to be 
immobilized in a dense and well-oriented manner. The higher density of aptamer 
packing compared with antibodies increases the binding capacity of the sensors 
and extends their linear range of detection of analyte [9, 15]. With these aspects of 
aptamers considered, their application as recognition elements in analytical devices 
offers a multitude of advantages and brings a new dimension to diagnostics.

Aptamers are compatible as the recognition element with many sensor plat-
forms, including quartz crystal microbalances (QCM), surface plasmon resonance 
(SPR), diamond field effect transistors (FET), electrochemical impedance spec-
troscopy (EIS), colorimetric and fluorescence-based optical detection. Of these, 
electrochemical impedance spectroscopy (EIS) has gained popularity as it offers 
rapid, low-cost, label-free detection with high signal to noise ratios and sensitive 
detection of target molecules when employing aptamers [16, 17]. EIS is more sensi-
tive than other electrochemical techniques [18] and is one of the best techniques to 
analyze the properties of electrochemical systems [19]. EIS is a technique used to 
study the electrochemical response to the application of periodic small amplitude 
ac signal at different frequencies [20, 21]. It is useful to monitor the changes in the 
electrochemical properties of the system due to biorecognition events at the surface 
of modified electrodes. For example, the electrodes can be modified with aptamers 
to detect the presence of a target analyte. EIS produces high quality data by directly 
converting a biological event into an electrical signal. Moreover, EIS-based sensors 
are small and portable and can be employed outside of well-equipped labora-
tory. EIS is an attractive technique for biosensor development as it provides the 
advantages of real time monitoring and label-free detection and is compatible with 
flexible electronics, disposable sensors and wearable devices. Inkjet printing can be 
applied to produce aptamer-based EIS biosensors for their automated mass produc-
tion with uniform aptamer deposition [22–24].

In some instances aptamers can also be used for therapeutics or for combined 
diagnostics and therapeutics (theranostics). Examples include (1) various aptam-
ers to human immunodeficiency virus (HIV) proteins that either prevent virus 
entry or replication [7, 25–29], (2) the S-PS8.4 aptamer that recognizes Salmonella 
enterica and inhibits invasion of the bacteria into human monocytes [30], (3) two 
DNA aptamers A9 and B4 against the H9N2 avian influenza virus that inhibit viral 
infection [31], and (4) a DNA aptamer against MUC-1 that was applied in a nano-
composite for fluorescent imaging and demonstrated to inhibit the proliferation of 
colorectal (HT-29) and breast (MCF-7) cancer cells [32].

Although antibodies dominate the global market of diagnostics and therapeu-
tics, several biotechnology companies have actively started exploring aptamers 
for diagnostics. The first to develop aptamer-based diagnostic arrays, SomaLogic 
employed SOMAmers (slow off rate modified aptamers) to detect many protein 
biomarkers for disease diagnosis [33, 34]. The combination of aptamers as the 
recognition elements, with long shelf lives at room temperature, inkjet printing 
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methods for immobilizing them and EIS as the method of detection will enable 
the development of low cost, label free, and rapid response diagnostic devices that 
could be in disposable or wearable forms as well as in more conventional instrument 
formats.

2.1 Aptamers that detect biomarkers of microbial infections

Early detection of infectious disease is of primary importance for its manage-
ment. The conventional methods of diagnosis, which include microbiological 
methods (isolation, growth and microscopy of pathogens), polymerase chain reac-
tion (PCR) and immunological methods [35, 36] suffer from turn-around times of 
24 h or longer. This is especially a problem when the patient(s) are located in remote 
areas from which samples must be sent to centralized laboratories for their analysis. 
It is also difficult to grow some microbes in culture, which limits their detection.

Viral diseases are generally detected by serology, immunology or PCR amplifica-
tion of DNA/RNA fragments corresponding to the pathogen’s genome. Although it 
is sensitive and specific, the performance of PCR requires appropriate instruments, 
specialized reagents and experienced personnel. Immunological methods, which 
are widely used for diagnosis, employ antibodies specific to a protein or carbohy-
drate moiety that is unique to the target pathogen. Some popular immunological 
methods are the agglutination, ELISA and western blot assays. These well-established 
and time-tested assays are the work-horses of modern clinical laboratories. They 
are generally reliable and are likely to be the mainstay of the clinical technical 
repertoire well into the future. But, these assays limit the ability of communities to 
respond rapidly to microbial and viral outbreaks because they require laboratory 
equipment that is not readily portable and trained personnel to perform them. 
ELISA and western blots also depend on provided antibodies, which require cold 
storage to prevent their denaturation. Infectious disease outbreaks often start in 
regions that are distant from clinical laboratories. Therefore, the challenge for 
future diagnostics is to develop portable devices that require little expertise to 
perform. Current technology development is moving in this direction with portable 
PCR machines [37] and lateral flow immunology tests [38]. Whereas the former 
still requires trained personal to operate, the latter can often be readily used and 
interpreted by an untrained individual.

Diagnostics based on aptamers stand out as promising options for rapid, cost 
effective and specific detection of pathogens using devices that can be operated by 
minimally trained personnel. Many aptamers have been reported that recognize 
specific viruses and bacteria. Some were selected against recombinant proteins 
from the target microbe or virus. Others were selected against the intact microbe 
or virus. For example, RNA aptamer S-PS8.4, which specifically recognizes the type 
IVB pili of Salmonella enterica, was isolated using a recombinant pilin structural 
protein as the selection target [39] and incorporated into a potentiometric biosen-
sor as a recognition element for S. enterica [40]. This aptasensor could detect a 
single CFU of target S. enterica and was specific for S. enterica, not recognizing 
either Escherichia coli or Lactobacillus casei. Using a cell-SELEX approach, two 
62 nt DNA aptamers, SA17 and SA61, were selected against intact Staphylococcus 
aureus. As for S-PS8.4, these aptamers bound their S. aureus target with high 
affinities and specificities [41]. Many aptamers have been selected with specifici-
ties for particular microbe targets including or Campylobacter jejuni [42, 43], 
L. monocytogenes [44–48], Vibrio parahemolyticus [49], Shigella dysenteriae [50], 
Streptococcus pyogenes [51], Francisella tularensis [52], Pseudomonas aeruginosa [53] 
and the spores of anthrax Bacillus anthracis [54, 55]. Parasites are also good aptamer 
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targets with aptamers identified that recognize Trypanosoma spp., Plasmodium 
spp., Leishmania spp., Entamoeba histolytica, and Cryptosporidium parvuum [56]. 
For the diagnosis of invasive fungal infections, DNA aptamers have been screened 
against (1 → 3)-β-D-glucans from cell wall of Candida albicans. Two selected DNA 
aptamers (AU1 and AD1) showed high binding affinities in the range of 100 nM 
and did not bind to the same domain of (1 → 3)-β-D-glucans. The application of 
these aptamers in a double-aptamer sandwich enzyme-linked oligonucleotide assay 
(ELONA) resulted in an assay sensitivity and specificity of the detection of ~92% 
[57]. For viruses, there are aptamers that recognize HIV intracellular proteins [7, 13, 
58–60], the HIV envelope glycoprotein [28, 61], hepatitis C [62–64], influenza virus 
[65–67], herpes simplex virus 1 [68], dengue virus [69], zika virus [70] and ebola 
virus [71]. In another study, a device was reported for the multiplexed detection of 
the envelope proteins of Zika and chikungunya viruses. The detection takes place in 
a microfluidic channel containing microsized pillars with attached aptamers. These 
pillars increase the surface sensing area, thereby enabling the attachment of more 
aptamers and increasing the overall sensitivity of the sensor envelope proteins. The 
working principle of this device depends on the formation of a protein-mediated 
sandwich with an aptamer-functionalized gold nanoparticle (AuNP) and an unat-
tached aptamer. The signal is obtained upon introduction of silver reagents into the 
channel, which is selectively deposited on the AuNP surface, providing a gray con-
trast in the testing zone. This colorimetric aptasensor is reported to detect clinically 
relevant concentrations of Zika and chikungunya envelope proteins in phosphate-
buffered saline (1 pM) and calf blood (100 pM) with high specificity [72].

Many of the aptamers discussed have been employed as recognition elements 
in diagnostic tools of a wide variety of types with electrochemical sensors being 
a popular platform. Examples include a potentiometric carbon-nanotube system 
to detect trypanosomes in blood [73], a voltametric aptasensor for ultrasensitive 
detection of Mycobacterium tuberculosis (MTB) virulence factor antigen ESAT-6 [74] 
and an EIS aptasensor for influenza virus [67].

Along with fast read-out, another advantage of the electrochemical approach 
is high sensitivity. The aptamer-based detection threshold is sometimes lower 
than for RT-PCR as demonstrated for influenza virus [67]. In another example, 
aptamer conjugates with gold nanoparticles were sensitive enough to detect a single 
Staphylococcus aureus cell [41]. An aptasensor has been reported that detects attomo-
lar concentrations of the variable surface glycoprotein from African trypanosomes 
as analyte in blood [73]. From these and other examples it was found that immobi-
lization of aptamers on biosensor surfaces increases target binding affinity [75–78]. 
The increased affinity is most likely due to two effects of immobilization: (1) immo-
bilization creates a multivalent surface that decreases the rate at which the aptamer 
ligand can leave the surface (off-rate), which is the denominator in calculating the 
association constant (Ka = kon/koff), and (2) molecular crowding promotes aptamer 
folding to produce the appropriate ligand-binding structure [79–81].

Due to their low concentrations in the blood, infectious disease markers can be 
difficult to detect [82, 83]. Here, aptamers can play a different role of concentrating 
the target prior to their quantification. For this purpose, magnetic beads coated 
with aptamers specific for Trypanosoma cruzi were used to capture these parasites 
from the blood in which they are present at very low concentrations [84].

The stage is set for the development of commercial diagnostics for infec-
tious disease agents. Some have already come to market such as OTA-Sense and 
Aflasense developed by Neoventures Biotechnology Inc. for detection of toxins 
in food samples, AptoCyto and AptoPrep developed by Aptsci Inc. for isola-
tion of biomarker positive cells, SOMAscan from SomaLogic for diagnosis of 
several diseases, CibusDx a food pathogen Diagnostic platform developed by the 
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USA-based start-up (Pronucleotein, Inc.), OLIGOBIND®Thrombin activity assay 
by Sekisui Diagnostics [85]. Aptasensors demonstrate remarkably short detection 
times compared with the conventional methods of ELISA and PCR. The advantage 
of a faster detection time is of utmost importance for identifying rapidly develop-
ing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS 
(Severe Acute Respiratory Syndrome). The rapid detection capabilities of aptasen-
sors and their ready portability will broaden their scope of acceptance in the field of 
diagnosis.

3. Aptasensors

Some of the most attractive features of aptamer-based sensors (aptasensors) are 
their stability to storage at ambient temperatures and their reusability. Moreover, 
their small size and versatility allow aptamers to be immobilized at high densities, 
which facilitate their multiplexing in miniaturized systems. Several signaling modes 
have been coupled to aptamer-based sensors [86, 87]. Some popular outputs for 
detection include fluorescence [88], chemiluminescence [55], electrochemical [89], 
field effects (FET) [90], surface plasmon resonance (SPR) [91], changes in resonat-
ing frequency of quartz crystal sensor (QCM) [92], surface acoustic waves (SAW) 
[93], mechanical (microcantilevers) [94]. In this chapter, we will focus mainly on 
aptamer-based biosensors with fluorescent or electrochemical outputs.

3.1 Fluorescent aptasensors

Aptasensors with fluorescence outputs are designed to take advantage of the 
flexibility of aptamers, which results in their frequently adopting alternate con-
formations in the presence or absence of their target molecules. For these sensors, 
aptamers are modified in key positions with fluorescent dyes that interact in Förster 
resonance energy transfer (FRET). Upon aptamer binding to its target, the associ-
ated structural change alters the distance between the fluorescent dyes and thus the 
efficiency of energy transfer. The signal change, manifested as an increase (signal-
on mode) or decrease (signal-off mode) in fluorescence, is proportional to the 
extent of target binding. A representative “signal-on” fluorescent aptamer holds a 
fluorophore, usually at one end, which is quenched by a molecule that is attached to 
a proximate location in the unoccupied aptamer. Target binding separates fluoro-
phore from quencher allowing recovery of the fluorescent signal, which provides 
a quantitative measure of the target concentration [95]. FRET can also be used in 
“signal-off” sensor designs in which the conformational change of the aptamer on 
target binding brings the donor and quencher into closer proximity with a resulting 
fluorescence quenching. Sensors based on the “signal-off” mode are usually less 
sensitive than those based on the “signal-on” mode, but they can help to improve 
target detection by low-affinity aptamers [88].

An alternative means of signaling an aptamer binding event using fluorescence 
is with an oligonucleotide (attenuator) that is complementary to a portion of the 
aptamer and remains bound to the aptamer in the absence of target molecule. The 
length of the attenuator and its placement on the aptamer must create a condition 
that prevents aptamer folding to the actively binding conformation, but the affinity 
of the aptamer for the attenuator should be less than for the target molecule. With 
these requirements fulfilled, the target molecule can successfully compete with the 
attenuator to bind the aptamer and release the attenuator. Such a design can be used 
for “signal-on” reporting if the target and aptamer are labeled with fluorescent dyes 
that are optimally placed to interact in FRET while the aptamer and attenuator are 
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hybridized. This format can also be used for a “signal-off” system in which a single 
fluorophore is attached to the attenuator. When the aptamer binds the target mol-
ecule, the released attenuator adsorbs to surrounding gold nanoparticles (AuNPs), 
which quench the fluorescence [96]. Another aptasensor design used upconversion 
nanoparticles (UCNPs) as donors and AuNPs as acceptors for rapid, ultrasensi-
tive and specific detection of bacteria (e.g., E. coli ATCC 8739) [97]. FRET-based 
aptasensors provide an efficient method for detecting pathogens and their released 
toxins in one step [98–100].

The concept of using a material to quench the fluorophore was applied to 
create a paper-based MoS2 nanosheet-mediated FRET aptasensor for rapid malaria 
diagnosis [96]. This format uses paper test strips impregnated with fluorescently-
labeled aptamers and MoS2 nanosheets. The MoS2 quenches the fluorescence until 
the aptamers are released when they bind their targets. These aptasensors are 
facile, inexpensive and therefore attractive for point-of-care diagnosis, especially 
in low-resource areas. Similar “low-tech” FRET-based aptasensors have also been 
found to be ideal for spacecraft, such as for diagnosing microgravity-induced bone 
loss in outer space by monitoring urinary C-telopeptide [4, 101]. In such scenarios, 
where both space and lab resources are limited, handheld fluorometers such as the 
commercially available QuantiFluor™ (Promega Corp.) or other such portable 
fluorometers will provide much needed opportunities for point-of-care diagnostics. 
These applications benefit from the greater stability to ambient temperatures for 
storage of aptamers compared with antibodies.

3.2 Electrochemical aptasensors

Upon binding to their target molecules, aptamers fold their supple, single-
stranded chains into distinct three-dimensional (3D) structures. This structural 
change can be employed for initiating electron-transfer when the aptamers are 
labeled with a redox-active moiety and immobilized on a conducting support. 
Several electrochemical aptasensors have been developed based on this strategy 
[87], which can also be classified into “signal-on” and “signal-off” aptasensors. For 
example, an electrochemical thrombin aptasensor was constructed by immobilizing 
a thrombin aptamer (TBA) labeled with redox-active methylene blue (MB) on an 
electrode [102]. After binding thrombin, the TBA adopts a G-quadruplex structure, 
which moves MB away from the electrode. This “signal-off” sensing format has the 
disadvantage of a decreasing signal with increasing target molecule. An example of 
the preferred “signal-on” format includes the TBA, which is immobilized on a gold 
electrode and tagged with a terminal electroactive ferrocene redox label [103]. In 
the absence of thrombin a low signal is produced because many of the conforma-
tions adopted by the aptamer do not bring the ferrocene close to the electrode. 
Upon binding thrombin, the TBA adopts a G-quadruplex conformation, bringing 
the ferrocene to the electrode to allow electron-transfer and a positive signal in the 
presence of target molecule.

Electrochemical signals can be amplified when catalytic events are part of the 
signaling mechanism. For example, an electrochemical aptasensor was developed 
to rapidly diagnose tuberculosis (TB) by detecting the Mycobacterium tuberculosis 
antigen, MPT64, in serum samples [104]. MPT64 exists in serum as a disulfide 
linked homo-multimer. With multiple target sites on the same multimeric particle, 
MPT64 can be detected by a sandwich assay with the same aptamer on each side 
of the sandwich. In this study, coil-like fullerene (C60)-doped polyaniline (C60-
PAn) nanohybrids were used as redox nanoprobes and catalysts to initiate the 
oxidation of ascorbic acid. When linked to the MPT64 aptamer, these nanohybrids 
were brought close to a gold surface (also decorated with MPT64 aptamers) in a 
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sandwich joined by MPT64 multimers. In this configuration the electrons released 
by the oxidation of ascorbic acid were transferred to the gold electrode. This simple 
yet elegant approach for TB diagnosis showed selectivity to target antigen over sev-
eral other serum proteins, a wide linear range of detection from 0.02 to 1000 pg/mL 
and a detection limit of 20 fg/mL MPT64. The delayed diagnosis and misdiagnosis 
of patients with MTB infection is the leading cause behind the spread and high 
mortality rate of TB [105]. Therefore, the possibility of rapid and accurate detec-
tion of MTB by these aptasensors is of great significance for the early diagnosis and 
treatment of TB.

Electrochemical impedance spectroscopy (EIS), an electrochemical label-free 
detection method, can be an extremely sensitive method for target recognition 
at the electrode/electrolyte interface [106]. Here, aptamers are immobilized on a 
gold (Au) electrode and the remaining gold surface filled in by a self-assembled 
monolayer such as mercaptohexanol (6-MCH). This approach was used with a DNA 
aptamer as molecular recognition element for malaria detection, for which the 
response range of 1 pM–10 nM covered the diagnostically relevant concentration 
range of Plasmodium lactate dehydrogenase protein from the falciparum parasite 
species (PfLDH) [107, 108]. The aptasensor functioned well with a sample matrix of 
10% human serum and could be regenerated for reuse by washing with 6 M urea.

Electrochemical aptasensors have been fabricated to be sufficiently small to 
insert into a vein for continuous, real-time measurement of specific molecular 
targets in situ in the living body. The limited surface area of these small devices 
leads to low faradaic currents and poor signal-to-noise ratios when deployed in the 
complex, fluctuating environments found in vivo. To circumvent this problem, an 
electrochemical roughening approach was developed to enhance the signal-to-noise 
ratios by increasing the microscopic surface area of gold electrodes, thereby allow-
ing more redox reporter-modified aptamers to be packed onto the surface. These 
high surface area electrochemical aptasensors of less than 200 μm in diameter were 
used in a proof-of concept study to measure continuous drug pharmacokinetic 
profiles over a 3 h period in live rats [109].

Colorimetric detection is gaining popularity in the diagnostic field considering 
its low cost and the minimal training needed to identify and interpret the visible 
signal. A colorimetric approach was used to develop a diagnostic device for tuber-
culosis with aptamers that bind to antibodies against the MPT64 protein secreted 
by Mycobacterium tuberculosis. When adsorbed to Fe3O4 magnetic nanoparticles 
(MNPs) the aptamers decrease the ability of the particles to reduce oxygen to H2O2 
[110]. Upon exposure of the MNP-aptamer suspension to anti-MPT64 antibodies, 
the aptamers preferentially bind to the antibodies, thereby increasing the avail-
able surface area of the MNPs with the resulting higher rates of H2O2 production. 
Inclusion of 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS), 
which is oxidized by H2O2 and converted to a colored product, signals the presence 
of anti-MPT64 antibodies [111]. Another format for a colorimetric aptasensor is 
a paper-based microfluidic chip. For this format, aptamers against bacteria con-
sidered as nosocomial and antibiotic-resistant were immobilized by ultraviolet 
crosslinking on a nitrocellulose membrane housed within the chip. Incubation with 
bacteria, washing and then the addition of biotinylated aptamers allowed the use of 
HRP-linked streptavidin to create a blue color based on the oxidation of tetramethyl 
benzidine (TMB) by the H2O2 product of HRP, which was trapped on the surface by 
way of its linkage to the streptavidin bound to the biotinylated aptamers attached to 
the target bacteria. This dual-aptamer microfluidic chip possesses many advantages 
such as rapid output (35 min), small size, higher specificity, and the capability to 
detect multiple pathogens simultaneously, which are ideal for point-of-care bacte-
rial diagnostics [112]. A similar sandwich type aptasensor has been reported for the 
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early diagnosis of periodontitis, in which chronic inflammation is caused by many 
factors including pathogenic bacteria. Periodontitis is one of the major causes of 
tooth loss in adults. Aptamers were targeted against a potential biomarker of this 
disease, odontogenic ameloblast-associated protein (ODAM). The lateral flow strip 
format used a cognate pair of aptamers that recognize different sites on ODAM. One 
aptamer (20 aptamer) was attached to gold nanoparticles that were mixed with the 
sample to capture the biomarker. The second aptamer (10 aptamer) was present in 
a line on the strip to capture nanoparticles with attached biomarker. A control line 
with DNA complementary to the 20 aptamer captured the particles that did not have 
attached biomarkers. The biosensor had a detection limit of 0.24 and 1.63 nM in 
buffer and saliva samples, respectively [113].

4.  Considerations for further development of aptasensor applications  
in diagnostics

Of the many aptamers that have been selected, very few have been applied as 
recognition elements in sensors and fewer have reached the stage of commercial 
availability. In this section we will consider some of the reasons that aptasensors, 
with all their promise, have been slow to come to the market in diagnostic devices.

One reason for the limited breadth of application of aptamers to diagnostics 
is that many of the biosensor platforms are new to the concept of incorporating 
aptamers as sensors. Therefore, the research focus has been on developing sen-
sor platforms that are compatible with aptamers. For proof-of-principle devices, 
aptamers that have been previously demonstrated to function well on a variety of 
sensor platforms have been chosen as recognition elements. Consequently, the TBA 
and ATP aptamers have been incorporated into many sensor platforms [114, 115]. 
However, these targets are not relevant biomarkers for disease. With many sensor 
platforms now validated using these “prototype” aptamers the field has the oppor-
tunity to move forward to incorporate and optimize some of the many available 
clinically relevant aptamers for diagnostic applications.

Nucleic acids are more flexible polymers than polypeptides. Whereas there are 
two rotatable bonds between each amino acid side-chain in a polypeptide, there are 
six rotatable bonds between each base in a nucleic acid. This additional flexibility 
gives aptamers the property of ready structural rearrangement with target bind-
ing and enables their incorporation into many sensor platforms that rely on these 
rearrangements for creating signals. Thus, the fundamental principles under-
pinning antibody and aptamer-based sensors are different. Whereas antibody-
based sensors rely on the uniformity of antibody structure and their bivalency, 
aptamer-based sensors rely on the flexibility of the monovalent aptamer structure 
and the structural changes that occur on target binding. Consequently, a single 
sensor format can be readily adapted to many antibodies, but each aptamer-sensor 
combination must be optimized to benefit from the unique structural change of 
the relevant aptamer. Thus, although there may be some applications for sensors 
that use the TBA and ATP model aptamers [116], their repeated use in developing 
and testing aptamer-based sensors has delayed the development of aptasensors for 
relevant biomarkers.

With the importance of aptamer structure and conformational changes for 
sensor development, a second challenge for reliable aptasensor development lies 
in the dearth of known aptamer tertiary structures. This deficiency results from 
several circumstances. First, biophysical determination of nucleic acid structure by 
conventional methods such as NMR and X-ray crystallography is more challeng-
ing than for proteins. Second, when structures can be determined by biophysical 
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means, these are often only the structures of the target-bound aptamers because the 
apo-aptamer structures are too flexible to be reduced to a single structure. Third, 
new aptamers are being reported at an increasingly rapid rate that is much faster 
than their structures can be determined. Finally, small modifications of existing 
aptamers that can have large effects on aptamer structure are often made for their 
application in sensors. Thus, aptasensors must be developed with little informa-
tion about the tertiary structure of the aptamer employed and how it changes with 
target binding. The most likely route to obtaining molecular structure for most 
aptamers will be in silico modeling. Although not yet demonstrated to be adequate 
for accurately predicting the structures of short nucleic acids and how they change 
with target binding, molecular modeling techniques are improving and their 
successful integration into models for sensor mechanisms could eventually result 
in dependable strategies for engineering new aptamers and integrating them into 
sensors.

Many aptamer selection protocols require the availability of purified target 
molecules [117]. Protein target molecules are usually expressed as recombinant 
proteins by prokaryotic or eukaryotic cell cultures and then purified, frequently 
by affinity chromatography based on a capture tag. Like for obtaining antibod-
ies, the protein targets must be pure. Difficulties can come if the recombinant 
protein is not post-translationally modified similarly to the native protein. For 
example, many biomarkers found in the blood are glycosylated in the native 
form, but the recombinant proteins produced by bacterial cells are not glycosyl-
ated. Due to their steric hindrance or by their altering the protein structure in the 
region of the aptamer epitope these modifications can make regions of a native 
eukaryotic protein inaccessible to aptamers generated against the recombinant 
protein equivalent expressed in prokaryotic cells [118]. An early screen for 
aptamers selected to bind non-glycosylated recombinant proteins should be to 
determine if they bind the native glycosylated protein. Approaches to selecting 
for aptamers that recognize glycan structure in the context of the protein will 
also be useful [119].

Cell-SELEX avoids the complication of the target lacking the native posttrans-
lational modifications by selecting against the cell surface protein target in situ 
[120, 121]. However, the identities of targets obtained by Cell-SELEX are often not 
known. As well, Cell-SELEX is performed with cell lines that are different from 
normal or in situ cancer cells and that are cultured under conditions that differ from 
those in the body. In particular, cultured cells have adjusted to exist in serum, which 
is not present in vivo and to an environment of much higher oxygen content than 
cells in situ, both of which conditions might result in altered protein expression on 
the cell surface.

Another consideration for aptasensors is that they frequently must function 
with the target (analyte) in a complex sample matrix. Many sensors have been 
demonstrated to function well in simple buffers, while the most common biomedi-
cal samples (blood, serum, urine and saliva) are complex with many potentially 
interfering substances. Aptamer target binding affinity can be sensitive to the 
matrix in the range of dilutions commonly used to detect the analyte, such as 10 
or 50% serum or urine [122, 123]. For biofluids, sampling methods must also be 
considered with a view to minimal invasiveness and small sample volumes.

As aptasensors are developed that avoid the pitfalls discussed here, these sensors 
will take their place beside the antibody-based assays and provide new capabili-
ties such as continuous analyte monitoring and inexpensive devices that can be 
distributed to small clinics throughout the world and yet be connected by Bluetooth 
and other options to send their results to central clinics and distant physicians for 
improved monitoring of patients in rural and other isolated locations.
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5. Prospects of aptasensors in next-generation diagnosis

Medical diagnostics is moving towards a future of individualized patient care. 
Individuals vary greatly in their response to specific drugs and in the rate at which 
these drugs are removed from the system [124–128]. Pharmacokinetic parameters 
have been reported to vary daily in the same patient [129] or with time of drug 
exposure [130] and between individuals depending on disease state [131–133], age 
[134], genetics [130, 135–139], concurrent medication [137], body fat composition 
[140], and even circadian rhythm [141]. Adherence to a drug intake regime is also 
a factor, particularly for care of the young and the aged [142–144]. For these many 
reasons, individualized diagnostics are considered a clinical necessity for improved 
patient treatment and for establishing effective therapeutic windows [145].

With the push towards individualized medicine as a desirable future approach 
for optimal patient care comes the need to move some diagnostics out of the clinic 
into the home. For this purpose, reliable inexpensive sensors that might be linked 
by wireless connections to clinical centers would be optimal. Some personalized 
diagnostics has long been available in the home. These include pregnancy tests and 
glucose monitors, which are based on antibody and enzymatic reactions. However, 
these are not linked to the larger medical care network. The course is now set for a 
huge expansion of personalized diagnostics that do not require trained operators 
on site, but that can transmit information to clinical specialists who can monitor a 
patient’s condition off-site and continuously. This is a niche for which aptasensors 
can provide a large diversity of options with their potential for long shelf-live under 
ambient conditions, simplicity of operation, ability to be designed for continuous 
use or repeated use, and compatibility with wearable sensor formats.

Aptasensors can also be applied to address the acute need for diagnostics during 
infectious disease epidemics by their placement in clinics located in isolated regions 
of the world and in individual physician’s offices that are distant from major well-
equipped hospitals and clinical centers. With the additional capability of Bluetooth 
communication, centers of disease control can be quickly updated regarding the 
spread of infections, which will enable central authorities to rapidly initiate effec-
tive means of controlling a potential epidemic.

A future of diagnostics for individualized medicine and for the control of infec-
tious disease outbreaks over vast regions will result from many cross-disciplinary 
collaborations that are already underway, which include experts in molecular biol-
ogy, virology, medicine, engineering, diagnostics and other disciplines. With this 
effort, many of the aptasensors that are still now at the proof-of concept stage, are 
expected to become major contributors to a future of improved personalized health 
care for all people, including those living in remote regions, and will help to stem 
future outbreaks of infectious diseases.
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