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Chapter

Thymic Senescence
Krisztian Kvell

Abstract

Thymic senescence develops in every person, although at different pace. Thymic 
senescence significantly lowers the production of naive T cells, leading to increased 
incidence of infections, cancer and autoimmune diseases. Certain external factors 
can accelerate thymic senescence. These include chemicals (copper-chelators), hor-
mones (androgens), infections (viruses, fungi, protozoa). Others may slow the aging 
process of the thymus including perturbations to the hormonal (sex-steroid) system, 
genetic alterations (PPARgamma deficiency) or chemical compounds (PPARgamma 
antagonists). Thymic senescence research may provide insight to underlying molecu-
lar events and potentially appoint novel therapeutic targets for senescence interven-
tion strategies. These hold promise to postpone thymus senescence and enhance T 
cell production. That would result in a decreased incidence of infections, cancer and 
autoimmune diseases, currently affecting the elderly. The attributed drop in health-
care costs and gain in quality of life share tremendous economic and social interest.
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1. The aging thymus

Transcription factor TBX-1 is a mastermind in the formation of the third pha-
ryngeal pouch involved in thymus organogenesis during embryonic development 
[1]. Patients with 22q11.2DS that impairs TBX-1 often present thymus hypoplasia. 
Similarly, Tbx-1null mice develop hypoplasia of the thymus [2, 3]. In both cases, 
defective thymus organogenesis leads to impaired thymocyte development [4]. 
However, as reported recently, the role of TBX-1 in thymus organogenesis is not 
straightforward. Ectopic forced expression of TBX-1 can inhibit transcription factor 
FoxN1, the mastermind of thymic epithelial identity thus indirectly impair thymus 
identity via sustained presence [5]. The thymus contains developing T cells (aka 
thymocytes) along with the non-lymphoid thymic stromal elements comprising 
the microenvironment that promotes thymocyte differentiation. Stromal elements 
include thymic epithelial cells (aka TECs), mesenchymal cells, endothelial cells as 
well as non-lymphoid hematopoietic cells (e.g., dendritic cells or macrophages). 
TECs constitute the main functional stromal cell type necessary to promote 
thymocyte differentiation [6, 7]. Soon after birth the thymus expands to increase 
the output of naive T cells, in order to colonize available niches in the periphery 
[8–10]. Cortical TECs (aka cTECs) are required for T lineage commitment, along 
with thymocyte expansion and differentiation, and positive selection. Medullary 
TECs (mTECs) are necessary for the induction of central tolerance and subsequent 
stages of thymocyte maturation before leaving the thymus. Of note, in order to 
maintain the well organized cortical and medullary compartments active (reverse) 
intercellular signaling is also required from developing thymocytes towards TECs 
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(aka cross-talk) [11, 12]. At a vaguely defined time point, the thymus begins to 
show involution, resulting in adipose degeneration of the organ; hence the process 
termed adipose involution. This senescent process is accompanied by the stepwise 
disorganization of thymic compartments, also shifting TEC subset ratios and reduc-
ing naive T cell production. Although the detailed mechanisms triggering these pro-
cesses remain to be fully elucidated, they finally deteriorate thymus structure and 
function, severely impairing the output of fresh naive T cells. Decline of fresh naive 
T cells results in the inverse increase of memory T cell representation due to aging 
[13–15]. The observed bias in cTEC:mTEC ratio, and the fading of the most dif-
ferentiated MHC class II-expressing TEC subsets leads to the development of a less 
complex medullary architecture along with the blurring of the cortico-medullary 
junction. This is followed by the focal disappearance of epithelial cells, gradually 
being replaced by adipose tissue in the perivascular spaces [16–20]. There is mount-
ing evidence that adipose cells may have an thymic origin. Thymic adipose cells also 
produce an array of cytokines and signaling molecules that directly affect (impair) 
thymopoiesis [21–25]. As a result, although the appearance of thymic adipocytes 
may not trigger involution, their increasing presence with senescence can indirectly 
facilitate or perhaps even directly deteriorate thymus function. Thymus involution 
likely develops as a sum of failure of thymocyte progenitors and the inappropri-
ate function of TEC compartments. It has been reported that the number of early 
T lineage precursors (aka ETPs) shows a gradual decline with senescence [26]. 
Reconstitution experiments of senescent thymi with bone marrow precursors from 
young donors cannot restore thymic compartments nor rescue impaired thymo-
poiesis. The opposite, however, reconstitution of young recipients using senescent 
bone marrow cells does not impair thymopoiesis [27, 28]. The genetic inactivation 
of cell cycle inhibitor p27 (aka Cdkn1b) also leads to the development of an enlarged 
thymus and enhances fresh naive T cell output along with normal stromal organiza-
tion [29–33]. Recent thymic emigrants (aka RTEs) show a decrease upon enhanced 
expression of LIF, SCF, IL-6, and M-CSF [34, 35].

2. Characterization of thymic adipose tissue

There are significant differences between adipose tissue subtypes. At least 
three subtypes are distinguished: white adipose tissue (WAT), brown adipose 
tissue (BAT) and the recently described beige adipose tissue. White adipose tis-
sue stores energy, brown adipose tissue generates heat (via NST or non-shivering 
thermogenesis), while beige adipocytes act as intermediates. It has currently been 
described that thymic adipose involution yields beige adipose tissue based on its 
gene expression, miRNA, histology and metabolic profile [36]. In terms of gene 
expression and histology characteristic epithelial markers show down-regulation 
(FoxN1, EPCAM1, MHCII, Wnt4) (see Figure 1). Considering the miRNA profile 
beige-adipose tissue-associated miRNA species show supportive changes (miR27a, 
miR106b, miR155) (see Figure 1). While PPARgamma is the mastermind of all 
adipose tissue subtypes, TBX-1 has been acknowledged as a key and specific 
marker of beige adipose tissue development [17–20]. Beige adipocytes respond to 
adrenergic stimuli by thermogenesis via mitochondrial uncoupling of biochemical 
degradation and energy production [21]. Along with TBX-1 other beige-indicative 
markers have also been reported. These include mitochondrial uncoupling proteins 
(mostly UCP-1), EAR2 (also known as Nr2f6) and CD137 (also known as Tnfrsf9) 
[22]. The above-mentioned adipose and beige markers show up-regulation along 
(see Figure 1). The adult thymus expresses PPARgamma, TBX-1 and UCP-1 in the 
epithelial compartment, and latter two have been reported to initiate beige adipose 
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tissue development. Thymic adipose tissue may also bee classified based on cellular 
analysis from an adipocyte perspective [23–26]. Thymus tissue appears to be unique 
expressing TBX-1 during embryonic development and also during senescence 
embedded in different contexts. It is appreciable that TBX-1 plays a role in thymus 
organogenesis (immune peak) and thymic adipose involution (metabolic peak). 
This suggests an intersection of immunity and metabolism, and a dual role of 
TBX-1 showing bimodal expression [36].

3. Natural resistance to senescence

A medical condition termed persistent thymus has been known for long [37]. In 
the affected population the thymus is rescued from involution. These individuals, 
however, have severe defects in their hormonal system, affecting the level of sex ste-
roids. It is the lack of androgen-effect that prevents thymus involution on one hand, 
but hampers the endocrine system on the other hand. Recently another medical con-
dition termed FPLD3 (familial partial lipodystrophy type 3) has also been associated 
with the lack of thymus involution [38]. FPLD3 also derails the hormonal system by 
affecting PPARgamma activity. As for all adipose tissue subtypes, PPARgamma plays 
a crucial role during thymus adipose involution as well [39]. It has been suggested by 
others previously based on direct fate-mapping experiments that with senescence 
thymic adipose tissue develops from the thymic stromal or epithelial compart-
ment [22]. In further support, epithelial to adipose trans-differentiation has been 
reported to occur as indicated by the presence by EpCAM-1/PPARgamma double-
positive cells at a given time point during thymus senescence. Such cells express cell 

Figure 1. 
Key molecular events of thymic senescence.
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surface markers as memories of their fading thymic epithelial identity (EpCAM-1), 
yet already show signs of their novel adipocyte differentiation program in their 
nuclei (PPARgamma). Further experiments showed that the medullary compart-
ment is rescued from age-related shrinking in case of PPARgamma deficiency. 
Prolonged survival of thymus stromal niche provides permissive environment for 
sustained fresh naïve T cell production as indicated by increased mTrec values. 
Thymocyte subpopulations were equally supported by PPARgamma deficiency and 
fresh naive T cells outnumbered memory T cells despite age. The sustained support 
of fresh naive T cells provides functional advantages even at elevated ages. Oral 
consumption of foreign T-depended antigen initiates immune tolerance to block 
potential immune response, even along with parallel immunization. Unfortunately, 
this tolerance is impaired at old age [40–42] Loss of oral tolerance is a potential link 
to increasing food intolerance prevalence [43–46]. However, tolerance is rescued by 
PPARgamma deficiency at senior age [38]. In senior individuals protection from sea-
sonal flu strains declines despite annual vaccination [47–49]. The cause: low levels of 
neutralizing antibody titers due to lacking naïve T-cells required for T-B cooperation. 
This, however, is also rescued by PPARgamma deficiency [38].

4. Induced rejuvenation

It has been reported early on that the thymus may be regenerated by a variety of 
interventions (aka thymic rebound) [50]. FoxN1 (a forkhead class transcription fac-
tor) is the mastermind of TEC differentiation [51–55]. FoxN1 has also been shown to 
promote proliferation [56]. Reducing (but not fully diminishing) FoxN1 expression 
early on triggers premature thymus involution (aka thymus progeria). The opposite, 
however, over-expression of FoxN1 efficiently postpones thymus involution [57]. 
Among secreted factors, Wnt4 and keratinocyte growth factor (aka KGF) have 
also verified as key factors of both thymic senescence and rebound [58–61]. The 
onset of adolescence presents a frequently proposed physiological cause for thymic 
degeneration. In accordance, both chemical and surgical castration that result in 
sex-steroid ablation (SSA) yield thymic rebound [62, 63]. SSA-triggered thymic 
rebound correlates with both increased thymus size and thymocyte number leading 
to increased fresh naive T cell production. At the histological level this is suggested 
by the recovery of the cortico-medullary junction [64]. Accordingly, systemic 
hormonal changes associated with senescence partly explain changes observed 
during thymic senescence. In harmony, deletion of the androgen receptor results in 
an enlarged thymus and resistance to androgen induced thymus atrophy [65]. This 
is also in line with reports showing that the thymus reaches peak size and productiv-
ity early after birth, and not later at puberty [66–68]. Unfortunately, castration-
induced rebound is only a transient phenomenon, and the thymus re-involutes 
within a couple of weeks. Apparently, although SSA may trigger the expansion of 
the thymus, yet does not rejuvenate it [69]. In the case of the thymus, in comparison 
with other organs, little is known about the molecular and cellular mechanisms that 
control its development and maintenance. FoxN1 certainly is a mastermind linking 
development and maintenance of the thymic microenvironment throughout life, yet 
some TEC differentiation also occurs independent from Foxn1 [70].

5. Novel trends of rejuvenation

Transcription factor FoxN1 - the mastermind of thymus organogenesis and 
identity - is a known as the molecular target of the glycolipoprotein Wnt4 [71, 72]. 
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For this reason Wnt4 plays a crucial role in thymus development and maintenance 
[73–77]. With senescence thymic epithelial cells secrete less Wnt4, however, their 
Frizzled receptors (Fz4 and Fz6) become up-regulated as compensatory mecha-
nism [78]. It is his loss of Wnt4 expression that allows for thymic adipose involution 
to develop due to PPARgamma-effect [79, 80]. The Wnt/b-catenin pathway and 
PPARgamma act as inhibitors of each other hence exogenous Wnt4 can reinforce 
thymic epithelial identity [79–84]. Wnt4 loses activity when purified, because the 
Wnt molecules travel in extracellular vesicles (EVs, or exosomes in this case) or on 
their surfaces [85, 86]. It has been reported that miR27b also specifically inhibits 
PPARgamma activity [87, 88]. The miRNA species are known travel in EVs and in 
exosomes as well [89, 90]. The thymus is a rich source of exosomes with immu-
nological relevance in e.g. thymocyte selection [91–94]. As a combination of the 
above, artificially produced (transgenic) exosomes containing Wnt4 and miR27b 
in excess can block PPARgamma-effect in thymic epithelial cells thus efficiently 
counteracting senescence observed as thymic adipose involution [95].

World population is approaching 7.7 billion as of 2019 [96]. Global popula-
tion increases due to increasing life expectancy, rather than increasing birth rate. 
However, increasing lifespan is not proportionally attributed with increasing 
health-span. As a result social expenses rise and novel solutions are urged. Central 
immune (thymus) senescence research based novel solutions can potentially 
improve senior immune fitness through decreasing the incidence of infections, 
malignant and autoimmune disorders. These could also thus alleviate the current 
burden on healthcare systems and increase quality of life in the elderly. An ultimate 
goal is to prolong immune fitness and realign it with constantly increasing lifespan.

With aging the thymus shows adipose involution. During this process thymic 
epithelial cells trans-differentiate into beige adipocytes through an intermediate 
fibroblast stage. Key molecular events are summarized at the level of transcription 
factors, tissue markers and miRNA species.
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