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Chapter

Survey of RSA Vulnerabilities
Anthony Overmars

Abstract

Rivest et al. patented (US) RSA. RSA forms the basis of most public encryption
systems. It describes a public key encryption algorithm and certification process,
which protects user data over networks. The patent expired in September 2000 and
now is available for general use. According to Marketsandmarkets.com, the global
network encryption market size is expected to grow from USD 2.9 billion in 2018 to
USD 4.6 billion by 2023, at a compound annual growth rate (CAGR) of 9.8%. Major
growth drivers for the market include increasing adoption of optical transmission,
an increasing demand to meet various regulatory compliances and a growing focus
on shielding organizations from network security breaches. In short, RSA forms the
basis of almost all public encryption systems. This, however, is not without risk.
This chapter explores some of these vulnerabilities in a mathematical context and
provides the reader with an appreciation of the strength of RSA.

Keywords: survey, public keys, vulnerability

1. Introduction

Rivest et al. patented (US) RSA, which forms the basis for most public encryp-
tion systems. RSA describes a public key encryption algorithm and certification
process, which protects user data over networks. The patent expired in September
2000 and now is available for general use. According to Marketsandmarkets.com
[1], the global network encryption market size is expected to grow from USD
2.9 billion in 2018 to USD 4.6 billion by 2023, at a compound annual growth rate
(CAGR) of 9.8%. Major growth drivers for the market include increasing adoption
of optical transmission, an increasing demand to meet various regulatory compli-
ances and a growing focus on shielding organizations from network security
breaches. In short, RSA forms the basis of almost all public encryption systems.
This, however, is not without risk. This chapter explores some of these vulner-
abilities in a mathematical context and provides the reader with an appreciation of
the strength of RSA.

RSA is secure and difficult to factorize in polynomial time. Conventional
sequential computing machines, running in polynomial time, take an unfeasible
amount of CPU cycles to find factorization solutions to RSA keys. Quantum
computing holds great promise; this, however, is realistically still some way off.
Opportunities exist using conventional computing (sequential and parallel) using
better mathematical techniques. A discussion on exploiting implementation flaws is
also considered.

Of keen interest is our lack of understanding of prime numbers and their struc-
ture. The current perception is that there appears to be some underlying structure,
but essentially, primes are randomly distributed. This is explored in Sections 8 and 12.
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Vulnerabilities in the selection of primes are exploited in Section 5 using Euler’s
factorization.

Poor RSA key design and their exploits are considered in Section 6 using
Wiener’s method and in Sections 15–17 using a combination of LLL, Coppersmith
and Pohlig-Hellman. All of these attacks can be mitigated by designing the RSA keys
with these exploits in mind. RSA key design (Section 2) consists of two parts, a
private key N;dð Þ and a public key N; eð Þ. A composite number N, is derived from
two prime numbers. The d; eð Þ numbers are selected in an ad hoc manner using
Euler’s totient.

Development of quantum computing is continuing at breakneck speed; however
useful machines are yet to appear. Parallel computing however is here and now, and
whilst factorizing RSA keys is not achievable on conventional computers in
polynomial time, parallel computing has allowed for multiple solutions to be tested
simultaneously. This is an area where research continues and new algorithms as
shown in Sections 20 and 14 lend themselves well to GPU parallel processing
systems.

2. Structure of RSA numbers

Consider RSA100 challenge number

RSA� 100 ¼ 152260502792253336053561837813263742971806811496138

0688657908494580122963258952897654000350692006139

¼ 37975227936943673922808872755445627854565536638199

�40094690950920881030683735292761468389214899724061

RSA100 is a 100 binary bit number made up of two 50 binary bit prime num-
bers. The motivation in breaking this composite number allows us to find the Euler’s
totient number φn. Once this is known, using the public key PU ¼ N; eð Þ, it is
possible to derive the private key PR ¼ N; dð Þ, and hence all cypher-text encrypted
(e) messages can thus be decrypted back to plain text, using (d).

3. A simple RSA encryption/decryption example

Using two primes P1 and P2 to generate a composite number N,

N ¼ P1P2 ¼ 1462001� 1462009ð Þ ¼ 2137458620009

Totient φ (Euler’s totient function)
Calculate totient φn = (P1 � 1) (P2 � 1) = (1462001 � 1) (1462009 � 1) =

2137455696000
Arbitrarily choose a public key such that e is an integer, not a factor of mod N,

and 1, e,φ, e = 13
The public key is made up of N and e, such that

PU ¼ N; eð Þ ¼ 2137458620009; 13ð Þ. A private key is made up of N and d, such that
PR ¼ N; dð Þ ¼ 2137458620009; dð Þ.

d, is determined using the extended Euclidean algorithm.
e d mod φn ¼ 113 d mod 2137455696000 ¼ 1 ) d ¼ 1973036027077.

Therefore, private key, PR ¼ N1; dð Þ ¼ 2137458620009; 1973036027077ð Þ.

2

Modern Cryptography – Current Challenges and Solutions



Encrypt a message m, into cipher text C, with public key PU. Let the message

m = 1461989. C ¼ memod N ¼ 14619891313mod 2137458620009ð Þ ¼
1912018123454. To recover the original message, decrypt using Private Key,

PR= (N, d) = (1912018123454, 1973036027077) m ¼ Cdmod

N ¼ 19120181234541973036027077mod 2137458620009ð Þ ¼ 1461989:
From this simple example, consider the following: How can we use a known

public key PU = (N,e) to decrypt the original message? To decrypt the message, the
private key is used: PR ¼ N; dð Þ. How can d, be discovered? d is derived using
Euler’s totient function [φn = (P1 – 1) (P2 – 1)], and the extended Euclidean algo-
rithm ed mod φn ¼ 1. However when a public key is transmitted, the totient φn and
the two primes P1 and P2 remain secret. If φn, P1 or P2 can be determined, the
private key will be compromised and the cypher-text will no longer be secure.

When the totient φn is known, d can be determined through the normal key
generation processes, so the determination of the two primes (P1, P2) is not required
to recover the message from the cypher-text. The following proof is provided for
completeness and shows how the two primes P1, P2 can be recovered if the com-
posite N and the totient φn are known.

4. If the composite N and the totient φn are known, the original primes
can be recovered

The quadratic formula can be used to find P1 and P2
φn ¼ P1 � 1ð Þ P2 � 1ð Þ, N ¼ P1, P2. General quadratic form: ax2 þ bxþ c ¼ 0 ¼.
x ¼ �b�

ffiffiffiffiffiffiffiffiffiffiffi

b2�4ac
p
2a

φn ¼ P1 � 1ð Þ P2 � 1ð Þ ¼ P1 P2 � P1 � P2 þ 1 recalling N ¼ P1 P2¼)φn ¼ N � P1 � P2 þ 1

Express primes in terms ofN, φn P1 = N�φn�P2 + 1, P2 =N�φn�P1 + 1N ¼ P1 P2

substitute for P2 ¼) N = P1 (N�φn�P1 + 1) = P1 N�P1 φn – P1
2 + P1

P1
2 þ P1 φn �N � 1ð Þ þN ¼ 0 ax2 þ bxþ c ¼ 0 : a ¼ 1, b ¼ φn–N � 1ð Þ, c ¼ N, x ¼ �b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a

P1, P2 ¼
� φn �N � 1ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

φn �N � 1ð Þ2 � 4 1ð ÞN
q

2 1ð Þ ¼
� φn �N � 1ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

φn �N � 1ð Þ2 � 4N
q

2

When N and φn are known: N = 2137458620009, φn = 2137455696000

P1, P2 ¼
2924010�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8549834480100 � 8549834480036
p

2
¼ 2924010�

ffiffiffiffiffiffi

64
p

2
¼ 1462005� 4

P1, P2 ¼ 1462001; 1462009ð Þ

Using the quadratic formula, P1 and P2 can be recovered if the composite N and
the totient φn are known.

5. Fermat’s factorization method

N ¼ a2 � b2 ¼ a� bð Þ aþ bð Þ is the difference of two squares.

P1 ¼ a� b, P2 ¼ aþ b, P1 þ P2 ¼ 2a, P2 � P1 ¼ 2b; a ¼ P2 þ P1

2
, b ¼ P2 � P1

2
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N ¼ a2 � b2 ¼ P2 þ P1

2

� �2

� P2 � P1

2

� �2

¼ 1

4
P2 þ P1ð Þ2 � P2 � P1ð Þ2

� �

¼ P1P2

As the first trial for a, a1 ¼
ffiffiffiffiffiffiffi

N,
p

then check if Δa1 ¼ a21 �N is a square number.
There are only 22 combinations of which the last two digits are a square number.

The other 78 can be eliminated.
If Δa1 is not a square number, then a2 : a2 ¼ a1 þ 1.

Now Δa2 ¼ a22 �N ¼) a1 þ 1ð Þ2 �N ¼ a21 �N þ 2a1 þ 1 ¼ Δa1 þ 2a1 þ 1

Δa3 ¼ a23 �N¼) a2 þ 1ð Þ2 �N ¼ a22 �N þ 2a2 þ 1 ¼ Δa2 þ 2 a1 þ 1ð Þ þ 1 ¼ Δa2 þ 2a1 þ 3

Δa4 ¼ a24 �N¼) a3 þ 1ð Þ2 �N ¼ a23 �N þ 2a3 þ 1 ¼ Δa3 þ 2 a1 þ 2ð Þ þ 1 ¼ Δa3 þ 2a1 þ 5

so the subsequent differences are obtained by adding two.
Consider the example N = 2137458620009.

a1 ¼
ffiffiffiffiffiffiffi

N,
p

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2137458620009
p

) a1 ¼ 1462005

Check if Δa1 ¼ a21 �N is a square number.

Δa1 ¼ a21 �N ¼ 14620052 � 2137458620009 ¼ 2137458620025 � 2137458620009 ¼ 16 ¼ 42

N ¼ 14620052 � 42 ¼ 1462005� 4ð Þ 1462005þ 4ð Þ ¼ 1462001ð Þ 1462009ð Þ

Maurice Kraitchik, a Belgian mathematician, considered only values of a and

b : a2 � b2 mod N.

a2 � b2 mod N¼)Δ 14620052 mod 2137458620009 � 16

6. Euler’s factorization method

Gaussian primes are of the form 4x� 1, and primes of the form 4xþ 1 are
Pythagorean. Fermat’s Christmas theorem on sum of two squares states that an odd
prime can be expressed as P ¼ x2 þ y2 iff P � 1 mod 4.

Gaussian primes are of the form P � 3 mod 4 and are not representable as the
sum of two squares.

Consider a composite number N: N = P1P2 and P1: P1 ¼ a2 þ b2,

P2: P2 ¼ c2 þ d2.

N ¼ P1P2 ¼ a2 þ b2
� �

c2 þ d2
� �

¼ acð Þ2 þ bcð Þ2 þ adð Þ2 þ bdð Þ2

let A2 ¼ acð Þ2 þ adð Þ2,B2 ¼ bcð Þ2 þ bdð Þ2,C2 ¼ acð Þ2 þ bcð Þ2,D2 ¼ adð Þ2 þ bdð Þ2

N ¼ P1P2 ¼ a2 þ b2
� �

c2 þ d2� �

¼ acð Þ2 þ bcð Þ2 þ adð Þ2 þ bdð Þ2 ¼ A2 þ B2 ¼ C2 þD2

N ¼ A2 þ B2 ¼ C2 þD2 ) A2 � C2 ¼ D2 � B2

A2 � C2 ¼ D2 � B2 ) A� Cð Þ Aþ Cð Þ ¼ D� Bð Þ Dþ Bð Þ

P1 ¼ gcd A�C;D�Bð Þ
2

� �2
þ gcd AþC;DþBð Þ

2

� �2
,

P2 ¼ gcd AþC;D�Bð Þ
2

� �2
þ gcd A�C;DþBð Þ

2

� �2
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Consider the example N = 2137458620009; find the factorization values of
P1 and P2.

Using the sum of squares, N ¼ 2137458620009 ¼ 3244032 þ 14255602 ¼
6436032 þ 13127202.

Combining the even and odds: 14255602-13127202 = 6436032-3244032.

A2 � C2 ¼ D2 � B2 ) A� Cð Þ Aþ Cð Þ ¼ D� Bð Þ Dþ Bð Þ ¼ 968006ð Þ 319200ð Þ ¼ 2738280ð Þ 112840ð Þ

Using the greatest common divisor (gcd):

gcd A� C;D� Bð Þ
2

¼ gcd 968006; 2738280ð Þ
2

¼ 1201,
gcd Aþ C;Dþ Bð Þ

2
¼ gcd 319200; 112840ð Þ

2
¼ 140

gcd Aþ C;D� Bð Þ
2

¼ gcd 319200; 2738280ð Þ
2

¼ 1140,
gcd A� C;Dþ Bð Þ

2
¼ gcd 968006; 112840ð Þ

2
¼ 403

P1 ¼ gcd A�C;D�Bð Þ
2

� �2
þ gcd AþC;DþBð Þ

2

� �2
¼ 12012 þ 1402 ¼ 1462001

P2 ¼ gcd AþC;D�Bð Þ
2

� �2
þ gcd A�C;DþBð Þ

2

� �2
¼ 11402 þ 4032 ¼ 1462009

7. Wiener attack

Wiener’s theorem. Let N ¼ P1P2 and P1,P2, 2P1 and a private key PR ¼ N; dð Þ
and a public key PU ¼ N; eð Þ: Let d, 1

3N
1
4, given a public key PU ¼ N; eð Þ, with

e d � 1 mod φn. The attacker can efficiently recover d [2]. The attack uses the
continued fraction method to expose the private key d, when d is small. It

assumes e
N ≈ k

d ) φn ¼ ed�1
k . Consider a public key PU ¼ N; eð Þ : PU ¼

2137458620009; 1973036027077ð Þ
Continued fraction 1973036027077

2137458620009 ¼ 0; 1; 11; 1;4684; 1; 125; 1; 10; 1; 2; 1; 1; 1; 1; 2; 3; 7; 1; 17½ � ¼

e

N
≈

k

d
:
e

N
¼ 1973036027077

2137458620009
¼ 1

1þ 1

11þ 1 ∗
1

1

¼ 12

13
¼ k

d

φn ¼ ed� 1

k
¼ 1973036027077 ∗ 13� 1

12
¼ 25649468352000

12
¼ 2137455696000

As per Section 2, if the composite N and the totient φn are known, the original
primes P1 and P2 can be recovered.
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8. Sum of squares

Overmars [3] showed that all Pythagorean triples could be represented as

N ¼ n2 þ nþ 2m� 1ð Þ2. If the composite number N, is constructed using two
Pythagorean primes (4x + 1) then two representations as the sum of two squares
can be found. Euler’s Factorization Method (Section 4) can be applied. Finding
these two representations is non-trivial and CPU-intensive. The equation

N m; nð Þ ¼ n2 þ nþ 2m� 1ð Þ2 provides a course search using increments of n and
fine convergence using m. In this way n is incremented and m is decremented about
N to find the two solutions along the diagonal of a field of N m; nð Þ≈N.

Consider the example, N ¼ 2137458620009.

N m1; n1ð Þ ¼ n21 þ n1 þ 2m1 � 1ð Þ2 ¼ 3244032 þ 324403þ 2 550579ð Þ þ 1ð Þ2 ¼ 3244032 þ 14255602

N m2; n2ð Þ ¼ n22 þ n2 þ 2m2 � 1ð Þ2 ¼ 6436032 þ 643603þ 2 334559ð Þ þ 1ð Þ2 ¼ 6436032 þ 13127202

N1 324403; 550579ð Þ ¼ N2 643603; 334559ð Þ ¼ 2137458620009

For completeness N can be represented as two Pythagorean triangles as shown
[3] ∆(m,n)=∆(a,b,c).

a m; nð Þ ¼ 2n nþ 2m� 1ð Þ, b m; nð Þ ¼ 2m� 1ð Þ 2nþ 2m� 1ð Þ, c m:nð Þ ¼ n2 þ nþ 2m� 1ð Þ2

Δ m1; n1ð Þ ¼ Δ a1; b1; c1ð Þ : Δ 324403; 550579ð Þ ¼ Δ 28197495801360; 8357740887191; 29410042540009ð Þ
Δ m2; n2ð Þ ¼ Δ a2; b2; c2ð Þ : Δ 643603; 334559ð Þ ¼ Δ 1689741060320; 1309008976791; 29410042540009ð Þ

Once the two sum of two squares has been found, Euler’s factorization method
(Section 4), can be used to find the prime constructions of N : N ¼ P1P2.

If the composite number (N) is constructed using Pythagorean primes (4xþ 1),
then a solution exists as two sums of two squares and Euler’s factorization method
can be applied.

9. Gaussian and Pythagorean primes

As shown in Section 4, if Pythagorean primes (4xþ 1 � 4x� 3) are used to
construct the composite number (N), a solution exists as two sums of two squares.
However, if N is constructed using Gaussian primes (4x� 1 � 4xþ 3), then Euler’s
sum of two squares method cannot be used. Is there a test that we can use to see if
the composite has been constructed using Pythagorean primes? (Table 1)

Consider the following composite constructions:

i.N ¼ 4xþ 1ð Þ 4yþ 1ð Þ using Pythagorean primes

ii.N ¼ 4x� 1ð Þ 4y� 1ð Þ using Gaussian primes

iii.N ¼ 4xþ 1ð Þ 4y� 1ð Þ using a mix of Pythagorean and Gaussian primes

i. Pythagorean prime construction
N ¼ 4xþ 1ð Þ 4yþ 1ð Þ ¼ 16xyþ 4 xþ yð Þ þ 1 Two sum of two squares
representations exist and Euler’s factorization can be used. 1 � P mod 4.

9 � P mod 16. See Section 4. 793 ¼ 13 ∗ 61 ¼ 32 þ 282 ¼ 82 þ 272

ii. Gaussian prime construction
N ¼ 4x� 1ð Þ 4y� 1ð Þ ¼ 16xy� 4 xþ yð Þ þ 1 � 4m� 3 � 4nþ 1 Sums of
three squares exist. 1 � P mod 4. 9 � P mod 16.

6
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649 ¼ 11 ∗ 59 ¼ 12 þ 182 þ 182 ¼ 32 þ 82 þ 242 ¼ 62 þ 172 þ 182 ¼
82 þ 122 þ 212 ¼ 102 þ 152 þ 182 ¼ 122 þ 122 þ 192 Legendre’s three-square
theorem can test the composite: N ¼ x2 þ y2 þ z2 true if N 6¼ 4a 8bþ 7ð Þ
a, b∈Z,

iii. Mixed Pythagorean-Gaussian prime construction
N ¼ 4xþ 1ð Þ 4y� 1ð Þ ¼ 16xy� 4 x� yð Þ � 1,
N ¼ 4x� 1ð Þ 4yþ 1ð Þ ¼ 16xyþ 4 x� yð Þ � 1: Sums of four squares exist.
3 � P mod 4. 13 ∗ 59 ¼ 767

12 þ 12 þ 62 þ 272 ¼ 12 þ 12 þþ182 þ 212 ¼ 12 þ 32 þ 92 þ 262 ¼ 12 þ 62 þ 172 þ 212

¼ 12 þ 92 þ 182 þ 192 ¼ 12 þ 102 þ 152 þ 212 ¼ 22 þ 32 þ 52 þ 272 ¼ 22 þ 32 þ 152 þ 232

¼ 32 þ 62 þ 192 þ 192 ¼ 32 þ 72 þ 152 þ 222 ¼ 32 þ 112 þ 142 þ 212 ¼ 52 þ 62 þ 92 þ 252

¼ 62 þ 92 þ 112 þ 232 ¼ 62 þ 92 þ 172 þ 192 ¼ 62 þ 112 þ 132 þ 212

¼ 72 þ 92 þ 142 þ 212 ¼ 72 þ 132 þ 152 þ 182 ¼ 92 þ 92 þ 112 þ 222

¼ 92 þ 102 þ 152 þ 192 ¼ 112 þ 142 þ 152 þ 152

In summary, a composite whose construction is based upon both Pythagorean
and Gaussian primes can easily be identified when P mod 4 � 3 is true. However,
sums of four squares exist and Euler’s factorization cannot be used. When
P mod 4 � 1 is true, the composite could be constructed using Pythagorean primes
or Gaussian primes. Use the Legendre test to further discriminate. When the
Pythagorean construct is confirmed, the two sums of two squares can be found, and
Euler’s factorization can be used. If the composite construction is both Pythagorean
and Gaussian, sums of three squares exist and Euler’s factorization cannot be used.

10. Overmars factorization method

Another classification of the composite number uses a different construct for
primes and seeks to define the composite number as follows: Let N ¼ P1P2 and test
N : N � 1ð Þmod4 ¼ 0. Two cases are considered in the classification, and this deter-
mines the constructs of the primes used. Note the sign of �1 determines the case
used, and the test is both simple and concise [4].

Case (1) ⊕⊝  N þ 1ð Þmod4 ¼ 0, P1 ¼ 2 m� nð Þ þ 1, P2 ¼ 2 mþ nð Þ � 1

1. Let m0 ≥
ffiffiffi

N
p

2 , m∈N
þ

2. Let n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

4m2
0�N

p
þ1

2 , n∈N
þ?, n∉N

þ ) mx ¼ m0 þ 1

3. Let n ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

4m2
x�N

p
þ1

2 , n∉N
þ,mx ¼ mx þ 1 ) n : n∈N

þ

4.P1 ¼ 2 m� nð Þ þ 1, P2 ¼ 2 mþ nð Þ � 1

4x � 1 4x + 1 x, y ¼ 3, 15 11 13

4y – 1 16xy� 4 xþ yð Þ þ 1 16xy� 4 x� yð Þ � 1 59 649 767

4y + 1 16xy� 4 y� xð Þ � 1 16xyþ 4 xþ yð Þ þ 1 61 671 793

Table 1.
Possible composite constructs using Pythagorean and Gaussian primes.
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Case (2) ⊝⊝ N � 1ð Þmod4 ¼ 0, P1 ¼ 2 m� nð Þ � 1, P2 ¼ 2 mþ nð Þ � 1

1. Let m0 ≥
ffiffiffi

N
p

þ1
2 , m∈N

þ

2. Let n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m0�1ð Þ2�N
p

2 , n∈N
þ?, n∉N

þ ) mx ¼ m0 þ 1

3. Let n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mx�1ð Þ2�N
p

2 , n∉N
þ,mx ¼ mx þ 1 ) n : n∈N

þ

4.P1 ¼ 2 m� nð Þ � 1, P2 ¼ 2 mþ nð Þ � 1

Example N ¼ 5959

1. Test N � 1ð Þmod4 ¼ 0 : 5959þ 1ð Þ mod 4 ¼ 0 ) case 1ð Þ⊕⊝

2.m0 ≥
ffiffiffi

N
p

2 ) m0 ¼
ffiffiffiffiffiffiffi

5959
p

2 ) m0 ¼ 39, n ¼ 6:09, n∉N
þ

3.m1 ¼ m0 þ 1 ¼ 39þ 1 ¼ 40

4.n ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

4m2
1�N

p
þ1

2 ) n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 40ð Þ2�5959
p

þ1
2 ¼ 11, n1 ∈N

þ

5. P1 ¼ 2 m� nð Þ þ 1 ) P1 ¼ 2 40� 11ð Þ þ 1 ¼ 59, P2 ¼ 2 mþ nð Þ � 1 ) P_2 ¼ 2 40þ 11ð Þ � 1 ¼ 101

N ¼ P1P2 ¼ 59 x 101 ¼ 5959

This method is reasonable for small composites but becomes computationally
unfeasible for large composites.

11. Extensions of the Overmars factorization method

Case (1) ⊕⊝ N þ 1ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ þ 1, P2 ¼ a mþ nð Þ � 1

N ¼ a m� nð Þ þ 1½ � a mþ nð Þ � 1½ � ¼ a2 m2 � n2
� �

þ 2an� 1

N ¼ amð Þ2 � anð Þ2 � 2anþ 1
h i

¼ amð Þ2 � an� 1ð Þ2

Case (2) ⊝⊕ N þ 1ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ � 1, P2 ¼ a mþ nð Þ þ 1

N ¼ a m� nð Þ � 1½ � a mþ nð Þ þ 1½ � ¼ a2 m2 � n2
� �

� 2an� 1

N ¼ amð Þ2 � anð Þ2 þ 2anþ 1
h i

¼ amð Þ2 � anþ 1ð Þ2

Case (1, 2) Nþ1
a ¼ a m2 � n2ð Þ � 2n a : a is a factor of N þ 1

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

amð Þ2 �N
q

� 1

a
,m≥

ffiffiffiffi

N
p

a
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ an� 1ð Þ2
a2

s

,

Case (3) ⊝⊝ N � 1ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ � 1, P2 ¼ a mþ nð Þ � 1
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N ¼ a m� nð Þ � 1½ � a mþ nð Þ � 1½ � ¼ a2 m2 � n2
� �

� 2amþ 1

N ¼ amð Þ2 � 2amþ 1� anð Þ2 ¼ am� 1ð Þ2 � anð Þ2

Case (4) ⊕⊕ N � 1ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ þ 1, P2 ¼ a mþ nð Þ þ 1

N ¼ a m� nð Þ þ 1½ � a mþ nð Þ þ 1½ � ¼ a2 m2 � n2
� �

þ 2amþ 1

N ¼ amð Þ2 þ 2amþ 1� anð Þ2 ¼ amþ 1ð Þ2 � anð Þ2

Case (3, 4) N�1
a ¼ a m2 � n2ð Þ � 2m a : a is a factor of N � 1

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

am� 1ð Þ2 �N

a2

s

, m≥

ffiffiffiffi

N
p

∓ 1

a
,m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ anð Þ2
q

� 1

a

a: a ¼ gcd m; nð Þ for all cases. Choosing the largest value of a ensures a rapid
convergence to the solution. This is illustrated by example.

Consider N ¼ 211276133

Factors of N þ 1ð Þ ) 211276133þ 1 ¼ 2ð Þ 33
� �

881ð Þ 4441ð Þ possible values for a

Factors of N � 1ð Þ ) 211276133� 1 ¼ 22
� �

52819033ð Þ possible values for a

Case (3) ⊝⊝ N � 1ð Þmod a2 ) 211276133� 1ð Þmod4 ¼ 0 ) a ¼ 2

2 m� nð Þ � 1½ � 2 mþ nð Þ � 1½ � ¼ 211276133, m ¼ 10247, n ¼ 7223 ) gcd 10247; 7223ð Þ ¼ 1

P1 ¼ 2 10247 � 7223ð Þ � 1 ¼ 6047, P2 ¼ 2 10247 þ 7223ð Þ � 1 ¼ 34939

Case (2) ⊝⊕ N þ 1ð Þmod a2 ) 211276133þ 1ð Þmod9 ¼ 0 ) a ¼ 3

3 m� nð Þ � 1½ � 3 mþ nð Þ � 1½ � ¼ 211276133, m ¼ 6831, n ¼ 4815 ) gcd 6831;4815ð Þ ¼ 9

27 m� nð Þ � 1½ � 27 mþ nð Þ � 1½ � ¼ 211276133, m ¼ 759, n ¼ 535 ) gcd 759; 535ð Þ ¼ 1

P1 ¼ 27 759� 535ð Þ � 1 ¼ 6047, P2 ¼ 27 759þ 535ð Þ þ 1 ¼ 34939

Consider N ¼ 5959 (Section 8)

Factors of N � 1ð Þ ) 5959� 1 ¼ 2ð Þ 32
� �

331ð Þ possible values for a

P1 ¼ 3 m� nð Þ � 1, P2 ¼ 3 mþ nð Þ � 1, m ¼ 27, n ¼ 7, gcd 27; 7ð Þ ¼ 1

Factors of N þ 1ð Þ ) 5959þ 1 ¼ 23
� �

5ð Þ 149ð Þ possible values for a

P1 ¼ 20 m� nð Þ þ 1, P2 ¼ 20 mþ nð Þ � 1, m ¼ 4, n ¼ 1, gcd 4; 1ð Þ ¼ 1

Consider RSA100

P1 ¼ 37975227936943673922808872755445627854565536638199

P2 ¼ 40094690950920881030683735292761468389214899724061

P1 ¼ 2ð Þ 3167ð Þ 3613ð Þ 1659412543822590349622856694449324700910569ð Þ þ 1

P1 ¼ 23
� �

3ð Þ 52
� �

109ð Þ 409ð Þ 20839813ð Þ 60236089ð Þ 49147216823ð Þ 23011759155976667ð Þ � 1

P2 ¼ 22
� �

5ð Þ 41ð Þ 2119363ð Þ 602799725049211ð Þ 38273186726790856290328531ð Þ þ 1

P2 ¼ 2ð Þ 3ð Þ 11ð Þ 59ð Þ 10296530804037206222569012658644444886804031773ð Þ � 1
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N ¼ P1P2

¼ 23
� �

3ð Þ 52
� �

109ð Þ 409ð Þ 20839813ð Þ 60236089ð Þ 49147216823ð Þ 23011759155976667ð Þ � 1
	 


      ∗ 22
� �

5ð Þ 41ð Þ 2119363ð Þ 602799725049211ð Þ 38273186726790856290328531ð Þ þ 1
	 


factors of N þ 1 ¼ 22
� �

5ð Þ 7ð Þ 132
� �

63421ð Þ 83694613ð Þ
 ð121238883482226494959007093210067761113089
 3465646351221267386320068406978173999673Þ

factors of N � 1 ¼ 2ð Þ 32
� �

210974974123ð Þ
 ð400944086233670527306310281636760087998315
 351567377660286363410284049027879820778576767Þ

N + 1 is the better candidate, as it has more factors to try. So cases (1,2) are
considered.

Case (2) N ¼ a m� nð Þ � 1½ � a mþ nð Þ þ 1½ � ¼ a2 m2 � n2ð Þ � 2an� 1 Nþ1
a ¼

a m2 � n2ð Þ � 2n Try a : a ¼ 2ð Þ 5ð Þ : Nþ1
a ¼ a m2 � n2ð Þ � 2n,

Nþ1
10 ¼ 10 m2 � n2ð Þ � 2n ¼ Nþ1

20 ¼ 5 m2 � n2ð Þ � n

m≥
ffiffiffi

N
p

a ¼ 3902057185540126551228957333948437101890500690019

N þ 1

a
¼ 15226050279225333605356183781326374297180681149613806886ð

57908494580122963258952897654000350692006139Þ þ 1=20

¼ 76130251396126668026780918906631871485903405748069034

432895424729006148162947644882700017534600307

a ¼ 10 ) m ¼ 3903495944393227747674630402410354812189021818113,

n ¼ 105973150698860355393743126865792026732468154293gcd m; nð Þ ¼ 1

P1 ¼ 10 m� nð Þ þ 1 ¼ 37975227936943673922808872755445627854565536638199,

P2 ¼ 10 mþ nð Þ � 1 ¼ 40094690950920881030683735292761468389214899724061

When a is small, this method becomes computationally unfeasible.

12. Overmars factorization using smooth factors

Consider the construction of primes (Sections 8 and 9), P ¼ a m� nð Þ � 1. More
generally, P : P ¼ a m� nð Þ � x Consider N ¼ P1P2 ) 8079781 ¼ 1249� 6469
(Table 2).

Case (1) ⊕⊝ N þ x2ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ þ x, P2 ¼ a mþ nð Þ � x

N ¼ a m� nð Þ þ x½ � a mþ nð Þ � x½ � ¼ a2 m2 � n2
� �

þ 2anx� x2

N ¼ amð Þ2 � anð Þ2 � 2anxþ 1
h i

¼ amð Þ2 � an� xð Þ2

Case (2) ⊝⊕ N þ x2ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ � x, P2 ¼ a mþ nð Þ þ x

N ¼ a m� nð Þ � 1½ � a mþ nð Þ þ 1½ � ¼ a2 m2 � n2
� �

� 2anx� x2

N ¼ amð Þ2 � anð Þ2 þ 2anxþ 1
h i

¼ amð Þ2 � anþ xð Þ2

10
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Case (1,2) Nþx2

a ¼ a m2 � n2ð Þ � 2nx a : a is a factor of N þ x2

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

amð Þ2 �N
q

� x

a
,m≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ a∓ xð Þ2
q

a
,m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ an� xð Þ2
a2

s

Case (3) ⊝⊝ N � x2ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ � x, P2 ¼ a mþ nð Þ � x

N ¼ a m� nð Þ � x½ � a mþ nð Þ � x½ � ¼ a2 m2 � n2
� �

� 2amxþ x2

N ¼ amð Þ2 � 2amxþ x2 � anð Þ2 ¼ am� xð Þ2 � anð Þ2

Case (4) ⊕⊕ N � x2ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ þ x, P2 ¼ a mþ nð Þ þ x

N ¼ a m� nð Þ þ x½ � a mþ nð Þ þ x½ � ¼ a2 m2 � n2
� �

þ 2amxþ x2

N ¼ amð Þ2 þ 2amxþ x2 � anð Þ2 ¼ amþ xð Þ2 � anð Þ2

Case (3,4) N�x2

a ¼ a m2 � n2ð Þ � 2mx a : a is a factor of N � x2

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

am� xð Þ2 �N

a2

s

, m≥

ffiffiffiffi

N
p

∓ x2

a
,m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ anð Þ2
q

� x2

a

N ¼ 90 43� 29ð Þ � 11½ � 90 43þ 29ð Þ � 11½ � ¼ 1249� 6469

When a smooth x can be found, larger a values allow for faster convergence to a
solution. The selection of x and a is somewhat arbitrary and prime constructs are a
modification of Fermat’s a2 � b2. Smooth factors of N � x2 produce larger a values
and convergence faster to a solution.

13. Primes

The current state of the art in prime number generation is Atkin’s sieve [5, 6].
The algorithm completely ignores any numbers with remainder mod 60 that is

divisible by 2, 3 or 5, since numbers with a mod 60 remainder divisible by one of

x N � x2 �x a m n gcd(m,n) Smoothness

1 22 3 5 311 433 ⊝⊝ 10 386 261 1 5-smooth

3 22 479 4217 ⊝⊝ 2 1931 1305 1

5 22 3 673313 ⊝⊝ 6 644 435 1

7 22 32 103 2179 ⊕⊕ 18 214 145 1 3-smooth

11 22 32 5 44887 ⊝⊝ 90 43 29 1 5-smooth

13 22 3 211 3191 ⊕⊕ 6 641 435 1

17 22 3 673291 ⊝⊝ 6 646 435 1

19 22 3 5 17 892 ⊕⊕ 30 128 87 1 5-smooth

23 22 3 673271 ⊝⊝ 6 647 435 1

29 22 34 5 4987 ⊝⊝ 18 216 145 1 5-smooth

Table 2.
N � x2.
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these three primes are themselves divisible by that prime. Atkin stated three theo-
rems given below:

1. All numbers n with mod 60 remainder 1, 13, 17, 29, 37, 41, 49 or 53 are
mod 4 � 1. These numbers are prime if the number of solutions to 4x2 + y2 = n
is odd and the number is squarefree.

2. All numbers n with mod 60 remainder 7, 19, 31 or 43 have a mod 6 � 1.
These numbers are prime if and only if the number of solutions to 3x2 + y2 = n
is odd and the number is squarefree.

3.All numbers n with mod 60 remainder 11, 23, 47 or 59 have a mod 12 � 11.
These numbers are prime if and only if the number of solutions to 3x2 � y2 = n
is odd and the number is squarefree.

None of the primes are divisible by 2, 3 or 5 and are not divisible by their squares
(22, 32, and 52). For a thorough analysis of “primes of the Form x2 + ny2” the reader
is referred to a text by Cox [7].

The often overlooked works of Dubner, who is credited with the term
“primorial” [8] are now considered [9, 10]. The primorial is a factorial of primes:
1# ¼ 2, 2# ¼ 2x3 ¼ 6, 3# ¼ 2x3x5 ¼ 30,4# ¼ #3x7 ¼ 210 and so on. 0# ¼ 1. The
primorial is by definition squarefree.

The nth primorial is the product of n primes, where π nð Þ is the prime counting
function.

n# ¼
Y

π nð Þ

i¼1

pi ¼ p
π nð Þ#

Using this structure, Dubner was able to create series of primes in a particular
primorial.

It can be shown that the structure of primes is palindromic in the primorials [11].
For example, in Figure 1, take the discrete derivative of the numbers in the third

primorial, 3#. The following palindromic sequence can be added to #3 ¼ 30 and
subtracted from #4 ¼ 210 to determine all of the primes in that primorial:

30 þ 1, 10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2

210� 1, 10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2

This describes the second table in Figure 1. All of the primes in the third
primorial can be found using 24 small numbers. Mod 7 is used to sieve and eliminate
composite multiples of 7. Mod 11 and 13 are used to highlight further composites,
but these are kept and used to generate primes in the next primorial.

Modulo testing: P mod m ¼ 0, Pk,m,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ 1ð Þ#
p

For k ¼ 3, Pk : P3 ¼ 5, Pkþ1 : P4 ¼ 7, #3 ¼ 30,#4 ¼ 210,
ffiffiffiffiffiffiffiffi

210
p

≈ 14,
m ¼ 7, 11, 13, eliminate Pkþ1 ¼ 7

As shown in Figure 2, 24 small numbers are used to derive 482 new values. This
uses 10 modulo tests to identify composites and 1 modulo test to eliminate factors of
11 (Figure 3).

Pn#, ΔPn�1# Current primorial and the difference between primes from the
previous. Simple array descriptor provides rich prime fields of higher densities.
Small numbers describe primes of higher magnitude. Large arrays of primes can be
stored in much less memory.

12
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14. Number systems

Conventional numbering systems consist of a base (or radix).
The primorial number system is said to be ‘primoradic’; having a primorial base.

The primorial number system is a mixed radix numeral system adapted to the
numbering of the primorials (Table 3).

Figure 1.
Creating primes using primorials.

Figure 2.
Primes in the 4th primorial.

Figure 3.
Gaps between primes of each successive primorial.
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General properties of mixed radix number systems apply to the base primorial
system. The primorial number system OEIS A000040 is denoted by a subscript “

Q

”.
Consider the following example:
Primorial to decimal, BaseQ to Base10
3 4 1 0 1Q stands for 3443120110, whose value is

¼ 3� p4#þ 4� p3#þ 1� p2#þ 0� p1#þ 1� p0# ¼ 3� 210þ 4� 30þ 1� 6þ 0� 2þ 1� 1

¼ 3� 7 þ 4ð Þ � 5þ 1ð Þ � 3þ 0ð Þ � 2þ 1ð Þ � 1 ¼ 75710:

Decimal to primorial, Base10 into BaseQ

75710 into a primorial representation by successive divisions:
757 ÷ 2 = 231, remainder 1
378 ÷ 3 = 126, remainder 0
126 ÷ 5 = 25, remainder 1
25 ÷ 7 = 3, remainder 4
3 ÷ 11 = 3, remainder 3 => 3 4 1 0 1Q

15. RSA100 factorization using primorials

N ¼ P1ð Þ P2ð Þ ¼ aPk#þ cð Þ aPk#þ dð Þ ¼ aPk#ð Þ2 þ cþ dð ÞaPk#þ cd

Pk#
2 ≤N 1522605027922533360535618378132637429718068114961380688657908⋱

494580122963258952897654000350692006139=p31#
2

aPk#ð Þ2 ≤N 1522605027922533360535618378132637429718068114961380688657908⋱

494580122963258952897654000350692006139= 9p31#
2

� �

N ¼ aPk#þ cð Þ aPk#þ dð Þ ¼ aPk#þ cPk�1#þ eð Þ aPk#þ dPk�1#þ fð Þ

Pk# ¼ Pk Pk�1#ð Þ

N ¼ aPk Pk�1#ð Þ þ cPk�1#þ eð Þ aPk Pk�1#ð Þ þ dPk�1#þ fð Þ

¼ ð aPk þ cÞPk�1#þ eð Þ aPk þ dð ÞPk�1#þ fð Þ

N ¼ aPk þ cð Þ aPk þ dð Þ Pk�1#ð Þ2 þ ð f aPk þ cÞ þ e aPk þ dð ÞÞðPk�1#ð Þ þ ef

aPk þ cð Þ aPk þ dð Þ Pk�1#ð Þ2 ≤N ) aPk þ cð Þ aPk þ dð Þ ¼ N �Nmod Pk�1#ð Þ2

Pk�1#ð Þ2

N ¼ 1523830x2 þ 27406046005166967437863263040740903499726862x

þ 12231378224719217781270707850591564671548897759

n … 7 6 5 4 3 2 1

pn n… 17 13 11 7 5 3 2

n# … 510510 30030 2310 210 30 6 2

highest Pnþ1 � 1 18 16 12 10 6 4 1

Table 3.
Primorial radix number system.
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1523830 ¼ 2� 5� 7� 11� 1979 ¼ 770ð Þ 1979ð Þ¼ 1234�464ð Þ 1234þ745ð Þ
Not symmetrical about square root [12]

1522868 ¼ 22 � 317� 1201 ¼ 1201ð Þ 1268ð Þ ¼ 1234� 33ð Þ 1234þ 34ð Þ
Symmetrical about square root.

N ¼ aPk þ cð Þ aPk þ dð Þ Pk�1#ð Þ2 þ ð f aPk þ cÞ þ e aPk þ dð ÞÞðPk�1#ð Þ þ ef

aPk þ cð Þ aPk þ dð Þ Pk�1#ð Þ2 ≤N ) aPk þ cð Þ aPk þ dð Þ ¼ N �Nmod Pk�1#ð Þ2

Pk�1#ð Þ2

1521642935492617539765579106664136748401379615914⋱

312169315386041883234627722692028711378934397966⋱

800=p30#
2

Consider each congruency and look for a factorization that is symmetrical about
the square root.

In this case 1234 + 34 =1268, 1234 – 33 = 1201.

N ¼ aPk þ cð Þ aPk þ dð Þ Pk�1#ð Þ2 þ f aPk þ cð Þ þ e aPk þ dð Þð Þ Pk�1#ð Þ þ ef

30431475913593577738588710930551227419722971658953xþ
151816659580901664885523419281115998823527019067345405631⋱

401183567090345342039152734187917869,

N ¼ aPk þ cð ÞPk�1#þ eð Þ aPk þ dð ÞPk�1#þ fð Þ
k ¼ 31, P31 ¼ 127, aPk þ cð Þ ¼ 1201, aPk þ dð Þ ¼ 12

a ¼ 9, c ¼ 58, d ¼ 125, P31 ¼ 127

N ¼ 9P31#þ 58P30#þ eð Þ 9P31#þ 125P30#þ fð Þ
N ¼ 1201ð Þ 1268ð ÞP2

30 þ 1201f þ 1268eð ÞP30 þ ef

N ¼ a2 þm
� �

P2
31 þ a cþ dð Þ þ nð ÞP31 þ cd

a2 þm ¼ N �NmodP2
k#

P2
k#

¼ 94 ) a ¼ 9, m ¼ 13

a2P2
k# þ a cþ dð Þ þmPk#½ �Pk#þ nPk#þ cdð Þ

Pk# ¼ Pk Pk�1#ð Þ ) N ¼ 1201ð Þ 1268ð ÞP2
30#þ 1201f þ 1268eð ÞP30

# þ ef

N ¼ 9P31#þ 58P30#þ eð Þ 9P31#þ 125P30#þ fð Þ

Repeat these steps for P29# and so on… (Table 4)

N ¼ 9P31#þ 58P30#þ 41P29#þ gð Þ 9P31#þ 125P30#þ 46P29#þ hð Þ

k 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 … 1

Pk 127 113 109 107 103 101 97 89 83 79 73 71 67 61 59 53 2

P1 9 58 41 32 43 101 13 14 60 50 54 33 3 32 12 12 1

P2 9 125 46 106 75 95 71 79 21 3 19 58 23 32 30 13 1

Table 4.
P1 and P2 as base Primorial numbers.
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N ¼ 1522868x2þ
3043147581359377738588710930551227419722971658953xþ
151816659580901664885523419281115998823527019067345405631⋱

401183567090345342039152734187917869:

N ¼ 1268xþ 13141666871354355315613715084104347742596620741ð Þ
1201xþ 11552313802126969246479999301689200142637563209ð Þ, x ¼ p30#Þ

N ¼ 9P31#þ 58P30#þ eð Þ 9P31#þ 125P30#þ fð Þ

N ¼ 9P31#þ 58P30#þ 11552313802126969246479999301689200142637563209ð Þ ∗

9P31#þ 125P30#þ 13141666871354355315613715084104347742596620741ð Þ

N ¼ 9P31#þ 58P30#þ 41P29#þ gð Þ 9P31#þ 125P30#þ 46P29#þ hð Þ

N ¼ 9P31#þ 58P30#þ 41P29#þ 83178932594916863170676664934419945962676779ð Þ ∗

9P31#þ 125P30#þ 46P29#þ 273857017733028251413011637989228497546748161ð Þ

The conversion to a decimal from the base primorial (Section 12) provides P1

and P2

P1 ¼ 37975227936943673922808872755445627854565536638199ð Þ10
P2 ¼ 40094690950920881030683735292761468389214899724061ð Þ10

16. Lenstra-Lenstra-Lavász lattice reduction (LLL)

The (LLL) forms the basis of the Coppersmith attack (Section 15), and a brief
explanation is given here with further reading and references for the reader. The
Lenstra-Lenstra-Lavász (LLL) lattice basis reduction algorithm [13] calculates an

LLL-reduced, short, nearly orthogonal lattice basis, in time O d5n log 3B
� �

, where B
is the largest length of bi under the Euclidean norm, given a basis B ¼ b1; b2;…; bdf g
with n-dimensional integer coordinates, for a lattice L (a discrete subgroup of Rn)
with d≤ n and giving polynomial-time factorization of polynomials with rational
coefficients.

A thorough explanation is given by Bosma [14], and a summary of the example
contained in the reference is given below.

INPUT: Let lattice basis b1, b2, b3 ∈Z3 be given by the columns of

1 �1 3

1 0 5

1 2 6

2

6

4

3

7

5

OUTPUT: LLL-reduced basis

0 1 �1

1 0 0

0 1 2

2

6

4

3

7

5

Using the Lenstra-Lenstra-Lavász lattice reduction (LLL), the short vectors in a
lattice can be found. This is used by the Coppersmith attack. Coppersmith's algo-
rithm uses the LLL to construct polynomials with small coefficients that all have the
same root modulo. When a linear combination is found to meet inequality condi-
tions, standard factorization methods can find the solutions over integers.
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17. Coppersmith attack

When d is small and e is large;via the Euler totient rule
� �

, the Wiener attack
(Section 5) can be used. Conversely, when d is large, e is small. Particular applica-
tions of the Coppersmith method for attacking RSA include cases when the public
exponent e is small or when partial knowledge of the secret key is available
(Section 13) [15].

A small public exponent e, reduces the encryption time. Common choices for e

are 3, 17 and 65537 216þ1
� �

[16]. These are Fermat primes Fx : Fx ¼ 22
x þ 1 and are

chosen because the modular exponent derivation is faster. The Coppersmith
method reduces the solving of modular polynomial equations to solving polynomial
equations over integers.

Let F xð Þ ¼ xn þ an�1xn � 1þ…þ a1xþ a0 and F x0ð Þ � 0mod M for an integer

x0j j,M
1
n. Coppersmith can find the integer solution for x0 by finding a different

polynomial f related to F that has the root x0 mod M but only has small coefficients.
The small coefficients are constructed using the LLL (Section 14). Given F, the LLL
constructs polynomials p1 xð Þ,p2 xð Þ,…pn xð Þ that all have same root
x0mod Ma, a∈Z: a depends on the degree of F and the size of x0. Any linear
combination has the same root x0mod Ma.

The next step is to use LLL to construct a linear combination f xð Þ ¼ ∑cipi xð Þ of
the pi xð Þ so that the inequality f x0ð Þj j,Ma holds. Then standard factorization
provides the zeroes of f xð Þ over Z.

Let N be an integer and f ∈Z x½ � be a monic polynomial of degree d, over integers

such that xd þ cn�1x
d�1 þ…þ c2x

2 þ c1xþ c0. Set X ¼ N
1
d�∈ for 1

d . ∈ .0. Given

N; fð Þ then all integers x0,X : f x0ð Þ � 0 mod N can now be found. All roots of

f mod N, smaller than X ¼ N
1
d can be found.

18. Pohlig-Hellman

The Pohlig-Hellman [17] algorithm is a method to compute a discrete logarithm
(which is a difficult problem) on a multiplicative group. The order of which is a
smooth number (also called friable), meaning its order can be factorized into small
primes. A positive integer is called B-smooth if none of its prime factors is greater
than B. For example, 1620 has prime factorization 22 � 34 � 5; therefore 1620 is 5-
smooth because none of its prime factors are greater than 5. This is similar to that of
the Overmars factorization method (Section 10). The Pohlig-Hellman [17] algo-
rithm applies to groups whose order is a prime power. The basic idea is to iteratively
compute the p-adic digits of the logarithm by repeatedly “shifting out” all but one
unknown digit in the exponent and computing that digit by elementary methods.
This is a similar idea to Section 13.

INPUT: A cyclic group G of order n with a generator g, an element h∈G, and a
prime factorization n ¼

Qr
i¼1 p

ei
i OUTPUT: The unique integer

x∈ 0;…;n� 1f g : gx ¼ h
Example: Let p ¼ 41,α ¼ 7, β ¼ 12 solve 12 ¼ 7x mod 41

1. Find the prime factors of p� 1 ) 41� 1 ¼ 40 ¼ 235 ) gs ¼ 2, 5. Find one x
for each g.

2. For g ¼ 2, x ¼ 20x0 þ 21x1 þ 22x2 2
3 ) cubic ! three terms
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i. x0 : β
p�1
g0 ¼ α

p�1
g X0 ) 12

40
2 ¼ 7

40
2

� �x0
� 1 mod41 ¼ �1ð Þx0mod 41 test for x0 : x0 ¼ 0, 1, 2,…

�1mod 41=� �1ð Þ0 mod 41� 1mod 41=� �1ð Þ1mod 41 hence x0 ¼ 1

ii. x1 : β1 ¼ β0 α� x0ð Þ ¼ 12 7ð Þ� 1ð Þ ¼ 31mod 41

β
p�1
g1
1 ¼ α

p�1
g X1 , g1 ¼ 2231

40
4 ¼ 7

40
2

� �x1
) 3110 ¼ 720

� �x1 3110 ) 1 mod41ð Þ hence x1 ¼ 0

iii. x2 : β2 ¼ β1 α
� x1ð Þ ¼ 31ð Þ 7� 0ð Þ� �

¼ 31mod 41

β
p�1
g2
2 ¼ α

p�1
g X2 , g2 ¼ 23 31

40
8 ¼ 7

40
2

� �x2
) 315 ¼ 720

� �x2 � 1 mod 41 ¼ �1
1
2 mod 41 hence x2 ¼ 1

Recall: X ¼ 20x0 þ 21x1 þ 22x2 so X ¼ 1:1þ 2:0þ 4:1 ¼ 5

x ¼ 5mod 23 ¼ 5mod 8. Now we need another x from the other g

3. For g ¼ 5,x ¼ 50x0 only one 5, only one term:

i.x0 : β
p�1
g0 ¼ α

p�1
g X0 ) 12

40
5 ¼ 7

40
5

� �x0
) 128 ¼ 78

� �x0 ) 18 � 37x0 mod 41

x0 6¼ 0, 1 try x0 ¼ 2 18=� 372 mod 41 18 � 373 mod 41 hence x ¼ 50x0 ¼ 1ð Þ 3ð Þ ¼ 3

Hence x ¼ 3 mod 5, so x ¼ 5mod 8 and x ¼ 3mod 5

By the Chinese remainder theorem, x ¼ 13mod 40 since the exponents

are p� 1 ¼ 41� 1 ¼ 40 hence 12 � 713 mod41: So the solution to 12 ¼ 7x

mod 41 ) x ¼ 13.

19. Shor’s algorithm

Shor’s algorithm [18], factors composite numbers, N ¼ P1P2, consisting of two
primes in polynomial time using quantum computing techniques. The algorithm
evaluates the period of ax mod n where gcd a;nð Þ ¼ 1: This is inefficient using
sequential computing on a conventional computer. When run on a quantum com-
puter, a congruence of squares with probability 0.5 occurs in polynomial time. For
two co-prime sinusoids of period P1 and P2, at what point do they zero-cross each
other? The phase of each sinusoid at any given point is observed, and if they are

Figure 4.
N as a composite of two Sinusoids P1 and P2 [19].
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factors of N then the phase of P1 and P2 is zero. Shor’s algorithm tests the phase of
P1 ¼ P2 ¼ N ¼ 0 (Figure 4).

Phase estimation is well suited to quantum computers and hence this factoriza-
tion technique produces solutions in polynomial time. For further information on
quantum phase estimation, the reader is directed to WIKI [20]. The impact of this
type of attack is discussed in detail by Mosca [21].

1. Choose a,N

2. Find the period r of an mod N (using Quantum computing)

3.Check r is even : a
r
2þ1 � 0mod N

4.P1 ¼ gcd a
r
2 � 1; N

� �

,P2 ¼ gcd a
r
2 þ 1;N

� �

Consider N ¼ 35,

1. a : a,N, choose a ¼ 8

2. Find the period r of an mod N

a. 81mod 35 ¼ 8

b.82mod 35 ¼ 29

c. 83mod 35 ¼ 22

d.84mod 35 ¼ 1

e. 85mod 35 ¼ 8 ) period r ¼ 4

3. r : r even, r ¼ 4 is even

4.P1 ¼ gcd a
r
2 � 1;N

� �

¼ gcd 8
4
2 � 1; 35

� �

¼ gcd 63; 35ð Þ ¼ 7

P2 ¼ gcd a
r
2 þ 1;N

� �

¼ gcd 65; 35ð Þ¼5

Euler’s factorization (Section 6) cannot be used because 7 has no sum of squares nor
does 35.

Fermat’s factorization (Section 5)

N ¼ a� bð Þ aþ bð Þ ¼ a2 � b2 ¼ 36� 1¼62 � 12¼ 6� 1ð Þ 6þ1ð Þ¼ 5ð Þ 7ð Þ¼35

Overmars factorization (Section 10)

N ¼ a m� nð Þ þ 1½ � a mþ nð Þ þ 1½ �¼ 2 4�2ð Þþ1½ � 2 4þ2ð Þþ1¼ 5½ � 7½ �½

Overmars triangles (Section 8) ∆(m,n) = ∆(a,b,c): ∆(3,1)=∆
(12,35,37)Recalling b m; nð Þ ¼ 2m� 1ð Þ 2nþ 2m� 1ð Þ ) b 3; 1ð Þ ¼ 5ð Þ 7ð Þ
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20. Attacking public key infrastructure

Public infrastructure cryptographic hardware uses a library RSALib. This is
found in both NIST FIPS 140-2 and CC EAL 5+. These are certified devices for use
in identity cards, passports, Trusted Platform Modules, PGP and tokens for
authentication and software signing. This is in use in tens of millions of devices
worldwide. Nemec et al. [22] have identified a vulnerability that allows for the
factorization of 1024 and 2048 bit keys in less than 3 CPU months.

RSALib primes are of the form p ¼ k ∗M þ 65537amod Mð Þ.
These can be fingerprinted using the discrete logarithm log 65537N mod M.

N ¼ P1P2 ¼ k ∗M þ 65537amod Mð Þ l ∗M þ 65537bmod M
� �

) N � 65537aþb � 65537c mod M

The public modulus N is generated by 65537 in the multiplicative group Z
∗
M. The

public modulus of RSALib can thus be fingerprinted with the discrete logarithm
c ¼ log 65537N mod M. This can be factorized using Pohlig-Hellman (Section 16).

The group G ¼ 65537 is smooth Gj j ¼ 24 ∗ 34 ∗ 52 ∗ 7 ∗ 11 ∗ 13 ∗ 17 ∗ 23 ∗ 29 ∗ 37 ∗
41 ∗ 53 ∗ 83 for RSA512 keys. The smoothness of G is due to the smoothness of M
being Primorial.

Factorization is achieved using the Coppersmith algorithm with a known
p mod M : 65537amod M. Nemec et al used the Howgrave-Graham[23] implemen-
tation of the Coppersmith’s algorithm to find a small solution x0 of:

f xð Þ ¼ xþ Mp�1mod N
� �

∗ 65537a
0
mod M0

� �

mod Nð Þ
A summary of RSALib vulnerability and its impact is now given and the reader

is directed to Memec et al. [22] for further detail. eIDs used in passports for citizens
are affected. Code signing is vulnerable. Twenty-four percent of TPMs used in
laptops are affected (sample size 41). A third of PGP, used in email systems could be
factorizable. There was no observable impact on TLS/HTTPS. One hundred percent
of SCADA systems sampled were affected (sample 15). E-health and EMV payment
cards were also likely to be susceptible.

Mitigating the impact of the RSALib vulnerability requires changing the algo-
rithm. This requires a firmware replacement which is not possible in already
deployed devices such as smartcards and TPMs whose code is stored in read-only
memory. Key lengths not of 512, 1024, 2048 and 4096, such as RSA3936 appear to be
resilient. The use of key pairs outside of vulnerable devices could be deployed using
another library. Changes to RSALib are required so that proveable safe primes are
constructed not using the vulnerability.

21. Overmars factorization, bringing it together

Section 11 considered the following cases. The following discussion generalizes
these cases and provides the structure for algorthmic solutions to be found. The
palindromic nature of primes (Section 12) can be exploited further to explore
solutions in a particular Primorial range. Recall;

Case 1⊕⊝; 2⊝⊕ð Þ N þ x2
� �

mod a2 ¼ 0, P1 ¼ a m� nð Þ � x, P2 ¼ a mþ nð Þ∓x

N ¼ a m� nð Þ � x½ � a mþ nð Þ∓x½ � ¼ a2 m2 � n2ð Þ∓ 2anx� x2 ¼ amð Þ2 � an∓xð Þ2

N þ x2

a
¼ a m2 � n2

� �

� 2nx a : a is a smooth factor of N þ x2
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n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

amð Þ2 �N
q

� x

a
,m :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ a∓xð Þ2
q

a
≤m,∞m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

þ an∓ xð Þ2
q

a

P1 ¼ a m� nð Þ∓ x ¼ am�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

amð Þ2 �N
q

N mod am�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

amð Þ2 �N
q

� �

� 0

Case 3⊝⊝; 4⊕⊕ð Þ N � x2ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ∓ x, P2 ¼ a mþ nð Þ∓ x

N ¼ a m� nð Þ∓ x½ � a mþ nð Þ∓ x½ � ¼ a2 m2 � n2ð Þ∓ 2amxþ x2 ¼ am∓ xð Þ2 � anð Þ2

N � x2

a
¼ a m2 � n2

� �

∓ 2mx a : a is a smooth factor of N � x2

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

am∓ xð Þ2 �N
q

a
,m :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ a2
p

� x2

a
≤m,∞, m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ anð Þ2
q

� x2

a

P1 ¼ a m� nð Þ∓ x ¼ am∓ x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

am∓ xð Þ2 �N
q

N mod am∓ xð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

am∓ xð Þ2 �N
q

� �

� 0

Now we need to develop the methodology for finding (selecting) a and x. This
brings together the concepts of primorials [9], Smooth [24], small factors [17],
factorization (Fermat), modulo testing as per Atkin’s Sieve [5] and the structure of
primes (Sections 12 and 18), to find as large an a as possible so that Overmars
Factorization [4] converges more rapidly to a solution.

Recall the following (Section 12). Primes are of the form P ¼ 4x� 1 and
P ¼ 6x� 1. Composite numbers, constructed from these primes: N ¼ P1P2 ,
are a combination of Pythagorean and Gaussian primes. The following test
N � 1ð Þmod 4 � 0 can be used to determine which combination of primes was used
to construct the composite. If N þ 1ð Þmod 4 � 0 is true a mix of Pythagorean and
Gaussian primes was used. If N � 1ð Þmod 4 � 0 is true then the composite consists
of only Gaussian or only Pythagorean primes. The Sieve of Atkin [5] uses
mod12 � 0 and mod 60 � 0. This is now applied as per Overmars [4] in the
following manner, if mod 12 � 0 is true then a ¼ 6, if mod 60 � 0 is true let
a ¼ 30. The ideas of Atkin are further extended in both directions:
mod 4 � 0 ) a ¼ 2, mod 420 � 0 ) a ¼ 210, mod 4620 � 0 ) a ¼ 2310,
mod 60060 � 0 ) a ¼ 30030…

This is Primorial, Pk# : Pk#, kth Primorial is”Smooth”. The general form (Sec-

tion 19) is now given: Case (1 ⊕⊝, 2 ⊝⊕) Nþx2

a ¼ a m2 � n2
� �

� 2nx,

N þ x2
� �

mod a � 0, a : a ¼ 2Pk#, x : 1≤x≤
ffiffiffi

N
p

a Case (3 ⊝⊝, 4 ⊕⊕)
N�x2

a ¼ a m2 � n2
� �

∓ 2mx, N � x2
� �

mod a � 0, a : a ¼ 2Pk#, x : 1≤ x≤
ffiffiffi

N
p

a

If a : a ¼ 2Pk# can be choosen, then we search x in the primes to find solutions
to N � x2

� �

mod 2Pk#ð Þ � 0 A solution is found for P1 mð Þ, when P1 ∈Z. Case

(1 ⊕⊝, 2 ⊝⊕) N mod P1½ � � 0, P1 : P1 ¼ am�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

amð Þ2 �N
q

Case (3 ⊝⊝,4⊕⊕)

N mod P1½ � � 0, P1 : P1 ¼ am∓ x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

am∓xð Þ2 �N
q

Consider Section 11 example, N ¼ P1P2 ) 8079781 ¼ 1249 ∗6469

Integer solutions x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 2bPk#
p

. From Table 5, determining which x value
should be used is not clear. Whilst x ¼ 1 should work, no solutions will be found if
a : a ¼ 30: From Table 5 only when x ¼ 11 or 19 do we find solutions. Ranking
the possible solutions in terms of factors 29 (8) would be first, 19 (7) second and 11
(6) third.

Based upon low order factors the rankings would be 29 22 34
� �

first and 11

22 32
� �

second. Setting a ¼ 30, x ¼ 29 will not find solutions for m, n. Setting
a ¼ 30, x ¼ 11 ) m ¼ 129, n ¼ 57, gcd 129; 57ð Þ ¼ 3, so the optimal value for
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a ¼ 90: P1 ¼ 30m� 11�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

30m� 11ð Þ2 �N
q

. Look for solutions to

30m� 11ð Þ2 �N which are a perfect square. In this case,

m ¼ 129 ) 30 ∗ 129� 11ð Þ2 � 8079781 ¼ 6812100 ¼ 26102.

Recall that the starting value for m :
ffiffiffiffiffiffiffiffiffi

Nþa2
p

�x2

a ≤m, N�1
2a ) 99≤m, 134663, 30

iterations.
Whilst this is quite a good result the first failure needs also to be taken into

account. This would be bound by the Primorial and

P1: 1,P1,
ffiffiffiffi

N
p

: am�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

amð Þ2 �N
q

¼ 1 ) m, Nþ1
2a

Here m :
ffiffiffiffiffiffiffiffiffi

Nþa2
p

�x2

a ≤m, Nþ1
2a ≤ 123≤m, 134663 ) 134540 iterations.

This can be further bound by the Primorial. In the case of RSA numbers, the
binary bits available to represent a particular prime number range can also be used
to bound the range (Table 6).

Consider N ¼ 23852269081.
In this case, solutions using modulo testing generate good candidates to solve for

(m, n), however for a ¼ 30030, three of the candidates have no solution. Using
sequential programing, each possible candidate is considered one after another,
until the maximum m value. However, using parallel programing techniques on
GPUs (such as nVIDIA P100s), all of the candidates can be tested simultaneously
and the processes are all terminated when one of the processes finds a solution. This
is very efficient and effective in finding P1, P2. Once these are known, along with
the public key Pu ¼ N; eð Þ, using Euler’s totient, the private key PR ¼ N; dð Þ can be
determined. Once the private key is known the cypher-text is no longer secure.

x mod60 mod180 mod1620 N � x2 �x b a m n gcd(m,n) Smoothness

1 0 22 3 5 311 433 ⊝⊝ 10 386 261 1 5-smooth

1 0 22 3 5 311 433 ⊕⊕ 6 643 435 1 5-smooth

11 0 0 22 32 5 44887 ⊝⊝ 3 90 43 29 1 5-smooth

19 0 22 3 5 17 892 ⊕⊕ 1 30 128 87 1 5-smooth

29 0 0 0 22 34 5 4987 ⊝⊝ 18 216 145 1 5-smooth

Table 5.
Smooth candidates of the factors of N � x2.

x Modulo testing N � x2 a m n gcd(m,n) Smoothness

60 420 4620 60060

1 0 23 32 5 101 461 1423 30 5-smooth

11 0 25 3 5 13 97 157 251 30 5524 2002 2 5-smooth

19 0 0 24 33 5 7 1577531 210 789 286 1 7-smooth

61 0 0 0 24 3 5 7 113 10667 2310 11-smooth

401 0 0 0 0 23 3 5 7211 13 19 1493 30030 13-smooth

1601 0 0 0 0 23 335 7 11 132 1697 30030 13-smooth

45281 0 0 0 0 23 3 5 7 11 13 181501 30030 13-smooth

45589 0 0 0 0 25 3 5 7 11 13 45317 30030 4 2 2 13-smooth

Table 6.
Smooth candidates of the factors of N � x2.
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22. Conclusion

In short RSA is secure and difficult to factorise. Conventional sequential com-
puting machines, running in polynomial time, take an infeasible amount of CPU
cycles to find factorization solutions to RSA keys. Quantum computing holds great
promise and Shor’s algorithm [18] demonstrates how this can be achieved. How-
ever, quantum computing is realistically still some way off. Opportunities exist
using conventional computing (sequential and parallel) with better mathematical
techniques. Section 18 showed how implementation vulnerabilities are introduced
when “clever” low cost (CPU cycles) are implemented. The case in point showed
methods for signature identification, upon which tailored targeted attacks could be
launched against infrastruture FIPS140-2 devices, such as cryptographic routers.
These sorts of attacks can be deployed in polynomial time using sequential pro-
graming techniques. Section 20, Overmars shows how factorization can be
implemented using parellel processing techniques.

There is still much to be done and areas of further interest are a better under-
standing of the structure of primes. This will lead to faster prime number generat-
ing algorithms and hence faster solutions to the factorization problem. This will also
lead to the generation of more robust primes that are less susceptible to factoriza-
tion methods. An example of this is the use of non-Pythagorean primes. Section 5
showed how Euler’s factorization could be used to attack such composite numbers.
Hence a simple method to thwart this would be to use a mix of Pythagorean and
Gaussian primes. Section 6 showed how small d values in the RSA private key
PR ¼ N;dð Þ could be attacked using Wiener’s method. Small e values in the public
key PU ¼ N; eð Þ can be attacked using a combination of LLL, Coppersmith and
Pohlig-Hellman (Sections 15–17). All of these attacks can be mitigated by choosing
d and e carefully and ensuring that both are sufficiently large.

Development of quantum computing is continuing at break-neck speed, however
useful machines are yet to appear. Parallel computing however is here and now and
whilst factorizing RSA keys is not achievable on conventional computers in polyno-
mial time, parallel computing has allowed for multiple solutions to be tested simulta-
neously. This is an area where research continues and new algorithms such as shown
in Sections 20 and 14 lend themselves well to GPU parallel processing systems.

“There are known knowns. These are things we know that we know. There are
known unknowns. That is to say, there are things that we know we don't know.
But there are also unknown unknowns. There are things we don't know we don't
know” [25].
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