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Chapter

Programmed Cell Death in Seeds: 
An Adaptive Mechanism Required 
for Life
Angel J. Matilla

Abstract

The regeneration of the mother plant through germinative process is the main 
reason that evolutionarily justifies the existence of a viable seed. Current knowl-
edge indicates that the control of germination is a sophisticated process mainly 
controlled by hormones and reactive oxygen species (ROS), among other endog-
enous factors. One of the events that directly participate in the germination is the 
degradation of storage proteins (SPs). Thus, vacuolar processing enzymes (VPEs) 
contribute to SPs’ degradation and mobilization due to direct proteolysis or through 
the activation of other peptidases. In parallel, the relationship between VPEs and 
programmed cell death (PCD) is beyond doubt. As an alternative to VPEs, the for-
mation of vesicles called ricinosomes containing papain-like Cys-proteases (PLCPs) 
and located in the reserve tissues of some germinating seeds also collaborates to 
protein degradation. Finally, there are increasing evidences linking nucleases to 
PCD in different tissues of seed. However, its state of the art is still little developed. 
Together, this current overview illustrates a part of the complexity of PCD in seeds, 
a puzzle far from being solved.

Keywords: Cys-endoproteases, endosperm, lytic vacuoles, nucleases,  
papain-like Cys-proteases, ricinosomes, seeds, seed storage proteins,  
vacuolar processing enzymes

1. Introduction

The life cycle of organisms requires targeted cell types to be removed in a 
predictable and genetically organized way. This process of cellular suicide, named 
programmed cell death (PCD), occurs from embryogenesis to senescence and is an 
essential part of development and cell homeostasis of any multicellular organism 
[1–3]. Thus, PCD has been observed from the onset of zygotic embryogenesis until 
the germinative process ends [4–6]. The mechanism through which specific cells 
are targeted for PCD without affecting neighboring cells has not yet been resolved. 
Notable cellular compartments (i.e., mitochondria, chloroplasts, Golgi complex, 
endoplasmic reticulum (ER), and vacuoles) have been shown to be involved in 
PCD [7]. Plant PCD exhibits several hallmarks: (i) DNA laddering and strong 
chromatin condensation [8]; (ii) sometimes, release of cytochrome-c from the 
mitochondria to the cytosol, and its subsequent degradation, which is dependent 
on reactive oxygen species (ROS) and caspase-like activity [9]; (iii) generation of 
autophagic vacuoles due to the absence of an active phagocytosis system [10, 11];  
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(iv) degradation of organelles such as the plastidome, mitochondria, and peroxisomes 
[11]; (v) extensive vacuolation (i.e., appearance of a large vacuole) [12]; (vi) some-
times, development of ricinosomes concomitantly with the progression of nuclear 
DNA fragmentation [13, 14]; and (vii) contribution of nucleases and ROS [15, 16]. 
At the end of PCD, the cell is completely digested, and the remaining protoplast is 
surrounded by the cell wall (CW), which finally becomes disorganized and disinte-
grates in a coordinated and regulated way [17]. Because plants have CWs, they have 
developed their own PCD process, thus not requiring the apoptotic regulators and 
phagocytic processes present in animal cells.At the cellular level, plant PCD can be 
non-autolytic or autolytic (i.e., formation of large lytic vacuoles and rapid clearance 
of cytoplasm due to tonoplast rupture and the release of active hydrolases) [18]. 
Thus, developmental PCD (dPCD) is autolytic and is critical for many vegetative 
and reproductive processes [2, 19, 20]. However, environmental PCD (ePCD) is 
non-autolytic and is involved in responses to biotic and abiotic stresses. In this latter 
form of PCD is involved the hypersensitive response (HR), which prevents the 
growth and spread of pathogens into healthy tissues [21–23]. Recently, it has been 
suggested that dPCD and ePCD are characterized by separate regulatory pathways. 
In fact, a conserved core of transcriptionally controlled dPCD-associated genes has 
been defined [24]. Because plants and animals have different molecular mecha-
nisms for PCD, an evolutionary parallelism of PCD pathways in plants and animals 
has been postulated [25].

The involvement of PCD has been described in various plant life processes, 
including the emptying of xylem tracheary elements [26], aerenchyma formation 
[25, 27], and dynamic turnover of the root cap [28]. In addition, PCD is an integral 
part of the seed development and germination (i.e., dPCD), during which cells of 
the integuments, nucellus, suspensor, and endosperm face death [5, 6]. The fol-
lowing text presents an update on the substantial progress that has been made to 
our understanding of PCD through the life of the seed, an entity that represents 
the dispersal unit of the spermatophytes securing their survival and perpetuation. 
The role of papain-type KDEL-Cys-endoproteases (PLCPs), vacuolar processing 
enzymes (VPEs) and nucleases, is carefully reviewed.

2.  The role of plant-specific KDEL-Cys-endopeptidases in seed 
development and germination

2.1 Ricinosomes

Cys-endopeptidases (Cys-EPs) are the most abundant group of proteases 
responsible for degradation and the mobilization of storage proteins (SPs), being 
the SPs of seeds the most affected [29]. Cys-EP is a member of a unique group 
of papain-type Cys-EPs found specifically during senescence. The ER-derived 
vesicles (e.g., protein bodies, glyoxysomes, and ricinosomes) accumulate in seeds, 
among other compounds, specific SPs, (e.g., prolamin and zein) and KDEL-tailed 
and papain-type proteases [30, 31]. The SPs’ accumulation process is mediated 
by ER chaperones such as the luminal binding protein (BiP) and protein disulfide 
isomerase (PDI). Interestingly, BiP can function either as a negative or a positive 
modulator of PCD events and also participate in innate immunity. Besides, in the 
seeds of castor bean, the immature 11S globulin was aggregated and then packaged 
in vesicles from ER [32]. That is, the ER-derived vesicles are thought to function as 
repositories of specific proteins until they are required for the cellular metabolism.

The ricinosomes (Figure 1) are spherical plant-specific organelles that have 
been firstly documented in senescing germinating endosperms of castor bean 
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[30, 33–35]. They are present prior to the appearance of other subcellular changes 
related to PCD and appear at the beginning of PCD and deliver large amounts of 
papain-type Cys-EPs in the final stages of cellular disintegration [13]. The ricino-
somes contain large quantities of a 45-kDa pro-Cys-EP with a C-terminal KDEL 
(ER retention signal), and they are specifically for plant PCD [30, 36]. The ricino-
somes are surrounded by a single ribosome-studded membrane and are directly 
sorted toward vacuoles through a Golgi-independent pathway to get involved in 
the PCD. These vesicles bud off from the ER in senescing tissues concomitantly 
with the progress of nuclear DNA fragmentation and have Cys-EPs as marker 
enzymes [37, 38]. KDEL-Cys-EPs are synthesized as inactive or weakly active 
pre-proenzyme which usually include a KDEL and an auto-inhibitory pro-domain 
that is cotranslationally transferred into the ER and then stored in ricinosomes 
because the pro-domain prevents premature activation of the protease [39]. Upon 
cytosolic acidification due to the LV collapse, the KDEL-Cys-EPs autocatalytic 
activation occurs [40]. This activation has been confirmed by in vitro acidification 
experiments of isolated ricinosomes and implies the cleavage of the N-terminal 

Figure 1. 
Ultrastructure of ricinosomes purified from 5-day-old castor bean endosperm and immunolocalization of their 
marker enzyme Cys-EP. Electron micrographs (a, ×4400; b, ×12,000) and immunocytochemistry by using α-CysEP 
(c, ×12,000). Scale bar: a = 1.0 μm; b and c = 0.5 μm. From Schmid et al. [30] with permission of PNAS (USA).
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pro-peptide and the C-terminal KDEL motif. The presence of mature Cys-EP is 
consistent with the loss of tonoplast integrity. The mature and enzymatically active 
KDEL-Cys-EPs exhibit unusual broad substrate specificity (Figure 2A). This 
characteristic is due to the fact that the active site accepts a wide variety of amino 
acids, including proline and glycosylated hydroxyproline (e.g., extensions) from 
the glycoproteins of the CW [41]. When ricinosomes disintegrate and release their 
content into the cytoplasm, the cells that contain them are going to die [13, 14, 42]. 
More specifically, these ER vesicles are present prior to the appearance of other 
subcellular changes related to vacuolar cell death, one of the two classes of PCD 
previously defined [13, 35, 42, 43]. Interestingly, the ricinosomes, but not the 
enzymes within them, have also been implicated in the PCD of Solanum lycoper-
sicum [35]. Likewise, anther dehiscence in tomato has also been linked to dPCD, 
and accumulation of ricinosome-like vesicles and the dPCD-associated SlCys-EP 
has been observed in the dehiscence zones of tomato anthers along with nuclear 
condensation and cytoplasmic retraction [13]. In year 2014, the first evidence for 
the existence of ricinosomes in Arabidopsis has been documented [44].

2.2 Involvement of papain-like KDEL-Cys-EPs in seed life

Papain-like Cys-EPs (PLCPs; often called cathepsins in animals) are essential 
and central hubs of plant immunity, germination, development, and senescence 
[45, 46]. Thus, when activated, PLCPs induce a broad spectrum of defense 
responses, including PCD [46]. On the other hand, PLCPs constitute one of the 
most abundant groups of the proteases responsible for the degradation and mobi-
lization of SPs in seeds [47]. Their role during germination has been reported in 
a wide range of both monocot and dicot plants [48]. PLCPs in plants are divided 

Figure 2. 
Maturation, activation, and involvement of papain-type KDEL-Cys-EPs (A) and γVPE (B) in plant 
PCD. Endoplasmic reticulum (ER), N-terminal pro-peptide (NTPP), self-inhibitory C-terminal pro-peptide 
(CTPP), signal peptide (SiP), and storage protein (SP) (see text for more details).
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into nine subfamilies. Thus, 32, 41, and 45 PLCPs’ members have been identified in 
Arabidopsis, barley, and rice, respectively [49]. PLCPs have no structural relation-
ship to the caspases, and its natural competitive and reversible inhibitors are the 
phytocystatins which are evolutionarily well conserved [50]. Recent results support 
the bifunctional ability of carboxy-extended phytocystatins in regulating legu-
main proteases via its carboxy-extended domain and PLCPs by its amino-terminal 
domain [51]. The activities of phytocystatins and PLCPs need to maintain a rela-
tively balanced level to ensure the normal seed germination [29].

KDEL-tailed Cys-protease SH-EP is the first Cys-EP found to have a KDEL tail 
in spite of the fact that the protease localizes in the protein storage vacuoles [52]. 
KDEL-tailed protease-accumulating vesicles in germinating mung bean (Vigna 
mungo) cotyledons are similar to ricinosomes in that they accumulate the KDEL-
tailed cysteine protease SH-EP [53, 54]. During the seeds’ life, the ricinosomes 
accumulate PLCPs for the degradation of seed storage materials in both cotyledons 
and endosperm [30, 53]. Upon cell death, the content of ricinosomes (i.e., PLCPs) 
is released into the cell corpse where the proteinases are activated and proceed to 
degrade any remaining protein for the growing seedling in the case of nutritive 
seed tissues. Alternatively, PLCPs can also digest CW extensions in the final stage 
of PCD when the cell collapses and tissue breaks down [55]. Thus, the absence of 
ricinosomes during seed development (e.g., perisperm, integuments, chalaza, and 
pericarp) may be due to the fact that the CWs remain intact until germination, at 
which time these tissues are finally dismantled [56]. Interestingly, area micropylar 
of Chenopodium quinoa seeds does not have ricinosomes [6, 56]. KDEL-Cys-EPs are 
unique in digesting the extensions that form the basic scaffold for CW formation 
[55] (Figure 2A). So, KDEL-CPs like AtCEP1 are considered as late-acting proteases 
that digest CW proteins during the final stages of PCD and tissue remodeling after 
cellular disintegration [55, 57].

During seed germination, SPs are degraded to nourish the growing seedlings. 
This process is mainly triggered by PLCPs [29]. As a example, during both Zea mays 
and Triticum aestivum germination, the activity of Cys-EPs increases up to 90% of 
the total proteolytic activity. During barley seed germination, PLCPs were secreted 
from the scutellar and the aleurone layers to the endosperm to degrade the endo-
sperm Sps [58]. Recently, the results of overexpression and silencing of HvPap-1, a 
gibberellin (GAs)-induced PLCP gen, indicated that PLCPs are important factors in 
mobilizing SPs to promote seed germination, and their expression and/or activ-
ity are regulated by GAs, ABA, and cystatins [49]. Ricinosomes and nuclear DNA 
are fragmented during PCD. In Arabidopsis, three KDEL-Cys-EPs called AtCEP1, 
AtCEP2, and AtCEP3 have been expressed in tissues undergoing PCD. Thus, the 
first gen is expressed in senescing ovules, the second in the vascular vessels, and 
the third in maturing siliques [55, 57–59]. Recently, AtCEP2 storing ricinosomes 
in Arabidopsis seedlings seems to be—like ER bodies—exclusively localized in 
epidermal cells [44]. The accumulation of KDEL-Cys-EPs and the appearance of 
ricinosomes may predict the occurrence of PCD during late seed development 
[37]. The ricinosomes containing pro-Cys-EP have been observed in anther tissues 
prior to PCD [13] and in the endosperm cells of imbibed tomato seeds (Solanum 
lycopersicum) where the reserve mobilization, Cys-EP accumulation and processing, 
is GA-induced [60]. Cereal aleurone PCD is controlled by phytohormones: the PCD 
promoting GAs and the antagonistically acting ABA [61]. The presence of ABA- and 
GA-responsive genes encoding proteases confirms their notable role in regulating 
the growth of cereal seeds [5, 62]. The endosperm in cereal seeds undergoes PCD 
during development, and, with the exception of the aleurone layer, is a dead tissue 
at maturity. In Ricinus communis the KDEL-Cys-EPs and ricinosomes were detected 
for the first time not only in the senescing endosperm of germinating seeds [30] but 
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also in the nucellus of seeds during maturation [36, 63]. Ricinosomes with the pro-
form of KDEL-Cys-EPs are also present in imbibed tomato seeds [60]. The presence 
of KDEL-Cys-EPs has been also demonstrated in (i) the hypogeous cotyledons of 
Vicia sativa [64]; (ii) the seed coat of Phalaenopsis [65]; (iii) the megagametophyte 
cells after germination of Picea glauca seeds [66]; (iv) the epigeous cotyledons of 
Vigna mungo [52]; (v) the senescing endosperm of germinating castor bean seeds 
[30, 67]; (vi) the nucellus in maturing castor bean seeds, where the endosperm 
expands at the expense of the nucellus cells [36]; (vii) the endosperm cells of 
imbibed tomato seeds [60]; and (viii) the germinating mung bean (Vigna mungo) 
cotyledons in that they accumulate the KDEL-tailed cysteine protease SH-EP [53]. 
Recently, an attractive PLCP protein called NbCP14 was characterized in Nicotiana 
benthamiana. This autocatalytically activated enzyme seems to be a Cath-H-like 
protease with great importance for the execution of PCD during plant develop-
ment [68]. Previous to the NbCP14 identification, NtCP14 was also described in 
Nicotiana tabacum as a key component in triggering of PCD during the early stages 
of embryogenesis [69]. In the tobacco suspensor, PCD is antagonistically regulated 
by NtCP14 and its cystatin inhibitor NtCYS. Both silencing of NtCP14 and overex-
pression of NtCYS delay PCD [69].

3. Entailment of vacuolar processing enzymes with plant PCD

The cellular vacuoles execute essential functions for plant growth, development, 
and adaptation to biotic and abiotic stresses. In the absence of macrophages, the 
unwanted material for plant PCD is only degraded through vacuole-released hydro-
lytic enzymes, located in LVs (acidic pH) [70]. The formation of LVs involves the 
coalescence of protein storage vacuoles (PSVs, with a pH near neutrality), vacuolar 
lumen acidification, and intracellular material mobilization (i.e., cytoplasm engulf-
ing). Only cells with high vacuolation resulted in PCD [12]. In brief, PSVs contain 
large amounts of defensive and SPs to be used during seed germination, while LVs 
contain hydrolytic enzymes [50]. Therefore, the degree of vacuolation can reflect 
the intensity of the PCD process. A clear example of vacuolization takes place in the 
aleurone cells during cereal seed germination [5, 12]. Mature cereal seeds consist 
mainly of dead cells, and only the embryo and aleurone layer are still alive. The 
PCD of aleurone cells is an essential process for the successful completion of post-
germination storage mobilization, which is associated with the vacuole destruction 
[70]. Vacuolation and PCD of aleurone cells are initiated near the embryo and then 
gradually reach the distal area of the embryo [5, 12]. Similarly to the micro- or 
macroautophagy processes, the disruption of LVs and the concurrent release of 
various hydrolytic enzymes indicate that the PCD has been triggered [12]. The 
bursting of the tonoplast leads to a rapid cytoplasmic acidification and hydrolysis of 
the remaining cellular contents [71]. So much so, this vacuolar collapse needs to be 
rigorously organized to achieve PCD at a suitable timing [72]. Because the vacuolar 
collapse releases hydrolytic enzymes, the vacuole rupture is used as an indicator of 
PCD initiation [73]. Therefore, the tonoplast breakage is considered a point of no 
return during plant PCD [2]. In brief, the tonoplast rupture and vacuolar collapse 
are two important features of plant PCD. Finally, the plasmalemma integrity is 
maintained until the vacuole collapses [12, 74–76].

Plant PCD is accompanied by the upregulation of a heterogeneous group of 
vacuolar hydrolytic enzymes, being the vacuolar processing enzymes (VPEs), 
also called legumains, closely involved in its activation. VPEs originate from 
prokaryote pro-legumains. The VPEs have properties similar to animal caspases 
and fulfill relevant vacuolar functions in seeds [77]. Nevertheless, VPEs are 
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directly involved in plant development and environmental stress responses [50]. 
Earlier studies in pumpkin seeds have demonstrated the identification of VPE 
as a vacuolar Cys-EP protein probably responsible for degradation of vacuolar 
SPs during germination [78]. Thus, the VPEs in monocots (i) are required for 
processing of glutelins that are the dominant seed SPs in rice [79], and (ii) they 
also process other seed SPs such as albumins, globulins, and ricins in storage 
vacuoles in seeds of pumpkin and castor bean [80]. However, VPE deficiency 
does not affect storage protein degradation in germinating seeds [81]. VPE was 
the first identified enzyme in plants with both caspase-like activity and activity 
against caspase-1-substrate [82]. Recent review contains the contributions of 
VPEs to plant PCD and its role in vacuole-mediated cell death [83]. Thus, the 
VPE4 expression pattern in the developing pericarp of Nicotiana benthamiana 
coincides with the profile of the caspase-1-like activity [84, 85]. Once vacuolar 
hydrolytic enzymes are activated, the proteolytic cascade leading PCD begins 
[70, 71]. However, although it is beyond question that VPE is an initiator of the 
vacuolar processing system, the mechanism by which VPE controls the vacu-
olar breakage and the execution of a variety of plant PCD is still unclear. In this 
regard, it was suggested that the disruption of the vacuole may be mediated by 
VPE in conjunction with protein kinases [86]. It has been also proposed that VPE 
and cathepsin-B (Cath-B), which have, respectively, caspase-1-like and caspase-
3-like activity, may promote coalescence, accelerating the process of vacuolation 
and thus triggering vacuolar collapse during the PCD [87, 88]. However, no 
research yet has integrated the action of both VPE and Cath-B in the PCD path-
way. VPE of N. benthamiana has been reported to mediate virus-induced HR by 
regulating tonoplast collapse [87, 89]. The PCD triggered by vacuolar collapse is 
unique to plants and has not been seen in animals (Figure 2B). As a result of this 
collapse and the liberation of active vacuolar hydrolases, the chromatin structure 
crumbled, the DNA is fragmented, and the plasma membrane disabled. Finally, 
the disintegration of the nuclear envelope starts [90], and the protoplast rapidly 
collapses and dies [5, 91].

Autophagy is a process known to mediate the degradation of residual proteins 
and aggregates of insoluble proteins and lipids and to remove damaged organelles. 
Likewise, autophagy is essential for vacuolation of cells undergoing developmen-
tal PCD and is activated by type-II metacaspases (McIIPa) [92]. Thus, during 
spruce embryogenesis McIIPa is transported from cytosol to the nucleus, where 
its presence is correlated to DNA fragmentation. These data reinforce that McIIPa 
is directly involved in a pathway which generates nuclear degradation, an event 
present in most programs of eukaryotic PCD. This McIIPa metacaspase can play 
a role on the cleavage of nuclear proteins [71, 93]. Besides metacaspases, VPE has 
been also described as another class of Cys-EPs involved besides in different types 
of PCD and also in development and immunity [70, 87, 94, 95]. The VPE contains 
a His-Cys catalytic dyad and cleaves a peptide bond at the C-terminal side involv-
ing an Asn residue, hence the name of asparaginyl endopeptidases [96]. VPEs are 
evolutionarily related to caspases and preferably localized in vacuoles (i.e., maximal 
activity at acidic pH) and are specific for plants [38, 70, 97]. Therefore, the plants 
might have evolved a VPE-mediated vacuolar system as a cellular suicide strategy. 
Plants encode at least four functional isoforms of VPEs, which are located in the 
vacuole ([77] and refs. therein). Plant VPEs are classified into vegetative, embryo-
genic, and seed-expressed types [98–100] (Figure 3). The genome of tomato has 
14 VPE genes [95]. However, the genome of Arabidopsis has four VPE genes: α-VPE 
and β-VPE play a key role in the processing of SPs during seed maturation [80, 94], 
while γ-VPE and δ-VPE are expressed at early stage of seed development being 
involved in the formation of the inner integuments of the seed coat [101–103]. 
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Interestingly, in spite of delayed vacuolation, Arabidopsis γ-VPE mutants have a 
normal germination phenotype. This suggests that vacuolation does not trigger, but 
rather is a consequence of germination [104].

The δ-VPE was originated early during dicotyledonous diversification [103]. 
Regarding the maturation of γ-VPE in A. thaliana (Figure 2B), it is to know that 
the N-terminal signal peptide of VPE pre-protein precursor is cotranslationally 
removed in the ER to produce VPE pro-protein. The transfer of pro-protein precur-
sor to the acidic vacuole causes the self-catalytic conversion into an intermediate 
isoform by removal of the C-terminal inhibitory pro-peptide. The subsequent 
removal of the N-terminal pro-peptide produces the mature γ-VPE [96]. In the 
case of the seed SPs, the VPEs’ vacuolar maturation is of major importance, as it 
conditions the establishment of vigorous seedlings [105]. A quadruple-KO mutant 
with no detectable VPE activity strongly suggests that there are no other proteases 
with a similar activity in Arabidopsis [106]. When the VPE genes were knocked out, 
no characteristics belonging to cell death were observed [12]. VPE orthologs are 
widely distributed in land plants including mosses (e.g., Physcomitrella patens) and 
ferns (e.g., Ceratopteris richardii) [83]. In rice, five VPE (OsVPE) genes are found 
[83, 107]. Phylogenetic analyses and gene expression studies have demonstrated 
that OsVPE2 (OsaLeg2) and OsVPE3 (OsaLeg3) are involved in H2O2-induced PCD 
and in salt-stressed seeds, whereas OsaLeg1, OsaLeg4, and OsaLeg5 would act as 
vegetative-related legumains [83]. The barley (Hordeum vulgare) genome contains 

Figure 3. 
Dendrogram of VPEs of several plant species. VPEs (access numbers are within parentheses) were separated 
into three groups: βVPE (seed type), α/γVPE (vegetative type), and δVPE (embryogenesis type). Signal peptides 
were excluded from the sequences. Adapted mainly from Nakaune et al. [103] and other recent publications.
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eight VPE genes (HvVPEs) which are differentially expressed during vegetative and 
reproductive development [98].

The first increase in a cascade of caspase-1-, caspase-3-, caspase-4-, caspase-6-, 
and caspase-8-like activities in the endosperm of Hordeum vulgare seeds may be 
related to PCD in the nucellus [84, 85, 108]. The importance of pericarp PCD for 
proper development of the endosperm has been recently described [84]. The increase 
in caspase-1-like activity may be acquired by HvVPE2a (called nucellain), HvVPE2b, 
and HvVPE2d proteases which is exclusively expressed in nucellus and nucellar pro-
jection. The expression patterns of the HvPhS2 and HvPhS3, which are exclusively 
active in the nucellar projection, coincide with the caspase-6-like activity profile in 
the early endosperm fraction indicating that HvPhS1 and HvPhS2 may be responsible 
for the caspase-6-like activity [84, 85]. Caspase-1-, caspase-3-, and caspase-6-like 
activities are also localized in the degenerating nucellus of Sechium edule [109]. 
In the degenerating nucellar tissue of castor bean, proteomic analyses identified 
multiple proteases and protease inhibitors [108]. The MADS-box transcription factor 
called MADS29 has been suggested to promote nucellar degeneration through the 
regulation of Cys-EP expression in rice and maize [61]. The α, β, γ, and δ-VPEs of 
Arabidopsis appear to share no direct one-to-one relationships of orthology with VPEs 
from gymnosperms. The VPE protein and its transcripts increase at the beginning of 
the HR reaction in the tobacco leaf, in which the cells showed typical PCD character-
istics, and both the VPE inhibitor ESEN-CHO and the caspase-1-like activity inhibi-
tor Ac-YVAD-CHO inhibit the appearance of PCD [98, 99]. These and other recent 
results [100] reaffirm that VPE is a protease with caspase-1-like activity in plants. 
VPE activation was started once the leaves of tobacco were infected with the TMV, 
leading to vacuole disruption and activation of PCD to prevent the proliferation of 
virus [70, 87]. Likewise, PCD during HR is critical for the removal of biotrophic 
pathogens, whose growth depends on the living host tissues [87, 99]. Together, VPE 
deficiency suppresses vacuolar collapse, leading to mycotoxin-induced cell death 
[83]. Interestingly, the results of Zhan’s group using the NbVPE silencing suggest that 
VPE plays an important role in elicitor signaling in plants of Nicotiana benthamiana 
[89]. Finally, and based on the results to date, (i) transcriptome sequence informa-
tion has permitted the identification of new VPE genes than having a cyclization 
function rather a protease function ([77] and refs. therein), and (ii) VPEs and other 
vacuolar enzymes once released from LV to cytosol through a barely known route 
promote a VPE-mediated vacuolar disruption and constitute a fundamental piece in 
the plant PCD puzzle whose organization is far from unravelling.

4. Nucleases: the next frontier for knowledge of PCD in plants

As shown throughout this review, the PCD process involves the selective 
removal of unwanted cells and the mobilization of cellular debris, including the 
products of DNA fragmentation, which is a known hallmark of PCD [6, 17, 93, 
110, 111]. In plants, genomic DNA is actively degraded during dPCD (e.g., during 
seed coat formation [103] and barley pericarp development [112]). Although the 
enzymes directly involved in nuclear dismantling are unknown, there is increas-
ing evidence linking proteases and nucleases to plant PCD [20]. What is known is 
that during PCD, different nucleases are induced, including a set of S1-type (Zn+2 
dependent) endonucleases that are synthesized regardless of tissue type [113, 114]. 
While these nucleases are cytoplasmic and lack a canonical nuclear localization 
signal, upon induction of cell death, they become nuclear [115]. Thus, nucleases 
are tightly associated with different plant PCD processes, including HR [116], 
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endosperm development aleurone cell death [4, 117], and xylogenesis [118]. It has 
been hypothesized that PCD-associated nucleases help to recycle DNA from dead 
cells by degrading it into smaller fragments so that it can be taken up to be reused 
by neighboring cells. In cereal seeds, the progression of endosperm PCD is accom-
panied by an increase in nuclease activity and the degradation of nuclear DNA at 
internucleosomal sites [4, 115]. PCD in the endosperm precedes PCD in the suspen-
sor, suggesting that the endosperm and suspensor either receive different chemical 
signals or interpret them differently [119]. A nuclear-localized GA-induced nuclease 
was found to be active just prior to the appearance of DNA laddering in wheat aleu-
rone cells undergoing PCD. Interestingly, this GA-induced nuclease is not detected 
in GA-insensitive mutants or when GA synthesis is inhibited [120]. Furthermore, 
aleurone layers that have not been treated with GAs do not complete PCD.

Foundational biochemical experiments revealed that plant nucleases are local-
ized to a variety of different cellular spaces [5, 116, 120, 121]; for example, in barley 
aleurone, nuclease activity was found in the ER, Golgi, protein body, and vacuole 
[122]. A nuclease that is a promising candidate for involvement in PCD is the bifunc-
tional nuclease-1 (BFN1). In Arabidopsis, the BFN1 gene is induced during senes-
cence, abscission, and dPCD [123]. Recent studies revealed that the BFN1 protein, 
which possesses RNase and DNase activity, is responsible for rapid cell-autonomous 
corpse clearance and DNA fragmentation during root cap cell death [118, 124]. 
TUNEL assays showed a delay in nucleic acid degradation in both the nuclei and the 
cytoplasms of BFN1 mutants [123]. ORE1, a NAC (ANAC092) transcription factor 
that positively regulates leaf senescence, has been demonstrated to control the BFN1 
expression [125]. ORE1 is located downstream of the ethylene signaling cascade. 
Considering this data, it is not surprising that BFN1 is an accepted marker of both 
plant senescence and PCD. Another nuclease, known as Zinnia endonuclease-1 
(ZEN1), which shares a number of similarities with BFN1, has been directly impli-
cated to function in PCD. ZEN1 is localized to vacuoles, which collapse before DNA 
is degraded. ZEN1 was demonstrated to be responsible for nuclear DNA fragmenta-
tion during PCD associated with xylem development [126]. Furthermore, silencing 
ZEN1 prevented the degradation of nuclear DNA, but did not affect vacuole collapse 
in a Zinnia elegans cell suspension culture. While these findings support the notion 
that ZEN1 may play a central role in plant DNA fragmentation [126], evidence exists 
that suggests that multiple nucleases are involved in plant PCD [15].

Given the limited number of nucleases known to be involved in PCD, it has proven 
to be a challenge to identify these PCD-associated endonucleases. Once identified, 
other hurdles remain. Based on a study of the role of the nucleases in the process of 
leaf senescence [127], future studies must explore whether the nuclease is involved in 
cell death in different tissues in a same plant or in different processes (e.g., fertiliza-
tion, zygotic embryogenesis, and seed dormancy and germination), is subcellularly 
localized to the nucleus, or possesses a PCD phenotype—an activity that involves 
creation of a mutant for the nuclease followed by experiments to observe the impact 
on genomic DNA during PCD. Additionally, these studies must consider how differ-
ent nucleases work together to degrade nuclear and organelle DNA.

5. Concluding remarks and future perspectives

Although the biochemical and molecular understanding of plant PCD has 
increased over the last decade, the mechanisms of action are still very limited and 
restricted to determine species and some organs and cell compartments. Given 
its importance, the origin and evolution of genes involved in PCD still need to be 
resolved. For example, all through seed evolution, PCD has played a fundamental 
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role. In my opinion, eight important goals are key for the best knowledge of plant 
PCD: (i) the molecular components used in its execution, (ii) the components 
that have been conserved during evolution, (iii) specific components of PCD, 
(iv) temporal and spatial expression of Cys-EPs involved in PCD, (v) subcellular 
Cys-EPs localization and interaction with other proteins, (vi) how the different 
proteases orchestrate PCD and if there is functional redundancy between the dif-
ferent gene families, (vii) activation of relevant Cys-EPs, and (viii) knowledge of 
the in vivo protein substrates. An example that justifies what has been said previ-
ously can be that VPEs are proposed to control indirectly tonoplast rupture during 
PCD. However, the detailed mechanism by which VPEs control tonoplast rupture is 
still diffuse. Together, the intense research carried out in the last decade on PCD in 
seeds is a strong scientific support to understand the coexistence between death and 
life.
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