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Chapter

Iron Oxide Nanoparticles:
An Inorganic Phosphatase
Xiao-Lan Huang

Abstract

Phosphorus is one of the most important macronutrients for the primary
production. The transformation of dissolved organic phosphorus in the environ-
ment and its contribution to biological production in the different ecosystems is still
a mystery. Recently, it was demonstrated that phosphate ester can be rapidly
hydrolyzed in solutions containing iron oxide nanoparticles with enzyme kinetics.
The catalyst is sensitive to temperature and pH changes and inhibited by tetrahedral
oxyanions with an order of PO4 < MoO4 < WO4. The oxo-Fe structure in the iron
oxide nanoparticles, like the metal center of natural phosphatase (e.g., purple acid
phosphatase, PAP), might contribute to the observed catalytic activity. Iron oxide
nanoparticles are very common and widely exist in the current earth environment,
and phosphate esters are the main component of dissolved organic phosphorus in
soil and waters. It is expected that iron oxide nanoparticles in aqueous environ-
ments, as an inorganic phosphatase, play a critical role for the phosphorus trans-
formation from the view of the phosphorus cycle.

Keywords: enzyme, hydrolysis, iron oxide, nanoparticles, phosphate ester,
phosphorus cycle

1. Introduction

Phosphorus is one of the most important macronutrients for the primary
production, which is primarily taken up by plants in the form of phosphate ions
(HPO4

2� and H2PO4
�). Most of the knowledge of phosphorus in the environment,

including the phosphorus geochemistry cycle, comes from inorganic phosphates
[1–4]. The dissolved organic phosphorus transformation and its contribution to the
biological production in the different ecosystems, e.g., soil, lake, estuary and ocean,
is still a mystery [5–7]. Recently some limited works have indicated that different
phosphate esters, especially monoesters are the main components in the dissolved
organic phosphorus in soils [8–11] and waters [12–17], which might be an important
source of P phytoavailability and a potential source of water eutrophication. The
phosphomonoesters in supra-/macro-molecular structures were found to account
for the majority (61–73%) of soil organic P in diverse agricultural soils across the
world and the monoester P pool was estimated to account for 33% of the total
phosphorus (587 � 32 kg ha�1) by a recently review [18].

In general, the phosphate ester hydrolysis is catalyzed by various enzymes,
including purple acid phosphatases (PAPs), which have been identified and
characterized from plant, animal and bacterial organisms [19]. On the other hand,
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several studies have already demonstrated that the phosphate ester can be hydrolyzed
with the interaction of minerals in the aqueous environments [5, 20–25]. Here,
the results of laboratory study on the hydrolysis of phosphorus esters, promoted
by the iron oxide nanoparticles in water, including the aged nanomolar inorganic
iron ion solutions [26–28], were summarized. Additionally, the potential role of
inorganic iron oxide nanoparticle for the phosphorus cycles due to the intrinsic
phosphoesterase activity is postulated.

2. Promotion effect on the phosphate esters hydrolysis

Usually, phosphate ester in water is quite stable. As an example, hydrolysis
Glucose 6-phosphate (G6P), a very common phosphate ester in nature, is a slow
process without enzyme in the medium of deionized water (DIW), and becomes
even slower in the fresh nanomolar inorganic iron solutions. Inorganic orthophos-
phate (Pi) in the DIW with the addition of 100 μM G6P at room temperature
(22 � 2°C) was initially 0.90 � 0.04 μM, which became 4.86 � 0.26 and
10.35 � 1.19 μM at 4 and 12 days, respectively. The corresponding Pi in the fresh
nanomole inorganic iron solutions (0.5–50 nM Fe(NO3)3) were 1.35 � 0.09 and
2.55 � 0.15 μM.

After G6P was added into an aged 14-month 16.5 nM Fe(NO3)3 solution
(pH 6.30) at room temperature, made by acid-forced hydrolysis [27], the Pi was
rapidly released (e.g. the initial 20 μM G6P, as presented in Figure 1). Like metal
ions as well as natural and biomimetic enzymes, the kinetics of G6P hydrolysis in
the aged iron solution can be described as a pseudo-first-order reaction for a fixed
concentration of G6P [29–36]. For the initial 20 μM G6P, the decrease in G6P
concentration, [G6P]t, due to its hydrolysis can be expressed as a function of
hydrolysis time, t, as

log G6P½ �t ¼ �1:31� 10�5t� 4:718 r2 ¼ 0:999
� �

(1)

where [G6P]t is in M and t is in second.

Figure 1.
Hydrolysis of 20 μM G6P in a 16.5 nM Fe(NO3)3 solution aged 14 months at room temperature (22 � 2°C).
(a) Time courses of formation of phosphorantimonylmolybdenum blue complex from phosphate released from
hydrolysis of 20 μMG6P at times of 0, 1, 3, and 6 h, respectively; (b) concentration of Pi and G6P during G6P
hydrolysis; and (c) pseudo first-order reaction kinetics of G6P.
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The corresponding reaction rate constant (k) was 3.02 � 10�6 s�1, and the
half-life (t1/2) was 6.38 h. Similar to the initial 20 μM of G6P, the Pi concentration
of a initial 100 μM of G6P in the aged inorganic iron solution at 1, 3 and 6.7 h was
4.95, 10.74 and 20.62 μM, respectively. The corresponding k was 8.83 � 10�6 s�1,
and the t1/2 was 21.8 h. It is highlighted that these k in the aged iron solution
were much higher than the previously reported rates in the presence of the
fresh unaged nanomolar inorganic iron [26] and millimole metals [30–32] solutions.

Like aged inorganic iron solution, the concentration of phosphate esters and
condensed inorganic phosphate decreased, and inorganic orthophosphate (Pi)
increased in a solution bearing iron oxide (IO) nanoparticles, which consists
of a dialysis membrane tube (DMT, e.g., Spectra/Por 1 membranes, molecular
weight cut-off (MWCO) 6000–8000 Da) filled with iron oxide (DMT-IO). The
iron oxide (D) was synthesized by Fe(NO3)3 following the basic protocol of
Atkinson [37] and aged at 80°C [28]. The k for 100 μM G6P, Glycerol-2-phosphate
(3-carbon, G2P), and three energy metabolism compounds, i.e., adenosine
monophosphate (AMP), adenosine diphosphate (ADP), adenosine triphosphate
(ATP), as well as two inorganic condensed phosphates, i.e., polyphosphate
(poly-Pi), and pyrophosphate (PPi) at room temperature (22°C) was
2.69 � 10�5, 1.68 � 10�5, 1.54 � 10�5, 5.73 � 10�6, 5.76 � 10�6, 3.8 � 10�6,
and 5.09 � 10�6 s�1, respectively. The corresponding t1/2 of these phosphorus
esters and inorganic condensed phosphates was 7.1, 11.5, 12.5, 33.6, 33.4, 50.7,
and 37.8 h, respectively.

Measured k of the initial 20 μM G6P with different sources of iron, either the
aged inorganic iron solutions or the solutions bearing inorganic iron oxide
nanoparticles (DMT-IO), are listed in Table 1. The half-life for aged 4-month Fe
(NO3)3 (16.5 nM), FeCl3 (10 nM) and Fe(ClO4)3(10 nM) was 37.8, 58.6 and 78.4 h,
respectively, whereas the half-life of IO from the same source (Fe(NO3)3, JT
Baker), aged at 5–80°C was 11, 2.7, 3.2 and 2.8 h, though they were in the same
order of magnitude. The same patterns were observed for the ATP as well [28].
These results further indicate, as expected, that the behavior of catalysis depends on
the sources of iron oxides nanoparticles in solutions—whether FeCl3, or Fe(NO3)3,
and even on the different manufacturers, as well as with the different aging tem-
peratures for IO (5–80°C) [37, 38]. No clear relationships between ferric ion (III)
sources, age processing, and catalytic activity, with the hydrolysis rate constant,
were observed.

These inorganic iron solutions also have the same promotion effects on
hydrolysis of different sugar phosphates, including G2P, ribose-5-phosphate
(5-carbon, R5P), and fructose 1-phosphate (6-carbon, F1P) (Table 2). As expected,
the promotion effect was also found on the hydrolysis of AMP, ADP and ATP, and
inorganic condense phosphates (poly-Pi and PPi) as well as the RNA model
compound (4-nitrophenyl phosphate ester, pNPP). However, no promotion effects
were observed for the hydrolysis of phosphonates (C-P bonded compounds, e.g.,
2-aminoethylphosphonic acid, phosphono-formic acid) and inositol
hexakisphosphate (IP6) (data not shown).

As expected, the catalytic activity is related to the soaked time of DIW
with DMT-IO and the nature of IO, which can be described by the hydrolysis
reaction rate constant. The kinetics of k of 100 μM G6P and ATP in three
different IOs is presented in Figure 2. These results can be explained by the
changes of the nanoparticles concentration in the water. It was expected that the
concentration of the IO nanoparticles in these solutions would initially increase
up to 10 days and then reach equilibrium. However, the total dissolved iron
concentrations in these solutions were still beneath the detection limits of
iron (0.1 nM) [39].
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3. Kinetics of hydrolysis phosphate esters

As presented in Table 2, the hydrolysis reaction rate constant at different initial
concentrations of phosphate esters in these aged inorganic iron salt solutions or
inorganic iron oxides solutions were not constant. Surprisingly, the k from 5 to 250
μM G6P in the 16.5 nM Fe(NO3)3 solution aged for 14 months at room temperature

Fe source Manufacturer Aged

time

(mo.)

Aged

temperature

(°C)

IO

nanoparticles

or total Fe

concentration

(nM)

20 μM G6P

k (10�6 s�1) t0.5 (h)

Iron oxide
nanoparticles
(IO)

Fe(NO3)3 JT Baker 0.25 5 A 16.9 11

Fe(NO3)3 JT Baker 0.25 22 B 70.3 2.7

Fe(NO3)3 JT Baker 0.25 50 C 59.5 3.2

Fe(NO3)3 JT Baker 0.25 80 D 106 1.8

FeCl3 JT Baker 0.25 25 E 13.8 14

Fe(NO3)3 Riedel-de
Haën

0.25 50 H 18.5 4.0

FeCl3 Riedel-de
Haën

0.25 50 F 27.4 7.0

Fe(NO3)3 Riedel-de
Haën

0.25 80 L 80.7 2.4

FeCl3 Riedel-de
Haën

0.25 80 G 54.1 3.6

Aged acidic
forced
hydrolysis
inorganic Fe
solution

Fe(NO3)3 JT Baker 14 22 16.5 30.17 6.4

Riedel-de
Haën

4 22 16.5 5.08 37.8

22 100 2.96 65.6

6 22 1000 18.77 10.3

Iron standard
solution

(metal Fe in
0.3 M HNO3)

JT Baker 4 22 1 2.38 81.0

2.5 4.85 39.7

7.5 7.22 26.7

50 6.38 30.2

100 6.55 29.4

200 6.58 29.2

500 8.14 23.6

1000 5.86 32.8

FeCl3 JT Baker 16 22 2 6.59 29.2

10 4.95 38.9

Riedel-de
Haën

4 22 10 3.28 58.6

100 0.83 231.9

FeClO4 Aldrich 4 22 10 2.46 78.4

100 0.61 318.3

Fe
(NH4)2(SO4)2

EM Science 16 22 16.5 9.49 20.3

aThe hydrolysis rate constant of 20 μM G6P in the DIW is 1.84 � 10�8 s�1, and the corresponding half time is 10,450 h.

Table 1.
Hydrolysis rate constant of 20 μM G6P in inorganic iron solutions.a
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Phosphate ester Fe source Initial OP

(μM)

Rate constant

k (10�6 s�1)

Half-life

t0.5 (h)

Glycerol-2-phosphate
(G2P)

Fe standard solution, 7.5 nM, 4 mo. 10 12.69 15.2

20 6.4 30.1

50 3.45 55.8

500 0.51 374.3

Fe(NO3)3, 1000 nM, 6 mo. 20 30.12 6.4

FeCl3, 2 nM, 16 mo. 20 5.29 36.4

Fe(NH4)2(SO4)2, 16.5 nM, 16 mo. 20 11.44 16.8

IO-D (made by Fe(NO3)3, aged a week at
80°C, soak 1 month at 22°C)

10 85.02 2.26

50 26.91 7.15

100 16.39 11.74

Ribose-5-phosphate
(R5P)

Fe standard solution, 7.5 nM, 4 mo. 10 13.92 13.8

20 8.15 23.6

Fe(NO3)3, 1000 nM, 6 mo. 20 25.19 7.6

FeCl3, 2 nM, 16 mo. 20 7.24 26.6

Fe(NH4)2(SO4)2, 16.5 nM, 16 mo. 20 16.16 11.9

Fuctose-1-phosphate
(F1P)

Fe standard solution, 7.5 nM, 4 mo. 10 8.66 22.2

20 5.25 36.4

Fe(NO3)3, 1000 nM, 6 mo. 20 17.08 11.3

FeCl3, 2 nM, 16 mo. 20 5.29 36.4

Fe(NH4)2(SO4)2, 16.5 nM, 16 mo. 20 8.5 22.6

Adenosine
monophosphate
(AMP)

IO-D (made by Fe(NO3)3, aged a week at
80°C, soak 1 month at 22°C)

10 79 2.44

100 15.4 12.5

250 6.2 31.1

Adenosine
diphosphate (ADP)

IO-D (made by Fe(NO3)3, aged a week at
80°C, soak 1 month at 22°C)

10 134 1.44

100 5.73 33.6

250 1.59 121

Adenosine
triphosphate (ATP)

IO-D (made by Fe(NO3)3, aged a week at
80°C, soak 1 month at 22°C)

10 61.5 3.13

25 30.2 6.38

100 4.4 43.8

IO-A(made by Fe(NO3)3, aged a week at 5°C,
soak 1 month at 22°C)

20 19.6 9.8

100 10.8 17.9

IO-B (made by Fe(NO3)3, aged a week at 22°
C, soak 1 month at 22°C)

20 40.4 4.8

100 8.46 22.7

IO-G (made by FeCl3, aged a week at 80°C,
soak 1 month at 22°C)

20 38.7 5.0

100 3.55 54.3

Polyphosphate
(poly-Pi)

IO-D (made by Fe(NO3)3, aged a week at
80°C, soak 1 month at 22°C)

10 67.5 2.85

100 3.8 50.7

250 0.39 492

Pyrophosphate (PPi) IO-D (made by Fe(NO3)3, aged a week at
80°C, soak 1 month at 22°C)

10 162 1.19

100 5.09 37.8

250 0.71 270

Table 2.
Phosphate ester hydrolysis in the different inorganic iron solutions.
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can be further described by the Michaelis-Menten equation (Figure 5a and b), as
the typical behavior of biocatalysts. This is contrast to previously reported promo-
tion effects by metals [30–32, 40] and minerals [20, 22, 23, 41, 42]. The maximum k
of G6P hydrolysis was about 1 nM s�1, or 3.6 μM h�1, and the Michaelis-Menten
constant (Km) was 13.7 μM of this aged inorganic iron solution.

1
v

¼ 9:985� 108 þ
1:371� 109

G6P½ �o
r2 ¼ 0:997
� �

(2)

In fact, the promotion effect of G6P hydrolysis can be extended to 2500 μM in
this aged iron solution with a k of 6.53 � 10�7 s�1, and t1/2 of 295 h. It should be
pointed out that the concentration of total phosphorus in the solution was 103

–105

higher than that of iron in the solution (e.g., 16.5 nM Fe and 2500 μM G6P).
The same patterns were also observed in the solution bearing inorganic iron

oxide nanoparticles. Like the aged inorganic iron solution, the k of various organic
phosphate esters or condensed phosphates at different concentrations were not

Figure 2.
Relationship between the soaked time of IO and hydrolysis rate of phosphorus in different DMT-IO solutions:
(a) 100 μM G6P, and (b) 100 μM ATP (for details of IOs see Table 1).

Figure 3.
Kinetics of hydrolysis of phosphate esters in inorganic iron solutions at room temperature (22 � 2°C). (a)
Double reciprocal (initial velocity and initial concentration of G6P) plot of G6P in the 14 month aged 16.5 nM
Fe(NO3)3 solution, (b) initial velocity of G6P hydrolysis (v0) as a function of the initial concentration of G6P
in the aged iron solution, and (c) Lineweaver-Burk plot of different phosphate compounds in a DMT-IO
solutions (IO-D).
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constant (Table 2). The catalytic activity of the different concentration of
phosphorus also can be described by the typical Michaelis-Menten equations
(Figure 3c). Based on the Lineweaver-Burk linear equation (1/V is a linear function
of 1/[S]), the Michaelis-Menten constant (Km) and maximum velocity (Vm), as well
as the range of concentration of phosphorous among these compounds, were deter-
mined (Table 3). Meanwhile, the catalysis activity was still observed even when the
total phosphorus esters exceeded the range of the Michaelis-Menten equations, as
with many of the natural enzymes, including the PAP [43].

It should further be pointed out that the similar enzyme kinetics (Michaelis-
Menten equations) were observed recently by many inorganic nanoparticles
studies, which have been described as nanozyme [44–47]. For example, Fe3O4 [44],
α-Fe2O3 [48], γ-Fe2O3 [49], γ-FeOOH [50], Co3O4 [51], MnFe2O4 [52, 53], MFe2O4

(M = Mg, Ni, Cu) [54], ZnFe2O4 [55], NiO [56], and MnO2 [57] have been observed
to have peroxidase-like or catalase-like activity, whereas the vanadium pentoxide
(V2O5) was demonstrated to have antioxidant enzyme-like (glutathione peroxi-
dase) activity [58–61] and molybdenum trioxide (MoO3) nanoparticles to have
sulfite oxidase activity [62].

4. Inhabitation effects of tetrahedral oxyanions

The hydrolysis of phosphorus ester was significantly inhibited when the tetra-
hedral oxyanions were introduced into inorganic iron oxides nanoparticle solution,
e.g., G6P in a 10-month aged iron solution (Figure 4), as the natural PAPs. Both the
catalytic and the inhibition behaviors of the catalysis in the presence of 5–125 μM
G6P with different tetrahedral oxyanions can be described by a Michaelis-Menten
equation (Eqs. (3)–(7)) as follows:

without any addition :

1
v
¼ 7:4� 108 þ

2:001� 109

G6P½ �o
r2 ¼ 0:945

� �

(3)

with 1 μMMoO4 :

1
v
¼ 7:4� 108 þ

1:044� 1010

G6P½ �o
r2 ¼ 0:998

� �

(4)

with 1 μM WO4 :

1
v
¼ 7:4� 108 þ

3:423� 1010

G6P½ �o
r2 ¼ 0:995

� �

(5)

with 5 μM PO4 :

1
v
¼ 7:4� 108 þ

8:317 � 109

G6P½ �o
r2 ¼ 0:988

� �

(6)

with 10 μM PO4 :

1
v
¼ 7:4� 108 þ

1:216� 1010

G6P½ �o
r2 ¼ 0:997

� �

(7)

Phosphorus source Vm (nM S�1) Km (μM) Range (μM) r
2

G2P 2.0 7.0 6–200 0.99

G6P 3.2 8.3 5–100 0.99

ATP 0.9 9.2 5–50 0.99

Polyphosphate (poly-Pi) 1.1 5.5 5–25 1.00

Pyrophosphate (PPi) 2.2 1.3 5–25 0.98

Table 3.
Michaelis-Menten constant (Km) and maximum velocity (Vm) of different phosphorus in a DMT-IO solution
(made by Fe(NO3)3�9H2O and NaOH, aged a week at 80°C, IO-D, soaked a month).
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The results indicated that the catalysis sites from these catalyst, i.e., the inor-
ganic iron oxide nanoparticles, may be only bound to either the tetrahedral
oxyanions (PO4, MoO4, andWO4) or phosphate esters to form an intermediate, but
cannot bind both of them at any given moment. The modes of tetrahedral
oxyanions and G6P are competitive (Figure 5). The Km, the G6P concentration at
which the reaction rate reaches one-half of maximum velocity (vmax/2), was about
2.7 μM G6P in this aged iron solutions with no inhibitors. The KMapp with addition
1 μM WO4, MoO4, and 5 and 10 μM PO4 was 46.2, 14.1, 11.1 and 17.1 μM G6P,
respectively. Therefore, the Ki of WO4, MoO4, and PO4 are 0.06, 0.24 and 1.6–
1.9 μM, respectively. It is interesting to compare the catalytic behavior of these
inorganic iron oxides nanoparticles solution to natural PAPs and their biomimetics,
though the velocities of hydrolysis G6P in the inorganic catalyst are still lower than
that of natural phosphoesterase. For natural PAPs, Km and Ki of PO4 is usually in the
millimolar range [63–69], only Ki of WO4 and MoO4 is in the micromolar range
[65, 66, 70–72]. The value of Km of G6P is 920 μM for PAP extracted from sweet
potato [33] and 300–310 μM for those from soybean seed [73]. Besides, the modes

Figure 4.
Inhibiting behavior of different tetrahedral oxyanions on the hydrolysis of Glucose-6-phosphate in an aged
10-month, 1000 nM Fe(NO3)3 solution at room temperature (22 � 2°C). (a) Effect of initial concentration of
G6P on the initial hydrolysis velocity of G6P, and (b) Lineweaver-Burk plot of aged iron solution in the absence
and presence of tetrahedral oxyanions.

Figure 5.
Diagram of catalysis process of G6P hydrolysis in the presence of the tetrahedral anions in the aged inorganic
iron solutions. (a) Reaction without tetrahedral anions; (b) Inhibition with the competitive tetrahedral anions.
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of molybdate and tungstate inhibition are noncompetitive [65, 66, 70–74]. Only
orthophosphate for natural PAPs are competitive [65, 66] in most cases.

Amore significant difference between the inorganic catalyst and the natural
phosphoesterase is revealed in their response to the fluoride ion. The activity of all
known natural phosphoesterase is very sensitive to fluoride, even at themicromolar
level [67, 72–78], while the catalytic activity of the inorganic iron oxides solutions still
remain, evenwhen the final concentration of fluoride in the solutionswere up to 0.5M.

5. Effect of temperature

The catalyst on the hydrolysis of phosphate ester is sensitive to temperature, as
natural enzymes. The optimum temperature for the phosphate ester hydrolysis reac-
tion by these inorganic catalysts was around 50°C (Figure 6), which is comparable to
recent observations on the natural enzymes [79–82]. However, catalytic activity of the
IO nanoparticles in solution was lost as the temperature was raised to 90°C for an
hour or to 72°C for 16 h. This behavior is similar to the thermal denaturation of the
natural enzyme. Moreover, the temperature coefficient, Q10, a measure of the
hydrolysis velocity, is also decreased as a consequence of increasing the temperature
by 10°C. This effect too, is comparable to the general patterns of enzyme behavior
in biological systems [80, 81]. Taken together, these observations also carry the
implication that moderate, i.e., 50°C, and not high temperatures, were likely favor-
able to the catalytic reactions from the view of efficiency and speed of the catalyst.

In actuality, the catalytic activity of the nanoparticles remained high after
removal from their source (IO) for days, even when stored at �18°C, demonstrated
by a storage experiment (Table 4) [29], which further suggested that IO
nanoparticles can be displaced to a considerable distance from their source and still

Figure 6.
Relationship between environment temperature and the hydrolysis rate of phosphorus. (a) G6P, (b) ATP,
(c) polyphosphate, and (d) the temperature coefficient Q10 (for details of IOs see Table 1).
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maintain catalytic activities for a considerable time. Meanwhile, low temperatures,
even frozen conditions, also favor the persistence of catalytic activity from these
IO nanoparticles. These are important from the view of astrobiology (origin of life)
[28], but also for plant acquisition, nanoengineering and the potential application
for industrial production.

6. Effect of pH and buffer solution

pH is another key factor for enzyme activity. The aged inorganic iron solution or
the water bearing iron oxide nanoparticles, e.g., DMT-IO, are generally mildly
acidic (pH 5.5–6.5). Various concentrations of bicarbonate were introduced in the
DMT-IO system, but in all cases enzyme-like activity for phosphate ester hydrolysis
remained quite high (Figure 7a). In general, the most favorable pH of the enzyme-
like activity was found to be between 6 and 7, though the phosphorus source, the
concentrations of bicarbonate, and the type of DMT-IO also influenced its activity
(Figure 7b and c). When pH was raised beyond 7 (e.g., pH 7, 7.2 and 8), the
catalysis coefficient, k, decreased as the concentration of HCO3 increased, especially
for the DMT-IO-D. When pH in solution was <7 (e.g., pH 6.2, 6.4, and 6.8),
however, there were no clear patterns of k with respect to the concentration of
HCO3 and both the ATP and G6P in these two nanoparticles-bearing solutions. At
the same time, k at weak acidic conditions (pH 6.2–6.8) was much higher than at
weak base conditions (pH 7–8). This conclusion was further supported by an addi-
tional experiment involving the hydrolysis of ATP, whereby the pH values of DMT-
IO solution were extended from 4 to 9.3 units by employing four different buffer
systems (1.0 M acetate buffer (pH 4.0–5.6), 0.2 M dimethylglutaric acid buffer
(pH 4.2–6.8), 20 mM NaHCO3 (pH 7.6–9.3), and 40 mM NaHCO3 (pH 5.8–9.3))
(Figure 7d).

Treatment 20 μM G6P 20 μM ATP

1 h Pi (μM) 5 h Pi (μM) t0.5 (h) 1 h Pi (μM) 5 h Pi (μM) t0.5 (h)

11 days at 22°C 11R 5.49 � 0.004 13.89 � 0.064 3.2 4.47 � 0.016 9.87 � 0.255 6.0

11 days at 4°C 11 L 5.51 � 0.010 13.64 � 0.042 3.3 4.36 � 0.005 9.71 � 0.066 6.3

5 days frozen
(�18°C) and
6 days at 4°C

5F6L 4.57 � 0.013 11.48 � 0.030 4.5 3.76 � 0.009 7.61 � 0.043 9.4

5 days at 4°C and
6 days at 22°C

5L6R 5.85 � 0.011 14.10 � 0.211 3.1 4.51 � 0.018 10.30 � 0.123 5.7

5 days at 50°C
and 6 days at
22°C

5H6R 2.93 � 0.01 6.68 � 0.020 11 2.71 � 0.012 4.92 � 0.032 19

5 days at 50°C
and 6 days at 4°C

5H6L 2.62 � 0.002 5.44 � 0.001 16 2.48 � 0.002 3.72 � 0.04 36

9 days at 50°C
and 2 days at
22°C

9H2R 2.43 � 0.005 4.07 � 0.005 26 2.38 � 0.016 3.08 � 0.025 60

aThe Pi of the 20 μM G6P (DIW, control) after 120 h at the room temperature was changed from 1.67 to 1.83 μM. The
corresponding half-life was 10,450 h. The Pi of the 20 μM ATP (DIW, control) after 120 h at the room temperature was
changed from 1.89 to 2.07 μM. The corresponding half-life was 9290 h.

Table 4.
Effect of storage conditions on the catalysis activity of iron oxide (IO-F) nanoparticle solutions.a
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It should be pointed out that the catalysis capacity of these solutions bearing
inorganic iron oxide nanoparticles is closely related to the buffer used in the system.
The catalytic activity dropped precipitously after a small amount of citrate buffer
(pH 4.0–6.2) or tris(hydroxymethyl)-aminomethane (TRIS) (pH 5.8–7.2) was
introduced into an inorganic iron solution (Table 5). Both citrate [83, 84] and

Figure 7.
Relationship between pH and the hydrolysis rate of phosphorus. (a) 100 μM four phosphorus in DMT-IO-G;
(b) and (c) bicarbonate concentration on 20 μMG6P DMT-IO-D and F; (d) different buffers for 20 μMATP
in DMT-IO-F (for details of IOs see Table 1).
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TRIS [85] can react with Fe (III) in solution to form the aqueous Fe-complex,
particularly at high ratios of citrate or TRIS to Fe (>>10,000:1 molar ratio). But the
catalysis of these solutions does not change when the acetic acid-acetate buffer
system was introduced, the final acetate concentration in the solution was up to
0.25 M. All of these responses imply that the significant change was not due to the
pH itself, but to the interactions between nanoparticles in the solution and
chemicals in the environment. It has been reported that some buffer systems can
significantly inhibit the activity of natural enzymes, for example, citrate on special
PAPs [86] and alkaline phosphatase [87] and TRIS on aminopeptidase and RimO
methylthiotransferase [88, 89] due to structure changes and metal-complex forma-
tion [84, 85, 90].

7. Natural and inorganic phosphatase

Recall the natural phosphatase, a binuclear metal center (di-iron Fe-Fe or Fe-M
(M as Mn and Zn)) that produces orthophosphate due to the net transfer of the
phosphoryl group to water, is essential for its catalysis (Figure 8a) [19, 66, 91–94].
The μ-(hydr)oxo ligand bridges in the metal center—the key of “phosphoesterase
motif”—are a universal feature in binuclear phosphoesterase [19, 94]. They are
responsible for the cleavage of phosphoester bonds; including acid and alkaline

Treatmenta Initial

G6P

(μM)

Reaction

time (h)

Pi

(μM)

Rate constant

k (10�6 s�1)

Half-life

t0.5 (h)

DIW and aged 14 mo., 1000 nM,
Fe(NO3)3, (1:1)

20 0 0.22 22.1 8.7

1 1.75

2 3.37

6 7.74

Aged 14 mo., Fe(NO3)3, 1000 nM and
tris–HCl buffer (10 mM, pH 7.0), 1:1

20 0 0.22 1.72 111.8

1 0.35

2 0.41

6 0.93

DIW and aged 14 mo., 1000 nM,
Fe(NO3)3, (1:1)

50 0 0.44 11.3 17.1

1 2.45

2 4.58

6 11.14

Aged 14 mo., Fe(NO3)3, 1000 nM and
tris–HCl buffer (10 mM, pH 7.0), 1:1

50 0 0.44 1.93 99.8

1 0.71

2 0.99

6 2.45
aBuffer experiments were conducted with a 1000 nM aged (14-month) inorganic iron solution. The iron solution
diluted by DIW (1:1) was used as a control. Either 4 ml of 10 mM Tris-HCl (pH 7.0) or 4 ml of DIW was mixed with
a 4 ml of aged iron solution, then 0.1 ml of 1.6 or 4.0 mM G6P stock solution was added to make a final solution
containing 20 or 50 μMG6P. Pi concentration was determined at 0, 0.17, 1, 2 and 6 h, respectively, after the addition
of G6P. The results of Pi in the table was an average of three replications. The rate constant and half-life were
calculated based on the first order kinetics.

Table 5.
Interaction between Tris-HCl buffer and aged inorganic iron solution on the hydrolysis rate of G6P.a
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phosphatases; bacterial exonucleases; diadenosine tetraphosphatase; 50-nucleotidase;
phosphodiesterase; sphingomyelin phosphodiesterase, an enzyme involved in RNA
debranching; and a phosphatase in the bacteriophage genome as well as for the family
of Ser/Thr protein phosphatase (PP1, PP2A, and calcineurin) [95, 96]. Based on the
μ-(hydr)oxo metal bridge structure, different artificial phosphatases have been
synthesized by using different organic ligands to stabilize themetal center [19, 97, 98].

It is well known that iron speciation changes due to ion (III) hydrolysis in the
solution during the aging process, diiron or polyirons oxide with the oxo-bridge or
hydroxo-bridge (bond) might be formed [99–103]. Based on the quantum-chemical
calculations by density-functional theory, dihydroxobridging binuclear compounds
can be present in aqueous solutions, as binuclear dihydroxobridging [Fe
(H2O)4(μ-OH)2Fe(H2O)4]

n+ and oxobridging [Fe(H2O)5(μ-O)Fe�(H2O)5]
n+ (n = 2,

4) cations in the hydrolysis products of cations [Fe(H2O)6]
m+ (m = 2, 3) [104]. The

hydroxo-bridged Fe-(OH)2-Fe dimers are the structure units in the polymetric
hydroxo complex, which are dependent on pH and aging time [105, 106]. Molecular
dynamics simulation further demonstrated the presence of aqueous di-iron or
poly-irons, in which the Fe-Fe distance is 3.0–3.5 Å, with bonds by oxo-bridge or
hydroxo-bridge [107]. Meanwhile, the (hydr)oxo-bridged Fe-Fe structure has
been confirmed by experiments in the interface of iron oxide (IO, solid) to water
[108–111]. The μ-oxo iron ion have been identified in-situ in the high concentrated
inorganic iron solution (e.g., 0.1 M Fe(NO3)3 [101], and 0.1 M FeCl3 [112]. The
solubility of IOs further indicates that the critical ferrihydrite nucleus with an
equivalent diameter of �15 Å and containing only�30 Fe atoms is stable in aqueous
solution [113]. The 10-angstrom discrete iron-oxo cluster (known as the Keggin ion,
Fe13) is also soluble [114], as a constitute structure of ferrihydrite nanoparticles
[102]. Consequently, iron oxide nanoparticles with 3.5 Å oxo-Fe bindings (e.g.,
doubly shared iron octahedra) such as ferrihydrite, goethite, hematite, magnetite,
and even green rust (fougerite) can be presented in the natural environment
(Figure 8b) [115–121]. Therefore, it is reasonable to suggest that the oxo bridged
Fe-Fe structure in the aqueous IO nanoparticles contribute to the catalysis of phos-
phate ester hydrolysis [28]. This compares to the activity of the aged nanomolar
inorganic iron ion solutions [26, 27] and mimics of the artificial phosphatases

Figure 8.
The metal center of phosphatase. (a) The μ-(hydr)oxo-bridges in purple acid phosphatase (PAP), and
(b) Fe-Fe structure in different iron oxides phases.
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[19, 97, 98]. The common feature between these IO nanoparticles, either from the
DMT-IO or the aged inorganic iron ion solutions, as well as the natural or synthe-
sized biomimetic phosphoesterase, constitute a kind of acceleration of electron
transfer rate in the structure of the μ-(hydr)oxo ligand between the metals, partic-
ularly iron [19, 26–28, 92, 94, 122, 123]. In other words, the hydrolysis of phosphate
ester is entirely dependent on its catalysis on this special Fe-oxo-Fe structure
[27, 28]. Experiments and chemical models have also demonstrated that tempera-
ture impacts the stability of the aqueous poly-iron formation [124] and the nano-
structure of IO in the solution [117, 125], which can explain the thermal
denaturation behavior of the inorganic phosphatase (Figure 6). The Fe-Fe structure
in the nanoparticles due to the nanosize-induced phase transformation and changes
in the IO nanoparticle solution with the dissolved CO2 [126] further supported the
response of the inorganic phosphatase at different pH (Figure 7).

Similar to phosphatases, the active metal centers of most peroxidase and cata-
lases in nature also comprise the transition metals, for example, horseradish perox-
idase, HRP [127], heme catalases [128], uroerythrin [129] with Fe, manganese
peroxidase [130], manganese catalases [131, 132] with Mn or haloperoxidases [133]
with V, all exhibit the oxo ligand structure. This unique structure might be also
accountable for the “intrinsic peroxidase or catalases” from different inorganic
metal oxides nanoparticles [44, 48, 49, 51, 53, 54, 58–61, 134, 135]. It was noted that
some PAPs were also reported to have activity of peroxidases [136, 137]. The Km in
Table 3, which denotes the affinities of the phosphate ester to catalysis, are signif-
icantly (up to three orders of magnitude) lower than that of natural PAPs [33, 66,
69, 91, 138, 139]. The same patterns were also observed for these inorganic perox-
idases compared to its corresponding HRP [28]. This finding further indicates that
the IO nanoparticles are either much more sensitive to the low concentration of
phosphate ester or H2O2 in the environment, or they have a much higher affinity for
phosphate esters or H2O2 compared to the natural enzymes, although the maximum
velocity of the hydrolysis was relatively low with these IO nanoparticles, especially
for high phosphate ester or H2O2 concentrations in the environment. Like the
nanoparticles of IO and vanadium pentoxide, the intrinsic sulfite oxidase activity of
molybdenum trioxide nanoparticles is also due to the oxo ligand of Mo, as revealed
in the metal center of sulfite oxidase [62, 140, 141]. Essentially, the catalytic activ-
ities depend to some degree on the surface area of these nanoparticles, but not just
merely on particle size [48, 51, 52, 134, 142, 143]. The in situ Raman spectroscopy
on the changes of V-oxo (V=O) bond in the different V2O5 nanomaterials during
H2O2 catalysis cycle further demonstrated that the catalytic characteristics in these
nanoparticles is directly related to the metal structure in the nanoparticle surface
[61], which supports the concept of inorganic enzyme [27, 28].

Several recently studies from Europe have suggested that iron-rich nanoparticles
(<20 nm) are the main carriers of phosphorus in forest streams and soil solution
[10, 11, 144, 145] and monoesters are the main composition of dissolved organic
phosphorus in soil and water [10, 15, 16, 18]. This further imply that iron oxide
nanoparticles might play a significantly role for the organic phosphorus transfor-
mation from the view of phosphorus biogeochemistry, although sorption and pre-
cipitation is still the dominant view of the current soil and environmental science on
the interaction of iron oxides and dissolved organic phosphorus in soil and sediment
[21, 146–149]. A couple of studies still noticed that orthophosphate can be released
during the processing of the interactions [5, 20–25]. As iron oxide nanoparticles are
very common and widely exist in the soil, sediment, dust, and water [125, 150–153],
such enzyme-like catalytic propensities on phosphate esters in the current earth
environment may provide an undiscovered feedback of organic phosphorus and
play a critical role in the phosphorus cycles.
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On the other hand, many effects have been made to improve inorganic
nanozyme, both its catalysis capacity and substrate specificity, particularly
for the “engineering peroxidase” related to iron oxide for its analytical, biomedical,
and environmental applications from the view of nanoengineering [46, 47,
154, 155]. Various polymers or other organic compounds, e.g., porphyrin rings,
the backbones of short peptides, amino acids, and even DNA, have been
employed in the stabilization of the oxo bridged Fe-metal center in different iron
oxides [156–160]. Similar effects should be made for the inorganic phosphatase
as well. These “engineering phosphatase” can be employed for environmental
monitors after standardization to assess the availability of dissolved organic
phosphorus in waters and its potential risk for water eutrophication due to its
higher stability and lower cost than protein enzymes, supported by the fact that
natural phosphatase has been used for the tool to assess water or soil phosphorus
availability [161–164]. Another possibility for industry is to use these high
efficiencies engineered phosphatase to release the orthophosphate from the
wastewater directly for agriculture.

8. Conclusions and future prospective

Laboratory experiments on the hydrolysis of phosphate ester in water demon-
strated that inorganic phosphoesterase-like activity, using various inorganic iron
oxide nanoparticles, significantly promotes the hydrolysis of phosphate ester,
including G6P, PPi, and ATP. These findings and the fact that this and other
inorganic nanoparticles can act effectively as enzymes: for example, iron oxide as
peroxidase, vanadium pentoxide as bromoperoxidase, and molybdenum trioxide
nanoparticles as sulfite oxidase; further support the concept of inorganic enzymes.
The catalytic property of these nanoparticles is likely due to the structure of the
metal oxides or metal bonds in the oxides and not merely to the nanoparticle
surfaces. As iron oxide nanoparticles are very common and widely exist in the soil,
sediment, and water, such enzyme-like catalytic propensities on phosphate esters,
the main composition of dissolved organic phosphorus, in the current earth envi-
ronment may play a critical role in the phosphorus cycles.
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