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Chapter

Steroid-Based Supramolecular 
Systems and their Biomedical 
Applications: Biomolecular 
Recognition and Transportation
Ruilong Sheng

Abstract

In this chapter, the biomedical application of steroid-based compounds at 
“beyond the molecule”—supramolecular level—is reviewed. The renewable and 
economic natural steroid compounds could be employed as building blocks in the 
design and construction of steroid-based supramolecular systems. The specific 
physicochemical features (size, shape, topology, hydrophobicity, chemical modifi-
ability, etc.) and biological properties (biocompatibility, biodegradability, bioaffin-
ity, etc.) could be integrated into functional supramolecular systems by chemical 
synthesis, modification and intermolecular interactions (such as hydrogen bonding, 
π-π stacking, van der Waals forces, inclusion interactions, chiral interactions, 
electrostatic interactions, and so on). The steroid-based (supra)molecules could be 
employed for molecular recognition and/or be self-assembled into various func-
tional supramolecular assemblies for biomedical applications. The specific physico-
chemical and biological properties, good biocompatibility, and biological activity 
endow the steroid-based supramolecular systems good feasibility to be employed 
in biomolecular recognition/sensing and biomolecular transportation (gene/drug 
delivery). The examples in this chapter are exemplificative of the transformation 
of natural steroid-based compounds into functional steroid-based supramolecular 
systems through molecular and supramolecular engineering technology, moreover, 
which may inspire the systematic study of natural product-based supramolecular 
(nano)materials toward future pharmaceutical and biomedical industry.

Keywords: steroid, supramolecular, biomolecular recognition, biomolecular 
transportation, gene delivery, drug delivery

1. Introduction

Transformation of renewable and biocompatible natural products [1] into a 
variety of molecular building blocks to construct functional molecular systems 
and then following the molecular assembly processes to create new functional 
materials has been highly focused for nurturing the sustainable development. 
Steroids, a large natural lipid family known as “keys of life,” played vital roles 
including membrane formation, hormone metabolism, and cell signal transduction 
in organelles. Some steroidal compounds possess special physicochemical features 
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such as hydrophobicity, rigidity, mesogenic behaviors, and so on, which made them 
the functional building blocks for the construction of supramolecular architectures 
[2] and soft nanomatters toward biomaterial application [3].

In general, the functions of supramolecules mainly cover molecular recognition, 
molecular transportation, and molecular catalysis [4]. Molecular recognition is a 
fundamental process that integrates molecular information (size, shape, charge, 
etc.) by interacting (host) molecules with certain (guest) molecular species [5]. 
Molecular transportation is the use of supramolecules to translocate bounded/
loaded molecular species (such as anions [6]) through membranes (especially 
cell membranes [7]), which could be coupled with chemical potentials [8]. 
Biomolecular recognition (detecting/sensing of certain biomolecules) and bio-
molecular transportation (administration/delivery of bioactive molecules into the 
cells/organs) have been regarded as two important fields in biomedical-orientated 
supramolecular (medicinal) chemistry [9]. The steroid-based supramolecular 
systems could be divided into two groups according to their function: (1) steroid-
based supramolecular system for biomolecular recognition and (2) steroid-based 
supramolecular system for biomolecular transportation (Figure 1).

2. Steroid-based supramolecular system for biomolecular recognition

Recognition/sensing of biomedically important substances such as specific ions 
(cations/anions), nucleic acids, peptides, proteins/enzymes, volatile bioorganic 
molecules, biometabolites, as well as tumor biomarkers is very essential for the 
deep understanding of biochemical mechanisms. Earlier analytical tools, including 
chemiluminescence, amperometry, electrochemistry, spectrophotometry, high-
performance liquid chromatography, etc., have been developed for the detection 
of biomedically important substances. However, these traditional methods have 
some drawbacks such as requirement of expensive instruments and complicated 
pre-treatment processes, which largely restricted their practical application. Rapid 
development of artificial molecular receptors or molecular sensors may provide 
powerful tools for the recognition/sensing of chemical species/analytes, which can 
be attributed to their advantages of easy-to-manipulate, high-sensitivity, fast-
response, high-temporal, and spatial resolution [5].

Figure 1. 
Steroid-based supramolecular systems for biomolecular recognition and biomolecular transportation.
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2.1 Steroid-based macrocyclic molecular receptors

Artificial/synthetic macrocyclic molecular receptors are important supramo-
lecular architectures, which can be used as a host molecule to recognition-specific 
guest molecules [10]. They can also be used to mimic complex biological host-
guest systems, e.g., cell surface receptors, nuclear receptors, as well as enzymes 
for substrate recognition. Typical macrocyclic molecular receptors bind guest 
molecules inside their designated cavity. During the past decades, many steroids 
were developed to construct molecular receptors. Among them, bile acids, a family 
of molecules with facial amphiphilicity, specific molecular chirality, and multiple 
reactive sites (hydroxyl and carboxylic acid groups), are often employed as molecu-
lar skeletons/scaffolds in the construction of supramolecular architectures for 
molecular recognition [11, 12].

In an early work, Davis et al. synthesized a neutral and lipophilic system from 
the steroid cholic acid (Figure 2). It forms 1:1 complexes with fluoride, chloride, 
and bromide ions and shows good discrimination of Cl− > Br− > I− [13]. In this 
work, the anion recognition process was carried out in organic solvents.

Also for anion recognition, more recently Peng et al. synthesized cholate-based 
cage amphiphilic systems with combination of structural rigidity and flexibility. 
These cage compounds with extending and bridging three polar chains were pre-
pared by click reaction. The connecting chains composed of oligo(ethylene glycol) 
units or chains containing 1,2,3-triazole units to present flexibility, for example, 
a model compound (triazole 21a), could recognize halide anions with a binding 
sequence of Cl− > Br− > I− ~ F−, which makes them potential anions receptors/ 
sensors [14].

Recently, steroid-based macrocyclic molecular receptors with the combination 
of multifunctions (e.g., chiral recognition-optical properties) emerged as a new 
trend of research. In this context, Wu et al. synthesized a deoxycholic acid-based 
macrocycle receptor CDTB, which selectively recognized Hg2+ involving 1,2,3-tri-
azole motifs as binding sites. The as-formed [CDTB·Hg2+] complex could be used 
to perform enantioselective recognition of amino acids (especially cysteine) in 
aqueous solution (Figure 3), leading to difference in fluorescence enhancement of 
the chiral BINOL macrocyclic structure at ~358 nm. This research provided cascade 
recognition of chiral amino acids and bestows the future design of steroid-based 
dual-functional macrocyclic molecular receptor models for chiral natural product 
discrimination/recognition [15].

Although some progresses had been made in this field, the synthesis of steroid-
based macrocyclic molecular receptors is still mainly focused on the mono steroid-
containing macrocyclics and C2-symmetric macrocyclics; the facile and low-cost 

Figure 2. 
Cholic acid-based macrocyclic receptor for halides Cl−, Br−, and I− recognition.
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preparation of macrocyclics need to be developed. Notably, the steroid-based 
macrocyclics with higher-order symmetric elements (such as C3, C4, Dxh, etc.), 
modifiable and derivable sites, various topological diversities [16], as well as chiral/
asymmetric features (giant chiral macrocyclics) are rare. Moreover, for practical 
application, the functionalities (such as optical, radioactive, paramagnetic, etc.) of 
the steroid-based macrocyclic molecular receptors need to be largely expanded.

2.2 Steroid-based molecular clefts/tweezers

Another type of artificial/synthetic molecular receptors is open-structured 
molecular clefts/tweezers, which can recognize guest molecules by forming a 
sandwich-type structure through π-π stacking, hydrogen bonding, and/or ionic 
and electrostatic interactions. For the recognition of aromatic molecules, the 
arms of the molecular clefts/tweezers were generally designated to be aromatic 
and with special geometrical arrangements. Taking the advantages of low cost, 
head-tail-modifiable molecular groups, rigidity, chemically different hydroxyl 
groups, unique amphiphilicity, and natural chiral microenvironment, bile acids 
and their derivatives are mostly employed to construct steroid-based molecular 
clefts/tweezers [17].

For the steroid-based molecular clefts/tweezers toward anion recognition, acidic 
amide groups (such as NH in ureas or thioureas) were always used to achieve higher 
affinities [17]. In this context, Davis et al. constructed anion receptor by placing 
squaramide groups in axial positions at the hydroxyl groups of steroid (cholic acid) 
skeleton, which could fix the NH groups on squaramide at certain locations for 
cooperatively bind anions (Figure 4). By using the steroid-squaramide receptor, 
anions Cl− and AcO− could be transferred from water to organic solvent by liquid-
phase extraction. The binding constants of the steroid-squaramide receptor to Cl− 
and AcO− of tetraethylammonium salts exceeding 1014 M−1 in chloroform solution 
have been measured. The results indicated that these anion receptors might serve 
as transmembrane anion carriers or artificial cell surface receptors for biomedical 
application [18].

The synthesized molecular tweezers for small biomolecule recognition mainly 
have charge-bearing moieties/groups such as carboxylic acids and amine/guanine 
groups. As an example, Rao et al. have designed and synthesized a bile acid-based 
molecular tweezer with two carboxylic acid groups attached to the C-3 and C-12 

Figure 3. 
Cholic acid-BINOL-based fluorescent macrocyclic receptor for chiral amino acid recognition.



5

Steroid-Based Supramolecular Systems and their Biomedical Applications: Biomolecular…
DOI: http://dx.doi.org/10.5772/intechopen.86752

hydroxyl groups, which could complex 9-N-butyladenine and biotin methyl ester 
[19] by π-π and electrostatic interactions along with restricted rotation effects 
(Figure 5). Notably, the sensitivity and selectivity of this kind of receptors are not 
high enough to distinguish biomolecules with similar structures. To design highly 
selective molecular tweezers, a possible strategy is to mimic the microchemical 
environment of protein (or sugar) domains responsible for enzyme-substrate 
recognition or cell receptor-ligand interactions [4].

For chiral amino acid recognition, Davis et al. [20] prepared guanidinium-
bearing steroidal molecular tweezers, which could recognize and extract N-acetyl-
amino acids (Figure 6) from aqueous solution into the organic phase (CHCl3) by 
electrostatic interactions between guanidinium moiety and carboxylic acid groups, 
with enantiomeric excesses (ee%) of about 80% [21]. In general, the association 
constant for these acceptors should be around ~10−4–10−5.

Figure 4. 
Cholic acid-squaramide conjugates as a molecular tweezer for anions Cl− and AcO− recognition.

Figure 5. 
Cholic acid-based molecular tweezer for N-butyladenine and biotin methyl ester recognition.

Figure 6. 
Cholic acid-guanidinium molecular tweezer for N-acetyl-amino acid recognition.
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Bile acid-based receptors containing 2,6-diaminopyridine and the dioctylamide 
of 2,6-diaminopyridine were also used to bind 7,8-dimethyl flavin analogues. The 
association constants increased with increasing electron-donating capacity of the 
substituents at the 7 and 8 positions of the flavin analogues [22].

To our knowledge, up to date, the molecular recognition of the steroid-based 
molecular tweezers mainly focuses on several simple molecules including anions, 
nucleosides, and amino acids. Their recognition properties toward more biomo-
lecular analytes/substrates (such as oligosaccharides, peptides, biometabolites, as 
well as pharmaceuticals) need to be continuously explored. Further improvements 
on the sensitivity and selectivity, possibility to perform quantitative detection/
recognition, increasing signal-noise ratios, as well as developing portable in situ test 
kit/membrane also need to be taken into consideration. Notably, the cell biological 
behaviors such as uptake, metabolism, and pharmacological applications of these 
steroid molecular tweezers are far from being understood. Moreover, the emer-
gence of natural compound such as coumarin [23–25]-based fluorescent molecular 
receptors/sensors may inspire further development of steroid-based multichannel 
molecular receptors [4].

3. Steroid-based supramolecular system for biomolecular transportation

Transportation/delivery technology of biomolecular species (especially thera-
peutic agents) across cell membranes and other biological barriers emerged and 
rapidly developed as a pivotal area in pharmaceutical and clinical biomedicine, 
since many biological barriers prevent the implementation of clinically effective 
therapeutic agents (e.g., genes, antitumor drugs, cell signal inhibitors, neuron 
modulators, etc.). Therefore, developing functional therapeutic (gene/drug) 
transportation/delivery systems with the merit of low cost, facile-to-prepare, high 
storage stability, low cytotoxicity, high gene/drug-loading/delivery capacity, as well 
as controllable releasing/targeting features has attracted much attention in recent 
years [26–32].

3.1 Steroid-based supramolecular system for gene delivery

Using renewable and biocompatible natural-based resources to construct supra-
molecular biomaterials has attracted great attentions in recent years. As a hot spot 
in biomaterial research, developing new cationic lipids as non-viral gene (DNA, 
oligo DNA, SiRNA, etc.) carriers toward gene therapy has been achieved increasing 
attentions in the past few decades [33, 34]. An ideal lipid gene carrier should be 
highly biocompatible [35] and could efficiently load and release therapeutic gene 
substances [36] into target cells. In this context, recent researches revealed that 
the introduction of some steroidal hydrophobic molecules in gene carriers could 
enhance gene loading capacity and delivery efficiency [37], improve estrogen recep-
tor (ER) affinity [38], lower cytotoxicity and membrane disruption [39], and so on, 
making the steroid-based cationic amphiphiles/lipids promising candidates for gene 
delivery/transfection (Figure 7).

Among the steroid compounds, cholesterol was the most commonly used 
steroidal compounds in the construction of functional gene/drug [40] carriers. 
As an example, Bhattacharya and Bajaj developed a series of cholesterol cationic 
lipids [41] and gemini-lipids [42–46] with remarkably high gene transfection 
efficiency and transfected p53-EGFP-C3 plasmid DNA to induce tumor apoptosis 
[47]. In another example, Rana et al. [48] prepared some cholesterol-hybridized 
cationic lipids with enhanced SiRNA delivery efficiencies and lower cytotoxicity. 



7

Steroid-Based Supramolecular Systems and their Biomedical Applications: Biomolecular…
DOI: http://dx.doi.org/10.5772/intechopen.86752

In addition, Zenkova et al. [49–51] disclosed a series of cholesterol cationic lip-
ids modified with heterocyclic (pyridine, methylimidazole, etc.) or polyamine 
headgroups having low cytotoxicity and high transfection efficiency, and some 
cholesterol-based cationic glucosidal lipids also have similar properties [52].

In our earlier work, we prepared a series of bioreduction-responsive cholesterol 
disulfide cationic (CHOSS) lipids [53], which possessed low cytotoxicity, high 
pDNA transfection efficiency, as well as perinucleic localization effect (Figure 8). 
Afterward, we studied the structure-gene transfection relationship of some choles-
terol-based cationic lipids bearing versatile amino acid headgroups and chemical 
linkage bonds [54], and it was found that the physicochemical features and gene 
transfection-related properties of the cholesterol-based lipids relied greatly on the 
cationic headgroups [54].

Besides cholesterol, some other steroidal compounds such as diosgenin (a phy-
tosteroid sapogenin used in the preparation of different steroids, e.g., cortisone), 
bile acids, etc. were employed to construct lipid gene carriers. As an example, Regen 
et al. developed a series of “molecular umbrella” amphiphiles [55] and disulfide-
containing bile acid-SiRNA conjugates [56] for intracellular SiRNA delivery. In 
addition, Yi et al. [57–59] synthesized some diosgenin-based cyclen cationic lipids 
with the merit of low cytotoxicity and high transfection efficiency. In a previous 
work, we also synthesized some cholesterol and lithocholate-derived cationic lipids 
via CuAAC “click” approach and disclosed that their gene transfection efficiency 
relied greatly on the steroid structures [60].

It has been known that the endocytosis mechanism greatly affects the intracellu-
lar gene transfection efficacy and subcellular distribution of gene carriers [61]. For 
the endocytosis pathways of steroid-containing gene carriers, only a few cases were 

Figure 7. 
Steroid-based cationic amphiphiles/lipids for gene delivery/transfection.

Figure 8. 
Bioreduction-responsive cholesterol-based disulfide cationic lipids/pDNA supramolecular payloads as efficient 
gene delivery carriers.
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investigated. In this context, Bae et al. [62] found that clathrin-mediated endocy-
tosis is the dominant pathway for cholesterol-based (CHOL-E) liposomes. On the 
other hand, Pozzi et al. [63] disclosed that macropinocytosis is the only endocytosis 
pathway of a cholesterol cationic lipid (DC-Chol) containing multicomponent 
envelope-type nanoparticle system (MENS). Besides, Jeong et al. [64] disclosed 
that clathrin, caveolae, and pinocytosis pathways are involved in the cellular uptake 
mechanism of hydrophobic 5β-cholanic acid containing glycol chitosan (HGC) 
nanoparticles.

In a recent work, our research team successfully prepared a series of steroid-
based cationic lipids by integrating various hydrophobic steroid skeletons with 
(l-)-arginine headgroups via a facile and efficient synthetic approach. We found 
that the plasmid DNA (pDNA)-binding affinity of the steroid-based cationic 
lipids, average particle sizes, surface potentials, morphologies, as well as stabil-
ity of the steroid-based cationic lipids/pDNA lipoplexes depend largely on the 
steroid skeletons. Cellular evaluation results revealed that cytotoxicity and gene 
transfection efficiency of the steroid-based cationic lipids in H1299 and HeLa cells 
strongly relied on the steroid. Interestingly, the steroid lipids/pDNA lipoplexes 
seemed to enter H1299 cells mainly through caveolae- and lipid-raft-mediated 
endocytosis pathways, and an intracellular trafficking route of “lipid-raft-mediated 
endocytosis→lysosome→cell nucleic localization” was accordingly proposed 
(Figure 9). The study provided possible approach for developing high-performance 
steroid-based lipid gene carriers, in which the cytotoxicity, gene transfection 
capability, endocytosis pathways, as well as intracellular trafficking/localization 
manners could be tuned/controlled by introducing proper steroid skeletons/hydro-
phobes. Noteworthy, among the lipids, Cho-Arg showed remarkably high gene 
transfection efficacy even under high serum concentration (50% FBS), making it an 
efficient gene transfection agent for practical application [65].

Although many remarkable achievements have been made in the steroid-based 
gene delivery systems, the working performance such as biocompatibility, gene trans-
fection efficiency, serum compatibility, cell membrane permeability, as well as the 
in vivo transfection of the most of steroid-based gene carriers were still far from their 
maximum value, especially far below from their natural virus (adenovirus, SV40, 
etc.) counterparts. The correlation between steroid-based molecular structures and 
their transfection efficiency is not well known, and, notably, the correlation between 
molecular structures and endocytosis pathways, endonucleasis gateways, and intra-
cellular trafficking and subcellular targeting/localization for the most of steroid-based 
gene delivery systems still remains unclear. Elucidating these correlations may offer 
new routes to further design steroid-based supramolecular systems with “endocy-
tosis pathway selection” and “subcellular organelle targeting/localization” features. 

Figure 9. 
Steroid-based cationic lipids/pDNA supramolecular payloads as efficient gene delivery carriers and the 
caveolae/lipid-raft-mediated cellular uptake pathway.
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Moreover, to achieve combo-chemotherapy and high theranostic performance, 
remote [66] factors (e.g., near-infrared light, ultrasonic, X-ray, or γ-ray)—induced 
controllable gene releasing and (optical and radioactive) imaging agents—which 
incorporated steroid-based supramolecular gene carriers need to be taken into con-
sideration. For future research, we envisioned that “smart” features such as enzyme-
responsive [67], self-programmable [68], self-replicable, as well as self-evolution 
technology could be implemented on the steroid-based supramolecular gene carriers 
by designing/optimizing the steroid-based molecular structures or supramolecular 
architectures through molecular or supramolecular engineering approaches.

3.2 Steroid-based supramolecular system for small molecule/drug delivery

Similar to gene delivery, controllable delivering of small molecules, including 
drugs and other bioactive compounds by steroid-based supramolecular systems, 
is another important field. Some steroids such as bile acids and diosgenin were 
utilized to prepare drug delivery carriers. In an early study, Regen et al. developed 
some cholic acid-based molecular umbrellas, which were utilized to transport 
small biomolecules such as adenosine 5-triphosphate (ATP) [69], glutathione 
(GSH) [70], as well as an oligonucleotide (S-dT16) [71] across phospholipid bilayer 
membranes prepared from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol.

To improve the hydrophilic, long-retention/stealth effect, and biocompatibility, 
polyethylene glycol (PEG) was often introduced to steroid scaffolds [72]. In fact, 
PEGylated bile acids were synthesized to further prepare self-emulsifying drug 
delivery systems (SEDDSs), which could enhance the solubility and absorption of 
poor water-soluble antitumor agent (doxorubicin [73]) or antibiotics (itraconazole 
[74]), thus providing a significant enhancement of solubility and bioavailability 
of these small molecular drugs. The emulsions consisted of spherical micelles with 
a mean hydrodynamic diameter around 100–220 nm, with good biocompatibility 
(low cytotoxic and hemolytic effect).

Taking advantage of organotropism effect of certain steroid compounds (such as 
cholesterol and cholic acid), steroid-drug conjugates enable enhanced active target-
ing of drug delivery into certain organelles to improve their bioavailability. Some bile 
acid-based prodrugs are prepared by conjugating drugs through degradable bonds, 
either direct or via spacer molecules to the carboxylic group or to the chemically 
different (C-3, C-7, and C-12) hydroxyl groups [75]. Tolle-Sander et al. found that 
cholic acid-acyclovir conjugated prodrugs could target human apical sodium-depen-
dent bile acid transporter (ASBT) to enhance acyclovir bioavailability. In this case, a 
valine linker between cholic acid and acyclovir could be cleaved upon esterase hydro-
lysis and release acyclovir [76]. Later, other bile acid-based prodrugs such as cholic 
acid-cytarabine conjugates [77], cholic acid-5-fluorouracil (FU) conjugates [78], and 
bile acid-tamoxifen conjugates [79] were developed. The bile acid-based prodrug 
transport systems showed improved drug absorption, membrane permeation, as 
well as the “trojan horse” effect [80] that largely increased the bioavailability of the 
antitumor drugs. In 2009, Regen et al. reported molecular umbrella-hydrophobic 
drug conjugates, which exhibit enhanced uptake capability to enter living (such as 
HeLa) cells and increased drug activity, suggesting the conjugates could be used 
as drug carriers [81]. Besides, the organ-specific targeting properties, especially 
the liver and small intestine distribution effect, were making the bile acid-based 
prodrug transport systems efficient candidates for the delivery of low-bioavailability 
molecular pharmaceutics [82]. The bile acid-based prodrugs provide efficient build-
ing blocks for constructing and developing supramolecular prodrug drug delivery 
systems (SPDDS), which also inspired the extensive R&D of other steroid-based 
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SPDDS [83]. It could be envisioned that, by choosing certain functional moieties to 
construct steroid-based prodrugs and followed by self-assembly, efficient SPDDS 
toward controllable chemotherapy could be achieved (Figure 10).

Recently Wei et al. designed and prepared a novel diosgenin-PEG (derivative)-
based prodrug nanocarrier for inhibiting thrombosis. The steroid diosgenin was 
conjugated to PEG by means of a pH-sensitive Schiff base bond to prepare the 
prodrug, then which was self-assembled into nanomicelles in aqueous solution. 
Under acidic condition (around thrombosis places), the diosgenin-PEG-containing 
micelles could be cleaved and released and could improve the blood diosgenin con-
centration to efficiently inhibit thrombosis. Moreover, the diosgenin-PEG micelles 
without bleeding risk prevented thrombosis by inhibiting activation and apoptosis 
of platelet. In this study, the observed efficiency of diosgenin-PEG was better than 
that of the nonsteroid antithrombotic agent aspirin [84].

Multicomponent nanotherapeutic (by combining two or more drugs/prodrugs 
into a single system) drug delivery systems (MCNDDS) and related formulations 
have attracted more and more attention. With the merit of easy-to-manipulate, 
good storage stability, high drug-loading capacity, low cytotoxicity, as well as con-
trollable drug-releasing features, R&D on MCNDDS could be expected to serve as 
a promising field in nanopharmaceutics and clinical medicine [85]. As mentioned 
above, cholesterol has been known to play important roles in membrane property 
regulation, cell adhesion, and signal transduction, regulating lipid bilayer interac-
tion and intracellular trafficking of nanoparticles, thus bringing new potential 
applications in biomedical engineering. In one case, cholesterol-based adenosine 
triphosphate has been prepared, which could be efficiently transported across 
bilayer membranes of liposomes [86]. In recent studies, we prepared a series of 
combo-nanotherapeutics by controllable incorporation of cholesterol-based/−con-
jugated doxorubicin prodrug (Chol-LK-Dox) with tocopherol polyethylene glycol 
succinate (TPGS), a helper lipid in the construction of functional liposomes or 
solid lipid nanoparticles, using a thin-film hydration method (Figure 11). Among 
them, we found that a series of Chol-Dox/TPGS assemblies (molar ratios 2:1, 1:1, 
and 1:2) were able to form nanoscaled particles with the average hydrodynamic 
particle diameter of 100–250 nm and remarkable solution stability (in 0.1 M 
PBS, 30 days). Notably, the doxorubicin loading and releasing properties could 
be adjusted by changing the molar ratio of Chol-Dox and TPGS, thus leading to 
controllable tumor cell inhibition properties to breast cancer (MCF-7 and MDA-
231) cells. Likewise, the physicochemical properties and bioactivity of another 
cholesterol-based nanodelivery system (Chol-LK-Dox/TPGS) could also be tuned 
by changing the (bioresponsive) linkers and molar ratio of Chol-LK-Dox and 
TPGS. The cellular biological properties of Chol-LK-Dox/TPGS systems in other 
cancer cell lines and in vivo therapeutic properties in xenograft mice models will be 
deeply investigated (project ongoing in our lab).

Figure 10. 
Self-assembly of steroid-based prodrugs into supramolecular payloads for drug delivery application.
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Nowadays, for the requirement of “precise biomedical treatment,” the steroid-
based supramolecular prodrug systems with smart manners such as stimuli-
sensitive (temperature, ultrasound, light, electric, pH, redox, biomolecules, and 
enzyme) features and targeting (cell membrane, subcellular organelles, and cell 
nuclei) properties need to be further developed.

4. Conclusions

In this chapter, we reviewed the main biomedical application of steroid-based 
compounds “beyond the molecule”—supramolecular level. The renewable, eco-
nomic natural steroid compounds could be employed as building blocks in the 
design and construction of steroid-based supramolecular systems. Based on the 
specific physicochemical features (size, shape, topology, hydrophobicity, chemical 
modifiability, etc.) and biological properties (biocompatibility, biodegradability, 
bioaffinity, etc.), through chemical synthesis, modification, and by means of 
intermolecular weak interactions (such as hydrogen bonding, π-π stacking, van der 
Waals forces, inclusion interactions, chiral interactions, electrostatic interactions, 
and so on), the steroid-based functional molecules could be organized to supra-
molecules for molecular recognition/sensing and/or be self-assembled into various 
functional supramolecular assemblies for biomedical applications. The specific 
physicochemical and biological properties, good biocompatibility, and biological 
activity endow the steroid-based supramolecular systems good feasibility to be 
employed in biomolecular recognition/sensing and biomolecular transportation 
(gene/drug delivery). The examples in this chapter illustrated the transformation 
of natural steroid-based compounds into functional steroid-based supramolecular 
systems through molecular and supramolecular engineering technology, which 
may inspire the systematic study of natural product-based supramolecular (nano)
materials toward the future pharmaceutical and biomedical industry.

Although many natural steroid-based supramolecular/nano-systems have been 
developed and studied, there are still many problems which need to be solved and 
vast spaces that need to be filled in further extensive research: (1) At molecular 
level, apart from the natural steroid-based supramolecular shown above, the ste-
roid-based compounds with unique structures (molecular symmetry, geometry and 
topology, polarity, amphiphilicity, multivalency, etc.), physicochemical (thermal, 
optical, magnetic, acoustic, radioactive, etc.), properties and biofunctions (bio-
recognition, targeting, endocytosis, cell signaling, etc.), as well as green synthesis 

Figure 11. 
Self-assembly of steroid (cholesterol)-doxorubicin prodrug (Chol-LK-Dox) with TPGS to prepare MCNDDS 
for combo-chemotherapy.
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techniques of the building blocks/units that need to be further developed. (2) At 
supramolecular level, the self−/forced assembly properties of many natural steroid-
based supramolecular/nano-systems were still not well studied; especially their 
structure–property relationships need to be further explored, realizing the control/
adjustment of the steroid-based nanoassemblies with specific physicochemical and/
or biological functions. (3) For biomedical application, we need to continue explor-
ing the related biological functions (such as biocompatibility, biometabolic activity, 
biomimicking manners, etc.) of the steroid-based supramolecular systems and 
reveal the relationship between the molecular/supramolecular structure and their 
biological behaviors. Moreover, we anticipated that molecular-level properties of the 
steroid-based molecules/building blocks would be transferred, enhanced, and/or 
magnified into supramolecular-level properties, providing a “bottom-up” method 
to create new renewable resource-derived nanostructures and nanomaterials.

Finally, we need to notice that the steroid-based supramolecular system as afore-
mentioned in this chapter is mostly restricted in low-dimensional 0D and 1D level 
and, therefore, for real practical application toward complexity systems, higher-
ordered steroid-based supramolecular systems (such as 2D and 3D) are needed to be 
further developed; especially, as for the emergence of natural-based tissue engi-
neering materials and rapid development of 3D bioprinting technology, steroid-
based supramolecular system for cell culture and regenerative medicine needs to be 
taken into consideration and systematically developed in the near future.
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