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Abstract

Weeds are the plants usually grown on unwanted places and are notorious for
causing interruptions in agricultural settings. Remarkable yield losses have been
reported in fields infested with weeds worldwide. So far, these weeds cause about
34% of losses to yields of major agricultural crops and pose threats to economic
condition of the farmers. Conventionally, weed control was achieved by the use of
chemical herbicides and traditional agronomic practices. But these methods are no
more sustainable as the magnitude of threats imposed by these conventionally
outdated methods such as chemical herbicides is greater than the benefits achieved
and their continuous use has disturbed biodiversity and weed ecology along with
herbicide resistance in some weeds. Herbicide residues are held responsible for
human health hazards as well. Therefore the future of weed control is to rely on
alternative approaches which may be biological agents such as bacteria and fungi.
This chapter highlights the potentials of using bacterial and fungal biocontrol agents
against weeds in farmer fields. Moreover, detailed review on merits and demerits of
conventional weed control methods is discussed in this chapter.

Keywords: biological weed control, PGPR, fungi, environment, human health,
economic losses

1. Introduction

Agriculture is an approach of deploying natural resources to grow the desired
plants. Since the induction of green revolution in the 1950s, the food production has
been substantially increased that helped to meet food demands for the ever-
increasing world population [1]. Improved irrigation practices, tillage implements,
fertilizers, and farm operations were some of the key outputs of green revolution.
Nevertheless these practices have paved the way of agricultural sustainability yet
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there are some concerns associated with these practices as, improved irrigation have
given rise to salinity of soils, intensive tillage causes deterioration of soil structure,
loss of soil organic carbon and destruction of natural habitats of different flora,
higher yielding crop cultivars depleted soil nutrients. With all of the outputs of
green revolution, introduction of pests is also acknowledged [2]. Disturbance in
agricultural production due to invasion of other living organisms for their own
existence is a natural phenomenon which cannot be stopped. These living
organisms that survive on others are called as pests which include insects, plant
pathogens, nematodes, rodents, and weeds.

Among the agricultural crop pests, weeds are the most potent crop pests reducing
crop yields by almost 34% followed by animal pests (18%) and plant pathogens (16%)
worldwide [3]. Weeds are unwelcomed plants that interfere with the management of
agricultural production systems, compete with the main crops for available nutrient
resources and space and reduce growth, yield, and quality of agricultural produce up
to a certain extent [4]. Generally, they produce a larger number of seeds, which may
remain dormant in the soil seedbank for several decades, having greater plasticity and
equipped with specialized seed dispersal mechanisms. Further, they exhibit the ability
to invade newly disturbed areas and compete with crops for scarcely available mois-
ture, nutrients, and light [5]. Apart from yield and production losses, they may also
provide niches and harbor insects, plant pathogens, and other pests, hence increasing
their incidence of attack to the main crop [6]. Weeds are the firstborn problem in
agriculture since about 10,000 BC [7] representing the main hindrance in profitable
agricultural production under natural resource management. The presence of weeds
in natural ecosystems causes various direct and indirect losses, including interference
with successful crop production, damage to biodiversity, loss of possibly fruitful land,
loss of grazing areas and livestock production, obstruction of navigational and irriga-
tion channels, and reduction of available water in water bodies. Most of the weeds
belong to families Poaceae and Asteraceae. A majority of the weeds are terrestrial
plants, a few are aquatic weeds and some are parasitic weeds [8]. Globally, reduction
losses of wheat yield due to weed infestation are 23% [2]. The economic losses
incurred due to this wheat yield reduction amount to Rs. 146 billion [9].

In the light of the abovementioned properties and harmful effects of weeds, it
becomes important to control them. Appropriate weed control strategy in arable
soils employs both the direct and indirect methods. Direct methods include those
with the prime objective of weed control such as mechanical, manual, chemical and
biological weed control and indirect being the cultural and preventive practices
reducing germination, growth and vigor of weeds [10]. Many practices are available
to control and manage weeds in agricultural crops. In ancient times when synthetic
herbicides were not introduced, people tried polyculture, crop rotation, and other
management practices that have shown sustainability with low inputs [11]. Until
recently, weeds were being controlled by manual, mechanical, and chemical
methods [12]. However there were drawbacks associated with each of these
methods that severely limited their practical use, for example, herbicides cast
detrimental effects on environment, humans, and animals [13]. They also cause
contamination of water bodies and pollute natural resources like air, soil, and
plants, thus destroying nontarget entities such as wildlife [14]. Also due to repeated
herbicide applications, there is an increasing trend in herbicide-resistant weed
species [15]. Mechanical weeding on the other side requires several repetitions and
is only feasible for crops sown in rows; therefore weeds grown near to crop plants
and within rows are escaped of control [10]. Similarly, hand weeding needs a huge
number of labor and hence cannot be applied on a large scale [10]. Therefore,
repeated manual weeding and nonavailability of labor make this method unfeasible
and uneconomic [16].
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Hence, the prevailing situation demands some weed control measures other than
chemicals, and in this context, biological control is gaining much importance
around the world. Biological control is a general term used to define the introduc-
tion of organisms mostly bacteria and fungi in order to solve one or more problems
in the farmer’s field [17, 18]. Biological control using bacteria (bacterial herbicides),
fungi (mycoherbicides), and viruses has recently gained much attention. Different
kinds of fungi showing herbicidal activity are potential candidates of Phoma and
Sclerotina genera. Among the bacteria some members of Pseudomonas and
Xanthomonas depict these attributes.

Broadly speaking the control of weeds using microbes in green areas is a green
approach that may reduce costs, decrease dependence on synthetic chemicals, and
lower the negative impressions of chemicals on the environment. Microorganisms
in the form of bioherbicides can be more selective than synthetic chemicals (herbi-
cides) and target only the desired species [19]. Bioherbicides also lessen the chances
of induction of resistance in the target weed species, due to the involvement of a
number of mechanisms [20]. Therefore, keeping in view the abovementioned (even
more) limitations of conventionally outdated methods necessitates the adoption of
newer methods based on biological agents that are environmentally safer, friendly,
economic, and feasible. We tried to highlight the need for adoption of innovative
methods of weed control with higher efficacy. We then focused on harmful aspects
of the judicious use of herbicides that in turn causes threats to environmental
quality, food security, and human health followed by future research aims for
improvement.

2. Weed control options

About one third of the total costs in field crop production is taken away by the
weed management. There exist a variety of weed control strategies that can be
applied depending upon various cropping systems [21]. Traditional farming prac-
tices generally rely on the application of herbicides and manual weeding. Generally,
weed control measures include physical, chemical, and biological methods.

2.1 Physical weed control

Physical approaches of weed control include mechanical (tillage), manual
methods, crop rotations, and crop fertilization and are separately discussed with
possible limitations.

An increase in the density of weed species has been observed where mono-
cropping was adopted. However due to the diverse nature of crop rotations, the
density of such weeds can be tackled for profitable crop production [22]. Using a
cover crop in rotation with the main crop is an attractive solution to cope with weed
infestations [23, 24]. The integration of cover crops with no-till system has shown
significant reduction (78%) in weed density in the USA [25]. The weeds with
similar life cycles that match with the crop pose serious threats to crop production.
These cover crops when used properly in rotation with the main crop compete with
weeds for available nutrients, light, space, and water sources, hence reducing their
emergence and numbers [26]. However the ability of cover crops to control weeds is
largely governed by the growth habit and performance of the cover crop in a
desired area [27]. That makes the use of this method to be only a small scale.

Increasing the competitive ability of crops against weeds is an important aspect
to avoid field losses due to weeds and has been seen as a strategy for integrated
weed management systems [28]. It can be achieved through manipulating fertilizer
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timing, rate of fertilizer, and placement methods effectively [29]. Nitrogenous
fertilizers have been known to involve in the activation of dormant weed seeds,
thus directly affecting specific weed densities. The most agricultural weeds have
shown growth rates equal to that of wheat in response to the added nitrogen [30].
However, it is not well known that phosphorus levels of soil affect weed growth and
crop as well, but it is a fact that the crop-weed competition is considerably affected
by phosphorus fertilizations, for instance, Bansal [31] reported that weed-crop
(fenugreek) competition was increased with higher P levels. Similarly, Santos et al.
[32] reported that lettuce (Lactuca sativa L.) showed a higher competitive ability
than the common purslane (Portulaca oleracea L.) but not smooth pigweed
(Amaranthus hybridus L.) with higher P levels than lower levels. Therefore, due to
this uncertainty, this method is not widely adopted and acceptable.

Manual weed control methods involve plucking, uprooting, and hoeing with
and/or without hand-driven machines [33] and are in use since ancient times.
Manual weed control is one of the most efficient methods and is applicable in areas
where the labor is easily available. However, immediate availability of labor before
the weeds have grown in crops [10], repeated hand weedings [16] and adoptation
on only small scale farming are the major limitations of this method to be adopted.
Mechanical methods use tillage implements such as cultivators, weeders, and
different types of harrows which are being drawn by animals (in the past) or by
engines (until recently) around world [34]. Tillage practices in the field affect weed
management, weed seed bank in the soil, and soil disturbance patterns. Deep
cultivation can be used to burry weeds that germinate in the upper soil layers such
as Phalaris minor in wheat. However, timely sown wheat in integration with zero
tillage has shown significant results in the reduction of Phalaris minor infestations,
obtaining higher grain yields of wheat [35, 36]. Tillage for weed control is not
suitable for all crops and is only limited to crops sown on rows with suitable row-to-
row spacing. Weeds that grow in close association with crop plants are not managed
properly by this method, and those weeds which are grown within crop rows cause
more losses than those sown in between crop rows [10, 37]. Moreover, some weeds
may regenerate which are not completely uprooted, and root injury to main crop
may occur [38]. However, the use of tillage implements for weed control are
associated with adverse environmental impacts such as deterioration of soil
structure, disturbed soil biological processes and soil erosion [39], leaching of
nutrients which would otherwise be available to plants and eutrophication [40].
Therefore the efficiency of mechanical weed control measures is less than that of
chemical weed control [22, 38]. Tillage practices done for weeding aggravate
more soil compaction than other tillage operations due to a shorter cover of wheel
tracks [38].

2.2 Chemical weed control

The application of synthetic chemicals for crop protection began after the sec-
ond world war when most of the selective herbicides for broad-leaved weeds were
commercialized in 1946 [41]. However, with the advancement in crop protection
measures usually at the start of the twentieth century, copper and sulfuric acid
containing herbicides were developed [42]. Herbicides are chemical compounds
which kill or control weeds and are largely synthesized by crop protection industries
nowadays available for almost all cultivated crops. They were rapidly adopted by
farming communities as they do not require much labor and hence are not costly;
no risks of soil erosion and energy efficiency are further advantages of herbicides
[43]. The most widely used chemicals in wheat to control grassy and non-grassy
weeds are clodinafop, tralkoxydim, Atlantis (meso-/iodosulfuron), sulfosulfuron,
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and pinoxaden. However, for the control of broad-leaved weeds, major chemical
herbicides are carfentrazone, 2,4-D, and metsulfuron [44]. Herbicides account
for 44% of all pesticides worldwide [45]. Nevertheless, chemical methods have
controlled the weeds resultantly improving the yields of diverse crops from 10 to
50% [4]. However, the continuous application of such herbicides had led to
intraspecific selection of weeds and caused the development of herbicide-resistant
biotypes of weeds [46, 47]. Approximately, 300 herbicide-resistant weeds have
been reported in 15 families of synthetic herbicides [45, 48, 49] (Table 1).

A major portion of applied herbicides falls on nontarget species and soil [50].
Some herbicides like triazines and sulphonylureas may persist in soil long enough to
affect the growth of subsequent sensitive crops [38]. Herbicides have also caused
toxicity and diseases to exposed animals [51]. Herbicides in soil however may
not reduce the population of soil microflora and microfauna but may induce
intraspecific and interspecific selections [38].

The magnitude of issues caused by herbicides is much bigger than the outcomes
of herbicides (Figure 1). Therefore it is a dire need of the hour to move toward
some newer methods other than chemicals that can ensure environmental safety
and resource conservation and sustain crop production economically.

Herbicide-resistant weeds Common names Herbicide (s)

Eichhornia crassipes Water hyacinth 2,4-D,Glyphosate

Chenopodium album Common lambsquarters Triazine

Salsola kali Russian thistle Sulfonylurea

Senecio vulgaris Common groundsel Triazine (atrazine)

Sesbania exaltata Hemp sesbania Glyphosate

Cyperus Purple nutsedge Sulfonylureas

Avena fatua Wild oat Glyphosate

Table 1.
Some worst weeds that evolved resistance against chemical herbicides.

Figure 1.
Disadvantages of herbicides to all life forms. Modified and redrawn from [1].
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2.3 Biological weed control

Biological control is the intentional use of biological agents (living organisms) to
control plant pathogens or weeds in fields [52, 53]. The application of herbicides for
sustaining agricultural production has created so many problems such as contami-
nation of groundwater, destruction to the nontarget species, and induction of resis-
tance against herbicides in a number of weed species [45], and other control
methods become even more unsuitable where the land value is small and
unaccessible with widespread weed infestations. This situation paved the way of
researchers to move toward biological control as an alternative option in weed
management. The chemical herbicides can persist in soil for longer periods of time,
have limitations for crop rotation, and cause damage to the nontarget organisms
[54]. Microbial herbicides on the other hand are more selective and affect only the
target species [19]. The other advantage of using microbial agents is the reduced
chance of induction of resistance in the target species [20].

Primarily there are two fields of application within the context of biological
weed control, viz., the classical and augmentative or inundative. Classical biological
control is the introduction and subsequent discharge of a natural enemy of a pest
predator with the objective to reduce its virulence without becoming a pest itself
[55]. This method is suitable for the control of perennial weeds that grow over a
range of large areas such as in the forests, rangelands, along waterways, and road-
sides and where reduction in weed competitiveness is required [56]. Several agents
might be used in this strategy such as insects, fungi, mites, and different herbivores.
The inundative biological control also called as bioherbicide approach is the

Trade name Microbe(s) involved Target weed(s) Representative/initial

report reference

BioMal Colletotrichum gloeosporioides f. sp.

nalvae

Round-leaved mallow [60]

Casst Alternaria cassia Sicklepod, coffee senna [61]

Biochon Chondrostereum purpureum Woody weeds [62]

Collego Colletotrichum gloeosporioides f. sp.

aeschynomene

Northern joint vetch [61]

Phoma Phoma macrostoma Broadleaf weeds [18, 63]

Devine Phytophthora palmivora Strangle vine [64]

Camperico

poae

Xanthomonas campestris pv. Annual bluegrass [65]

Hakatak Colletotrichum acutatum Hakea sericea [17]

Myco-tech Chondrostereum purpureum Deciduous tree species [66]

Smolder Alternaria destruens Dodder [67]

Dr. Biosedge Puccinia canaliculata Yellow nutsedge [68]

Lubao Colletotrichum gloeosporioides f. sp. Dodder [61]

Woad warrior Puccinia thlaspeos Dyer’s woad [69]

Chontrol Chondrostereum purpureum Alders and other hard

woods

[66]

Sarritor Sclerotinia minor Dandelion [70]

Table 2.
Successful microbial herbicides (registered) worldwide.
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application of mass-produced fungal spores or bacterial cultures in higher concen-
trations with the objective to eradicate invasive weeds in a managed area [57]. The
inundative biocontrol is more related to the agricultural needs and turf management
because its implementation is similar to the conventional herbicides as liquid sprays
and solid granules [58, 59]. A number of microbial herbicide formulations based on
bacteria and fungi have been registered worldwide (Table 2).

3. PGPR and stimulation of plant growth

Rhizosphere is the region of the soil surrounded by plant roots and often
extended from the surface of roots [94]. This constituency of the soil is much
wealthier in bacteria than the contiguous bulk soil [95]. The plant growth-
promoting rhizobacteria are the soil bacteria that reside in the rhizosphere and are
involved in the stimulation of plant growth through direct and indirect methods
[96]. Agricultural production currently relies on the judicious use of synthetic
fertilizers [97, 98] that have shown negative environmental impacts due to overuse
of these chemical fertilizers [99]. Therefore, the use of PGPR inoculants can be
considered as an environmentally sound alternative approach for the sustainable
management, decreasing the use of synthetic fertilizers [100–102]. Within the
context of PGPR research and their modes of actions, there has been an increasing
trend in literature to search for the best PGPR candidate in order to commercialize
as bio-fertilizer. Plant growth-promoting rhizobacteria are equipped with a plenty
of mechanisms that can result in the promotion of plant growth. For instance,
Parmar and Dadarwal [103] suggested the involvement of fluorescent pseudomonads
to promote nodulation process and increased nitrogen fixation in chickpea [104], in
another study, confirmed the ability of Azospirillum sp. inoculation on some signif-
icant agricultural crops in terms of increased dry weights of the root and shoot.
Similarly, [105], who suggested that the foliar application of rhizobacteria in apricot
and mulberry causes an increase in total surface area and chlorophyll contents as
compared to uninoculated control [106], documented the growth response in wheat
after the inoculation with rhizobacteria and revealed that the growth and develop-
ment of wheat largely depends on the nature of PGPR and environmental factors.

Spaepen et al. [107] reported that various genera of rhizobacteria use tryptophan
as a precursor to produce IAA by different pathways. However, the plant patho-
genic bacteria only use the indole acetamide pathway to synthesize IAA that causes
tumor formation in plants. Swain et al. [108] suggested that cultures of Bacillus
subtilis when applied on Dioscorea rotundata increased the root/stem ratio and
number of sprouts as compared to the uninoculated control.

A recent study by Minorsky [109] reported the excellent colonization ability
of a PGPR isolate Pseudomonas fluorescens (B16) in tomato roots. The positive
effects were increased plant height, enhanced flowering, and increased fruit
weight. Castro et al. [110] proposed that PGPR stimulates growth and development
of crops both by direct and indirect methods. The direct methods of growth
promotion may include biological nitrogen fixation, solubilization of mineral
phosphorus and iron, production of phytohormones, and synthesis of enzymes and
siderophores. Indirect growth promotion occurs through the production of
antibiotics and fungal-degrading enzymes and competition for niche exclusion in
the rhizosphere [111, 112].

As for the higher uptake of nutrients that is concerned through application of
bacterial inoculants, Qin et al. [113] reported the ability of rhizobacteria to dissolve
fixed phosphate is related to the rhizosphere acidification. The rhizobium inocula-
tion in soybean plants causes increased availability of phosphorus as compared to
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non-inoculated plants, hence positively influencing plant growth. Ambrosini et al.
[114] suggested that sunflower-associated Burkholderia strains were found to be
solubilizing Ca3(PO4)2, hence availing phosphorus for plant use. The management
of soil, plant, and environmental interactions evidenced by boosted crop yields is
gaining much attention globally. Moreover, agricultural inoculants (cultures) con-
tain plant beneficial bacteria that help plants to meet the demands for nutrients.

4. Bacteria in biological weed control

A number of bacterial species have been studied due to their potential against
weed management (Table 3). Two major classes of rhizobacteria that show herbi-
cidal activity are Pseudomonas and Xanthomonas sp. Different rhizobacterial species
have been investigated as weed control agents on different crops based on their
secondary metabolites [115, 116]. As stated earlier Pseudomonas have gained much
importance as an agent in biological weed management; there are many strains of
this genera, some are plant beneficial [117] and others can have inhibitory effects on
plants [118] and so can be applied in biological weed control. Production of extra-
cellular metabolites from these strains is a key mechanism in inhibition of plant
growth or germination inhibition [118–120]. However several other mechanisms
showing herbicidal activity of bacteria are shown in Figure 2.

A strain of Pseudomonas fluorescens (D7) isolated from wheat and downy brome
rhizosphere has shown inhibitory effects on a number of grassy weeds especially
downy brome by virtue of production of a phytotoxin [116, 119, 121]. Kremer et al.
[122] tested the phytopathogenic ability of different fluorescent and nonfluorescent
pseudomonads which were isolated from the rhizosphere of seven important weeds.
About 18% of the strains show phytopathogenecity. However, the ratio of isolates
that inhibited seedlings was ranged between 35 and 65%. The mechanism behind is
the production of antibiotics, and about 75% of the isolates were active in
siderophore production.

Kennedy et al. [121] reported the differential weed inhibition ability of Pseudo-
monads for downy brome and winter wheat. When the culture filtrates were tested
on agar, about 8% of the isolates reduced the root growth of downy brome but have
no effects on the root growth of wheat. However, under soil application only less
than 1% inhibited the growth of downy brome. In the field study, only 0.2% of the
total 1000 isolates inhibited the growth of downy brome but increased the growth
of winter wheat by 18–35%. Kremer [123] worked with different cover crops asso-
ciated with deleterious rhizobacteria. Seed bacterization with DRB reduces growth
and biomass in weeds associated with cover crops. Adam and Zdor [124] described
that rhizobacteria isolated from the rhizosphere of Abutilon theophrasti Medik
caused growth inhibition of different weeds.

Weissmann and Gerhardson [125] suggested that the application of strain
(A153) on Chenopodium album suppressed the growth of plants for 10–14 days;
however in field conditions, this effect lasts for 2 months. Similarly Weissmann
et al. [126] demonstrated excellent growth inhibition ability of a strain (A153)
belonging to soil bacteria Serratia plymuthica when sprayed on a number of broad-
leaved weeds. However, in field experiment this strain showed differential effects
on C. album, Stellaria media, Polygonum convolvulus, and Galeopsis speciosa. Li and
Kremer [127] suggested that the inoculation of Pseudomonas fluorescens strain
(G2–11) inhibited the growth of Ipomoea sp. and Convolvulus arvensis weeds and
increased the growth of wheat and soybean crops. Zermane et al. [128] in a study
stated that P. fluorescens has the possible potential to control Orobanche crenata and
O. foetida (Broomrape).
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Microbe(s) involved Target weed(s) Growth

condition(s)

Mechanism(s) Observed effects/comments References

Pseudomonas fluorescens Sour cherry Pot IAA production Significant loss in root weight [71]

Streptomyces chromofuscus cluster Barnyard grass Axenic Antibiosis and H2S production ND [72]

Streptomyces sp. 0H-5093 Reddish Axenic Antifungal activity and production of 4-

chlorothreonine

Significant growth inhibition [73]

Streptomyces sp. Reddish Axenic Cellulose inhibition and phthoxazolin A

production

Significant growth inhibition due to

cellulose inhibition

[74]

Thermoactinomyces sp. A-6019 Lemna minor Axenic Herbicidal activity and 50-

deoxyguanosine production

ND [72]

Streptomyces hygroscopicus Barnyard grass Pot Antimicrobial and herbicidal activity

due to hydantocidine production

Germination inhibition, significant

reduction in stem, and leaf structure of

weed

[75]

Fusarium and Rhizoctonia sp. Leafy spurge Greenhouse Exopolysaccharide and HCN

production

Biocontrol activity on leafy spurge leading

to significant growth suppression

[76]

Flavobacterium sp. Sugar beet Axenic IAA production Decreased root elongation and increased

shoot to root ratio

[67]

Enterobacter taylorae Bindweed Axenic IAA production 90.5% reduction in root growth, phytotoxic

activity

[77]

Pseudomonas fluorescens Leafy spurge Field Auxin production to phytotoxic levels Reduced cell membrane integrity, inhibited

root growth

[60]

Streptomyces saganonensis Barnyard grass, goose grass,

and tufted manna grass

ND Herbicidine (vi) Biocontrol activity [78]

Pseudomonas syringae strain 3366 Corn spurry and fireweed Pot Phytotoxin production Germination inhibition, reduced root, and

shoot growth

[79]

Pseudomonas syringae pv. tagetis Annual bluegrass Field ND Greater than 70% weed control [57]
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Microbe(s) involved Target weed(s) Growth

condition(s)

Mechanism(s) Observed effects/comments References

Pseudomonas syringae pv. phaseolicola Kudzu Greenhouse ND ND [80]

Fusarium tricinctum Dodder Field ND Effectively controlled dodder at

preemergence and postemergence

application

[70]

Trichoderma virens Several weeds Field Rhizosphere competence and

production of herbicidal compound

viridiol

Reduced emergence and seedling growth of

different weeds up to a significant extent

[81]

Colletotrichum gloeosporioides f. sp.

malvae

Round-leaved mallow Greenhouse ND Significant biomass reduction, reduced

fresh and dry weight, and inhibited root

growth

[82]

Fusarium solani f. sp. Texas gourd Field ND Greater than 78% mortality, reduced vigor [83]

Nectria ditissima Red alder Field Infection ND [84]

Multiple isolates were screened

belonging to Pseudomonas spp. and

Xanthomonas spp.

Jointed goat grass Axenic and

field

ND Inhibition of weeds by 71% in growth

chamber and by 20–74% in different field

conditions

[85]

Sclerotinia sclerotiorum Dandelion Field Necrosis and discoloration 80.7% reduction in number of dandelion

plants and overall weight reductions

[86]

Pseudomonas putida Garden asparagus Pot Succinic acid and lactic acid production ND [87]

Pseudomonas fluorescens and P. putida Striga hermonthica (Del.)

Benth.

Pot ND Significant reduction of weeds and

improved biomass of maize

[88]

Collection of multiple rhizobacteria Leafy spurge Axenic Phytotoxin synthesis 30% reduction in leafy spurge growth [89]

Pseudomonas syringae st. 1 and st. 2 Polypogon monspeliensis,

Convolvulus arvensis, and

Phalaris paradoxa

Laboratory

and field

ND Reduction in biomass up to 47.5%, 22.8%,

and 51.3%. Inhibited 40%, 32.6%, and

46.4% of biomass over control in field

conditions

[90]
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Microbe(s) involved Target weed(s) Growth

condition(s)

Mechanism(s) Observed effects/comments References

Pseudomonas aeruginosa, Pseudomonas

syringae, and Pseudomonas alcaligenes

Broad-leaved dock,

common lambs’ quarter

Pot and field HCN production, IAA production,

antibiotic production

Grain yield losses of infested wheat were

recovered up to 11.6 to 68% in pot trial, and

17.3 to 62.9% in field trial, respectively

[34]

T. harzianum,T. pseudokoningii,T. reesei,

and T. viride

Avena fatua L. Laboratory ND Culture filtrates of four Trichoderma spp.

significantly reduced root, shoot growth,

and biomass of Avena fatua

[91]

Trichoderma harzianum Rifai,

Trichoderma pseudokoningii Rifai,

Trichoderma reesei Simmons, and

Trichoderma viride Pers

Phalaris minor L. and

Rumex dentatus L.

Laboratory Synthesis of butanol, n-hexane,

chloroform, and ethyl acetate

Original concentration of filtrates reduced

root and shoot length and biomass of Rumex

dentatus significantly, but effect on shoot

growth of Phalaris minorwas not significant

[92]

Trichoderma virens combined with

composted chicken manure and rye

Multiple broadleaf and

grassweeds

Field Viridiol (3H)-benzoxazolinone (BOA)

and 2,4-dihydroxy-1,4-(2H)

benzoxazine-3-one (DIBOA)

production

Significant reductions in the emergence of

broadleaf and grassweeds and higher

reductions in weed biomass was resulted

with all treatments as compared to control

[93]

ND = not described.

Table 3.
Features of opportunistic bacteria and fungi in weed control under varying growth conditions.
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Banowetz et al. [118] tested the germination inhibition activity in various
monocot and dicot plants by the application of P. fluorescens (strain WH6). The
germination inhibition activity was attributed due to the production of a compound
called as Germination-Arrest Factor (GAF). Patil [129] screened 15 strains of dele-
terious rhizospheric bacteria isolated from rhizosphere of different weeds. Among
these strains five isolates caused a significant reduction in root and shoot growth of
weeds while showing no harmful effects on crop plants. Boyette and Hoagland
[130] suggested that X. campestris (strain LVA-987) have shown strong growth
suppressive effects against horseweed (Conyza canadensis). Some of the key herbi-
cidal mechanisms shown by bacteria and fungi are shown in Figure 2.

5. Fungi (mycoherbicides) in biological weed control

A list of fungal biological weed control agents is given in Table 3. Within the
scientific context, three genera of fungi have received worldwide attention to be
used in biological weed control. In addition to the abovementioned BioMal and
Collego, different other species of genus Colletotrichum have been researched
extensively. Additionally, C. truncatum have been reported to control sesbania
(Sesbania exaltata) [131] and C. orbiculare that has been found to control spiny
cocklebur (Xanthium spinosum) [63, 132]. It is evident from the literature that these
two Colletotrichum species produce indole acetic acid [133] which is a phytohor-
mone and derivatives of which show herbicidal activity [134].

Within the genus Phoma, three species have a potential against weed control.
P. herbarum is a fungus that is isolated from lesions of dandelion leaf that have
shown control effects of dandelion [135]. P. macrostoma has also been studied for
weed control due to its inhibitory effects on the dicot plants [18, 136, 137].
P. macrostoma strain (94-44B) has been found to control turf associated with
broad-leaved weeds in Canada. Mass spectrometric analysis of P. macrostoma

Figure 2.
Possible mechanisms of plant growth-promoting rhizobacteria and fungi involved in herbicidal activity. IAA
refers to indole-3 acetic acid, and ALA refers to aminolevulinic acid.
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revealed the production of photobleaching of macrocidins [138] that do not have
any inhibitory effects on monocot plants [18]. Despite this macrocidins an anthra-
quinone pigment in P. macrostoma has shown prominent herbicidal effects on some
weeds in Central India [139]. The third species under this genus is Phoma
chenopodicola that is studied widely for its potential against common lamb’s quarter
[62]. The mechanism behind its virulence against lamb’s quarter is the production of
diterpene and chenopodolin, a phytotoxic compound isolated from this species [62].

Two species within the genus Sclerotinia have been investigated for their herbi-
cidal activity. It is evidenced by the work of Abu-Dieyeh and Watson [140] that
Sclerotinia minor effectively controlled dandelions in turf management systems. A
closely related species of this genus S. sclerotiorum has also shown the potential
against noxious weeds [141]. Production of oxalic acid has been found by these two
species that cause virulence on the host plant [142].

Apart from these three genera, there are other fungal candidates that are regis-
tered to control weeds in forest lands and ecosystem managements [143]. A worth
mentioning bioherbicide is De Vine containing a fungus Phytophthora palmivora
[144]. This formulation was registered in 1981 and again in 2006 with the EPA [144].

The mycoherbicide “EcoClear” contains Chondrostereum purpureum, a patho-
genic fungus which should be applied after the injury to the weeds’ branches to
retard resprouting [145].

Soil-borne fungi also serve as an important tool in weed management. Their
direct application in the soil causes decay of the seeds or emerging seedlings [146].
Trichoderma virens is one example that reduces weed populations in horticultural
crops [81].

Khattak et al. [147] tested two fungi Aspergillus and Penicillium for their herbi-
cidal activity against two separate weeds Silybum marianum L. and Lemna minor.
Results showed excellent weed-suppressive characters in the extracts of these fungi.

6. Conclusion and future strategy

Biological control of weeds using bacteria and fungi should be the prime priority
for mitigating the negative impressions posed by conventionally adopted weed
control methods in order to ensure environmental safety and human health. These
biological control agents should be adopted in areas with higher and multiple weed
infestations; areas of low value land, where weeds have gotten resistance against
herbicides; and areas with lack of labor and where the recommended cultural
practices cannot be carried out, for example, restrictions posed by topography and
narrow rowed crop cultivations. However, in special cases the combination of
biological control agents with other methods could also be a promising approach as
an alternative to conventional methods.

The future advancement in biological agents for weed control should be based
on advancements in microbial genetics (metagenomics), microbe-plant interac-
tions, and microbial community-level analyses. Further investigations need to be
discovered in the future in order to make biological weed control more pragmatic
and instrumental. In this context, additional microbe-host relationships containing
a match of biological agent and its potential host at greater susceptibility of viru-
lence should be further explored. Since the 1960s a number of formulations have
been registered in the world. Formulations that can ensure greater shelf lives,
efficacy, and survival of microbial agents should be investigated in the future.
Investigations on microbial community structure and function can advance micro-
bial weed control. Traditional methods of microbial community structure solely rely
on phenotypic characters; molecular-level characterization should be explored in
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the future. In a nutshell, fatty acid profiling should be the initial step in targeted
weed control. Nucleic acid tools, array pyrosequencing, metagenomics, construc-
tion of molecular probes, selection of hyper virulence, genomic studies, and host-
microbe interactions should be investigated for the development of innovative
weed control methods, reducing reliance on herbicide usage.
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