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Chapter

Progress in Ionic Liquids as 
Reaction Media, Monomers and 
Additives in High-Performance 
Polymers
Dan He, Zhengping Liu and Liyan Huang

Abstract

In this chapter, we will review the progress in ionic liquids (ILs) widely used 
as reaction media, monomers and additives in the synthesis, chemical modifica-
tion and physical processing of high-performance polymers (HPPs). Using ILs 
as reaction media in the syntheses of HPPs, the high-molecular-weight polymers 
were obtained in good yields and the shortened dehydration time compared to the 
conventional methods, the separation efficiency of products was improved. It is 
particularly noteworthy that the number of novel copolymers of HPPs with poly-
merisable ILs has steadily increased in recent years. In addition, ILs have been used 
as various types of additives such as the components of polymer materials, plasti-
cizers and porogenic agents in the physical processing of HPPs, and the materials 
prepared include membranes, microcapsules, nanocomposites (NCs), electrolytes 
and grease.

Keywords: ionic liquids (ILs), high-performance polymers (HPPs), reaction media, 
monomers, additives, polyimides (PIs), polysulphones (PSFs)

1. Introduction

1.1 Ionic liquids (ILs) and their properties

The melting points of ILs, also known as low-melting-point organic salts, are 
usually below 100°C; ILs are composed of organic cations and inorganic/organic 
anions, as shown in Figure 1 [1, 2]. The number of possible cation-anion combina-
tion has been estimated to be >106 [3]. ILs are most commonly abbreviated by writ-
ing the abbreviation/formula of the cation and anion in square brackets (without 
charges); e.g., [bmim][PF6], [bmim][Tf2N] and [emim][Cl] are the abbreviations 
for 1-butyl-3-methyl-imidazolium hexafluorophosphate, 1-butyl-3-methylimidazo-
lium bis(trifluoromethanesulphonyl)imide and 1-ethyl-3-methylimidazolium chlo-
ride, respectively. Owing to their high chemical and thermal stability, low volatility, 
and low toxicity, ILs have attracted much attention for applications in chemistry 
and industry. In addition, the properties of ILs include high conductivity, wide elec-
trochemical window, low flammability, ability to dissolve organic and inorganic sol-
utes and gases, and recyclability. As far as vapour pressures are concerned, several 
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ILs can be vaporised under a high vacuum at 200–300°C and then recondensed [4]; 
however, ILs indeed have negligible vapour pressures at near ambient conditions. 
Thus, for general reactivities or processes, they may be considered as low-volatile 
reaction media. ILs are generally chemically stable reaction media, but this cannot 
be taken as granted. The proton at the C(2)-position of imidazolium cation is acidic, 
and under basic conditions, deprotonation leading to carbene is possible [5]. ILs are 
considered as rational designable solvents that can be easily tuned by using various 
combinations of cations and anions to achieve ILs exhibiting appropriate properties 
and achieving practical applications for a desired task (so-called task-specific ILs), 
making it possible to introduce ILs into specific synthesis processes [6].

Because of these special properties, ILs have emerged as novel and exciting reac-
tion media in their own right. Every year, an increasing number of papers are being 
published on the applications of ILs for enhancing reactivities or processes in both 
chemical research and industry. So far, free-radical polymerisation, polycondensa-
tion and ionic polymerisation have been successfully carried out using ILs as the 
reaction media. In the step polymerisation field, there is a huge interest for high-
performance polymers (HPPs). Despite improved synthesis methods and commer-
cial availability of various ILs for replacing typical organic reaction media, they are 
still more expensive than typical organic reaction media. Therefore, the application 
of ILs as reaction media for enhancing reactivities or processes is limited.

1.2 High-performance polymers (HPPs) and their categories

HPPs are also known as high-temperature polymers, special engineering plastics, 
advanced engineering materials, and heat-resistant polymers [7]. They are defined 
as polymers that can retain the desirable properties when exposed to very harsh 
conditions, including, but not limited to, a high-temperature, a high-pressure, and 
corrosive environment. They are well known for outstanding thermal stability and 
service temperatures, good mechanical properties, dimensional and environmental 
stability, high resistance to most chemicals, gas barrier and electrical properties, 
etc., under extreme conditions, even at elevated temperatures [8, 9]. To better 
understand the reason for their strength, one must consider the bond strength that 
can be quantified by bond dissociation energy. First, the higher the bond dissocia-
tion energy, the harder it is to break the polymer chain, and thus the better the resis-
tance of the polymer to harsh environment. The bond energies of C–C and C〓C 
bonds are 83 and 145 kcal mol−1, respectively; thus, it is harder to break a C〓C 
bond than a C–C bond. Most HPPs contain more C〓C bonds than C–C bonds. 
Similarly, the bond energies of C–H and C–F bonds are 99 and 123 kcal mol−1, 

Figure 1. 
Typical cationic and anionic components of ILs.
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respectively; some of the C–H groups are also replaced with C–F groups. The 
resonance stabilisation is enhanced by adding aromatic components along the 
backbone, and it is estimated that the incorporation of resonance-stabilised units 
can add 40–70 kcal mol−1 to the bond strength. Such a molecular structure of HPPs 
improves their resistance and stability; thus, they can retain the desirable properties 
under very harsh conditions.

HPPs include polysulphones (PSFs), polyimides (PIs), polyaryletherketones 
(PAEKs), poly(arylene sulphide)s (PASs), polyarylates (PARs), liquid crystal-
line polymers (LCPs), fluoroplastics (PVDFs), p-hydroxybenzoic acid polymers, 
poly(naphthalene), poly(oxadiazole), and high-temperature nylon (HTN). HPPs 
can be divided into amorphous polymers, semi-crystalline polymers, and LCPs; 
e.g., PSFs are described as amorphous polymers and polyetheretherketones are 
semi-crystalline polymers. The applications of HPPs span across aerospace, defence, 
weaponry, energy, electronics, automotive, construction, nuke industry, membrane 
technologies, etc. In recent years, new HPPs and materials containing HPPs with 
enhanced application potential in more fields have been reported, including materi-
als obtained by the chemical modification and blending of HPPs containing ILs.

1.3 Overview

The aim of this article is to review the recent progress in the field of ILs as reac-
tion media, monomers and additives in the synthesis, chemical modification and 
physical processing of HPPs based on recent literatures, with the main emphasis on 
possible advantages, limitations and importance of the work. The article is struc-
tured as follows: section 2 focuses on progress in IL application in HPPs. Section 2.1 
focuses on ILs as reaction media in the synthesis of HPPs, including PIs, PSFs, and 
PAEKs, and synthesis of HPPs in ILs under microwave (MW) irradiation. Section 
2.2 focuses on ILs as monomers for the chemical modification of HPPs. The last part 
of Section 2 focuses on ILs as additives for the physical processing of HPPs, includ-
ing membranes, microcapsules, electrolytes, nanocomposites (NCs) and grease.

2. Progress in IL application in HPPs

2.1 ILs as reaction media for synthesis of HPPs

Most HPPs are synthesised by step polymerisation reactions. Step polymerisa-
tion is one of the main polymerisation reactions for preparing polymers, usually 
requiring elevated temperatures, high-boiling-point reaction solvents, high vacuum 
and the removal of small molecules to reach the equilibrium. Therefore, it seems 
to be suitable to introduce ILs into step polymerisation owing to their intrinsic 
properties as described above. In 2002, high-molecular-weight aromatic PIs and 
polyamides were synthesised for the first time, obtaining polymers with inherent 
viscosities from 0.52 to 1.35 dL/g in ILs 1,3-dialkylimidazolium bromides [10]. The 
use of ILs as novel solvents for the synthesis of other HPPs has been reported, such 
as PAEK [3, 11] and PSF [12, 13].

2.1.1 Synthesis of PIs in ILs

In 1908, Jones et al. first synthesised PIs, but it was difficult to process and fab-
ricate them [14]. Until the early 1960s, Du Pont, USA, made a substantial progress 
in the processing of PIs; thus, PIs were developed and widely utilised in various 
applications [15]. These polymers are known as HPPs and possess outstanding 
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thermal stability, excellent electrical properties, improved mechanical proper-
ties and good resistance to organic solvents. They are widely applied in various 
modern industries such as gas separation membranes, insulator films for electrical/
electronics, semi-conductor devices, coatings and composites, high-temperature 
adhesives, cell processing, and biochip design [16]. In general, PIs are produced 
in two steps via the formation of polyamic acids from diamines and dianhydrides. 
Other reported synthetic routes utilised tetracarboxylic acids, half-esters, a com-
bination of bis(o-diiodoaromatics) with carbon monoxide, etc., [17]. Co-PIs with 
flexible linkages, such as ether and ester linkages between the aromatic rings of the 
main chain, have been synthesised, such as poly(amide-imide)s (PAIs), poly(ether 
amide-imide)s (PEAIs), poly(ester-amide-imide)s, poly(ether-imidazole-imide)s, 
and poly(amine-amide-imide)s [18].

In 2002, Vygodskii et al. first reported a novel one-step strategy for the syn-
thesis of high-molecular-weight aromatic PIs by the polycyclisation reaction of 
1,4,5,8-naphthalene tetracarboxylic acid dianhydride (DANTCA) with 3,3-bis(4′-
aminophenyl)phthalide (Aph) in 1,3-dialkylimidazolium-based ILs without using 
catalyst at 180–200°C, as shown in Figure 2 [10]. These ILs seem to be suitable 
reaction and activating media for the synthesis of aromatic PIs and polyamides. The 
polymerisation process and molecular weights of PIs are significantly affected by 
the structure and nature of ILs. The effects of IL structure include the following: 
(1) the best results were obtained in ILs with a symmetrical structure, obtaining 
polymers with a maximum inherent viscosity of 1.35 dL/g. (2) When using ILs 
with a symmetrical structure bearing alkyl chains of carbon atoms n = 2–6 and 12, 
polycyclisation occurred in a homogeneous solution for ILs with n ≤ 4, but rapid 
precipitation of the PI occurred for ILs with n > 4. (3) High-molecular-weight 
polymers could be obtained in ILs with Br−. (4) PIs insoluble in organic solvents 
do not precipitate from reaction solutions in ILs with anions SiF6

−, HSO4
−, NO3

−, 
I− and CH3COO−. (5) As far as cations were concerned, the molecular weights of 
PIs are lower in ILs based on quinoline and pyridine bearing the same alkyl chains 
longer than imidazole. In summary, it is possible to tailor ILs as active solvents for 
the step polymerisation reactions of PIs by varying the structures of the cations 
and anions of ILs. Studies on using ILs as reaction media for synthesising other 
step polymerisation polymers are in progress. Later, Vygodskii and co-workers 
reported studies on using different ILs as reaction media for synthesising other step 
polymerisation polymers with high molecular weights, such as poly(amide imide)
s (PAIs) [19–21]. Although relatively high-molecular-weight PIs have been obtained 
in the absence of any added catalysts and lower reaction temperatures than the 
conventional synthetic method [17, 22, 23], the limited solubility of some aromatic 
substrates in ILs was still the main problem. In 2006, Ohno et al. reported that the 
solubility of starting materials was improved by adding imidazolium-type zwit-
terion (ZI), 1-(1-butyl-3-imidazolio)butane-4-sulphonate in ILs, leading to higher 
molecular weights of the resulting PIs [24]. On the other hand, in some studies of 
the step polymerisation of PIs, catalytic effect of ILs was observed. A type of PI 
was synthesised by the step polymerisation reactions of 1,4-bis(3-aminopropyl)

Figure 2. 
Synthetic route for PI in IL.
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piperazine with 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) in 
the presence of ILs as the catalyst and N-methylpyrrolidone (NMP) as the solvent. 
The degrees of polymerisation are not only high, but the IL also exerts a detectable 
effect on polymer solubility. The PI with a higher degree of polydispersity was 
obtained in ILs based on imidazole than that obtained with pyridine and alkylamine 
[25]. PI nanoparticles were obtained in an IL, namely, 1-ethyl-3-methylimidazolium 
bis(trifluoromethyl-sulphonyl)imide ([emim][Tf2N]), as a continuous phase 
without the addition of any further activating or stabilising agents by the hetero-
phase step polymerisation of different aromatic tetracarboxylic acids and diamines. 
These PI particles with a range of 100 nm showed a high thermal stability by TGA 
and a decomposition temperature of ~520°C [26]. A sulphonated co-PI (SPI) was 
prepared in an IL, 1-ethyl-3-methyl imidazolium bromide [emim][Br], without 
any catalyst. These co-PIs prepared showed superior properties compared to those 
prepared in a common solvent, indicating promising properties for applications in 
proton-exchange membrane fuel cells [27, 28]. The trifluoromethylated poly(ether-
imidazole-imide)s (PEII)s based on an unsymmetrical-diamine-bearing carbazole 
and imidazole chromophores were obtained with 80–96% yields in imidazolium-
based ILs. They were amorphous with good thermal and thermo-oxidative stability, 
excellent solubility, and ability to form tough and flexible films [29].

Optically active PAIs were successfully synthesised in an IL, namely, 1,3-dipro-
pylimidazolium bromide ([dpim][Br]), using triphenyl phosphite (TPP) (a 
condensing agent) without any additional extra components such as LiCl and 
pyridine. Therefore, it was concluded that ILs not only act as solvents, but also act 
as catalysts in this step polymerisation [30]. At the same time, various types of ILs 
were investigated as solvents and catalysts for the polymerisation of PAIs [31]. A 
PAI based on 2-[5-(3,5-dinitrophenyl)-1,3,4-oxadiazole-2-yl]pyridine was synthe-
sised in [bmim][Br]. Heterocyclic and optically active PAIs incorporating L-amino 
acids were synthesised in [pmim][Br] [18, 32]. Shadpour et al. later reported several 
relative articles in succession. For example, organosoluble and optically active PAIs 
bearing an S-valine moiety were synthesised by the step polymerisation of different 
aliphatic and aromatic diisocyanates with a chiral diacid monomer in tetrabutylam-
monium bromide (TBAB) IL. These polymers exhibited good thermal properties 
and were soluble in amide-type solvents [33]. The poly(amide-ether-imide-urea)
s (PAEIU)s were synthesised by the step polymerisation of a chiral diamine with 
several diisocyanates in [dpim][Br] IL [34]. Heat-stable and optically active pro-
cessable PAI nanostructures bearing a hydroxyl pendant group were synthesised by 
step polymerisation in the presence of IL and TPP [35]. In recent years, using TBAB 
IL/TPP and ultrasonic irradiation, optically active PAI/TiO2 bio-NCs containing 
N-trimellitylimido-L-isoleucine linkages, poly(vinyl alcohol) (PVA) with chiral 
PI nanoparticles containing S-valine, and optically active PAI/zinc oxide bio-NCs 
(PAI/ZnO BNCs) containing L-valine were obtained one after the other [36–38].

2.1.2 Synthesis of PSFs in ILs

In 1965, PSF was first successfully developed and commercialised by Union 
Carbide, USA, currently known as Udel PSF. Usually, the number-average 
molecular weights of commercial products are in the range of 16,000–35,000, 
and the weight-average molecular weights are in the range of 35,000–80,000 [6]. 
They are well known for their outstanding thermal stability, good mechanical 
properties, electrical properties, transparency and resistance to most chemicals. 
They are widely used in various modern industries such as electrical/electronics, 
machineries, medical equipment, transportation and aerospace, and membrane 
separation technologies [39–42]. In recent studies, PSFs were mainly studied in 
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the development of membrane technologies such as hemodialysis, micro-/ultra-
filtration membrane and gas separation. PSFs are usually synthesised via nucleo-
philic aromatic substitution polymerisation (SNAR) reactions [43]. For example, 
bisphenol-A PSF is synthesised from 2,2-bis(4-hydroxyphenyl) propane (bisphenol 
A) and 4,4′-dichlorodiphenylsulphone (DCDPS) or 4,4′-difluorodiphenylsulphone 
(DFDPS). Poly(ether sulphone)s (PESs) are usually synthesised from 4,4′-dihy-
droxydiphenylsulphone (bisphenol-S) and DCDPS/DFDPS [13].

Liu’s research group is one of the most active research groups in this field. In 
2012, high-molecular-weight PSFs were synthesised in high yields by step poly-
merisation of bisphenol A with DFDPS for the first time in various ILs/zwitterions 
(ZIs) as the reaction media in the presence of potassium carbonate (K2CO3) using 
a one-pot green protocol shown in Figure 3. In this work, the dehydration time 
was shortened to 80% (2.5–8 to 0.5 h) compared to the conventional methods, and 
the weight-average molecular weights ranged from 30,000 to 130,000, with great 
potential for commercial applications. The polarity of ILs strongly affected the 
molecular weight of PSF, and ILs containing PF6

− were better [6]. Recently, PESs 
were also successfully synthesised by the step polymerisation of bisphenol S with 
DFDPS in ILs/ZIs as the reaction media in the presence of K2CO3 using a one-pot 
green protocol. The dehydration time was shortened to 0.5 h compared to the 
conventional methods, and a high solubility of bisphenol-s dipotassium salt in IL/
ZI significantly lowered the reaction temperature (150°C) than the conventional 
temperature (220 − 300°C). The proposed method has clear advantages for syn-
thesising PSF and PES compared to volatile organic solvents and, in principle, can 
be applied to the synthesis of other HPPs via nucleophilic aromatic substitution 
polymerisation reactions [13]. In 2017, the synthesis of poly(phenylene sulphide 
sulphone) (PPSS) in ILs was presented [44].

2.1.3 Synthesis of PAEKs in ILs

PAEK was reported by Bonner of Du Pont, USA, in 1962 and Goodman of 
Imperial Chemical Industries (ICI), UK, but the molecular weight of products 
synthesised was the lower. Until 1979, Rose et al. of ICI reported that PEK with a 
high molecular weight was synthesised, laying the foundation for the synthesis of 
PAEK. Commercially available as VICTREX® PEEK™, it was introduced into the 
market by ICI. Poly(ether ether ketone) (PEEK) is one of the most recently devel-
oped materials. PAEKs exhibit many outstanding characteristics including high 
thermal stability, excellent mechanical, thermo-oxidative, and chemical resistance 

Figure 3. 
Synthetic route for PSF in IL/ZI and structures of ILs and ZI.
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properties under diverse conditions, and good electrical insulation [45, 46]. The 
PAEK applications span across automotive, aerospace or chemical industries, ortho-
paedics and surgery, cable insulation, and membrane technologies. In addition, 
high temperatures, intense mechanical stress, and/or exposure to harsh chemical 
environments are required; thus, PAEK can be a lightweight replacement for metals.

In 2013, PAEKs were successfully synthesised via SNAR mechanism using ILs 
[i-pmim][PF6] as the green reaction media. The optimised step polymerisation con-
ditions were 50 wt% monomer concentration, dehydration at 150°C for 0.5 h and 
polymerisation at 180°C for further 1.5 h. The number-average molecular weights 
of PAEKs ranged from 10,000 to 18,000 g mol−1 with high yields. In addition, the 
interactions of bisphenol A with ILs were investigated, exhibiting a strong influence 
on the PAEK synthesis [11]. In the same year, PEEKs were also synthesised in IL 
[bmim][Tf2N], by polycondensation reactions of hydroquinone with 4,4′-dihalo-
benzophenones in the presence of K2CO3 at 320°C. The materials produced in IL 
were similar to those produced in the industrial solvent of choice, but the molecular 
weights were lower, possibly due to the lower solubility of the polymer. The advan-
tage of using IL [bmim][Tf2N] over diphenyl sulphone as the solvent is that the 
separation efficiency significantly improved [3]. It is expected that more custom-
designed ILs would be used for PAEK production, potentially widening the scope of 
the choice of solvents currently used.

2.1.4 Synthesis of HPPs in ILs under microwave irradiation

Microwave (MW) is a type of electromagnetic wave with frequency ranging 
from 300 MHz to 300 GHz, usually 2450 MHz for radiation chemical reaction; the 
temperature of the system depends on the power of MW and electrical properties 
of the medium. MW radiation can accelerate the reaction rate for a specific system 
and complete these reactions within a short period. Thus, as a non-conventional 
energy source, MW radiation has become an increasingly more practical and 
popular technology in organic chemistry, including polymerisation. Owing to their 
high ionic conductivity and polarisability, ILs act as excellent MW-absorbing agents 
and are, therefore, used in polymerisation. Mallakpour’s research group is one of 
the most active research groups in this field. In 2007, poly(urea-urethane)s (PUU)s 
were prepared using IL 1,3-diallylimidazolium bromide and tetrabutyl-ammonium 
bromide (TBAB) under MW irradiation as well as conventional heating. The poly-
merisation reactions occurred rapidly, producing a series of PUUs in good yields 
and with moderate inherent viscosities of 0.21–0.46 dL/g. These PUUs showed a 
good solubility and could be readily dissolved in traditional organic solvents [47].

MW-assisted synthesis can provide higher yields and purer products than 
traditional heating; therefore, recently, MW radiation has been used for the synthe-
sis of HPPs, especially PAIs. In 2010, poly(urethane-imide)s (PUIs) were prepared 
in the presence of IL TBAB under MW irradiation conditions. All the PUIs showed 
thermal stability and good solubility in various organic solvents. In in vitro toxic-
ity studies, the prepared materials showed biological activity and non-toxicity to 
microbial growth and were classified as bioactive and biodegradable compounds 
[48]. In 2012, chiral-nanostructured PAIs were synthesised in TBAB IL under MW 
irradiation by the polymerisation reactions of several amino-acid-based chiral 
diacids with an aromatic diamine, 2-(3,5-diaminophenyl)-benzimidazole. The PAIs 
obtained were organo soluble, and the HPPs were obtained in high yields and with 
inherent viscosities in the range 0.40–0.52 dL/g. The materials synthesised were 
amorphous polymers with nanostructures containing nanosized particles in the 
range from 40 to 80 nm [49]. Chiral-PAI-nanostructures-bearing hydroxyphenyl 
pendant units in the side chain were also prepared using TBAB IL and TPP as the 
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condensing agent under MW irradiation. The obtained PAIs had inherent viscosities 
in the range 0.32–0.49 dL/g; they were amorphous polymers with nanostructures in 
which the nanosized particles are in the range from 66 to 78 nm [50]. Soluble, ther-
mally stable PAIs modified with siloxane linkages with a reduced dielectric constant 
were synthesised via the isocyanate method in TBAB, tetrabutyl-phosphonium 
bromide (TBPB), and 1-buthyl-3-methyl imidazolium chloride ([bmim][Cl]) under 
MW irradiation [51].

2.2 ILs as monomers for chemical modification of HPPs

In 2010, Li et al. reported that block co-PIs based on aromatic dianhydrides and 
diamines copolymerised with diamino IL monomers, specifically 1,3-di(3-amino-
propyl) imidazolium bis[(trifluoromethyl)sulphonyl]imide ([DAPIM]-[Tf2N]) and 
1,12-di[3-(3-aminopropyl)imidazolium]dodecane bis[(trifluoromethyl)sulphonyl] 
imide ([C12(DAPIM)2][Tf2N]2), as shown in Figure 4, were synthesised by the 
Boc protection method and using diverse compositions. These two ILs were first 
reacted with 2,2-bis(3,4-carboxylphenyl)hexafluoropropane dianhydride (6FDA) 
to produce 6FDA-IL oligomers as the IL component for block co-PIs. Later, the 
oligomers were reacted with 6FDA and m-phenylenediamine (MDA) at an oligomer 
concentration from 6.5 to 25.8 mol% to form block co-PIs. As the concentration 
of 6FDA-IL oligomer increased in the block co-PIs, the thermal degradation tem-
perature and glass transition temperature of the produced co-PIs decreased, but 
their density increased. Compared to pure 6FDA-MDA, the gas permeability of the 
IL-based block co-PI decreased, but the ideal permeability selectivity for CO2/CH4 
gas pair increased [52]. The co-PIs were mainly used in the separation of gases such 
as O2, N2, CH4 and CO2 [53, 54].

Later, a series of poly(arylene ether sulphone)s containing bulky imidazole 
groups (PSf-Im-x) based on a monomer 2,2′-bis-(2-ethyl-4-methylimidazole-
1-ylmethyl)-biphenyl-4,4′-diol (EMIPO) were successfully synthesised. After 
the quaternisation by n-bromobutane, these polymers were evaluated as alkaline 
anion exchange membranes (AEMs) as shown in Figure 5. 2-Ethyl-3-butyl-4-
methylimidazolium was introduced as the functional group in these polymers; the 
bulky groups present around the imidazolium ring reduced the access of OH− to 
imidazolium, thus increasing the alkaline stability of the membranes. The mem-
brane showed an IEC value of 2.07 and ionic (OH−) conductivity of 0.014 S cm−1 at 
30°C, in which 80% of the ionic conductivity was maintained even for the treat-
ment in 1 M KOH at 60°C for 144 h [12].

Figure 4. 
Structures of monomers used in polyimide synthesis: (a) bis[(trifluoromethyl)sulphonyl]imide  
([Tf2N]), (b) 2,2-bis(3,4-carboxylphenyl)hexafluoropropane dianhydride (6FDA), m-phenylenediamine 
(MDA), (c) 1,3-di(3-aminopropyl)imidazolium bis[(trifluoromethyl)sulphonyl] imide ([DAPIM]
[Tf2N]), and (d) 1,12-di[3-(3-aminopropyl)imidazolium] dodecane bis[(trifluoromethyl)sulphonyl] 
imide ([C12(DAPIM)2][Tf2N]2).
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Recently, a new synthetic method was reported for the modification of PIs; the 
PIs were first transformed to their ionic forms via the subsequent N-alkylation and 
quaternisation of benzimidazole or quinuclidine moieties; then, an ion exchange 
reaction was carried out to prepare polymers bearing the bis(trifluoro-methyl-
sulphonyl)imide anion. High-molecular-weight (Mn = 22,000–97,000) cationic 
polyelectrolytes with the degree of quaternisation as high as 96% were obtained 
under the optimal conditions. These new materials showed excellent mechanical 
and thermal properties, adjustable surface wettability, and improved gas transport 
properties [55]. Several recent articles reported that the incorporation of IL moi-
eties into HPP by copolymerisation is a promising strategy to prepare novel copoly-
mers of ILs with HPPs with improved properties. It is presumed that further related 
work will be reported in the future.

2.3 ILs as additives for physical processing of HPPs

The application of ILs for HPPs is not limited to their use as reaction media in 
polymerisations for preparing HPPs, and ILs are miscible with some HPPs and 
used as additives in the materials such as the components of polymer materials, 
plasticizers, and porogenic agents. By blending ILs with HPPs, the properties of the 
obtained mixtures can be considerably affected [56]. Thus, applications of ILs are 
being explored in the fields of membranes, microcapsules, electrolytes, NCs and 
grease.

2.3.1 Membrane

Supported IL materials have two main processes. First, ILs are covalently linked 
to polymers, inorganic surfaces or particles, thereby supporting the IL materials. In 
such systems, the properties of the ILs are modified to some extent, but generally, 

Figure 5. 
Synthetic routes of PSf-Im-x and PSf-ImmOm-x.
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the main features are retained. Second, ILs are dissolved and imbibed in a poly-
meric membrane, porous matrix, particle or bulk material as the components of the 
mixture, and the properties of the IL are retained [57]. In recent years, supported IL 
membranes (SILMs) have received considerable attention for their applications in 
gas separation, electrolyte, proton exchange, etc.

Early on, it was reported that ILs based on 1-n-alkyl-3-methylimidazolium 
cation (n-butyl, n-octyl, and n-decyl) can be used together with the anions PF6

− or 
BF4

−. Immobilisation of these ILs on a polyvinylidene fluoride (PVDF) membrane 
provides an extremely highly selective transport for secondary amines over tertiary 
amines [58]. Later, the PVDF/ILs composite membranes were prepared. A mem-
brane using [emim][Tf2N] and PVDF hollow fibre was prepared as a support for 
CO2/N2 separation [59].

A quasi-solid-state dye-sensitised solar cell based on poly(vinylidenefluoride-
co-hexafluoro-propylene) P(VDF-HFP)/SBA-15 nanocomposite membranes was 
obtained using dimethyl-propylimidazolium iodide (DMPII) IL [60]. The SILM was 
prepared using a hydrophilic PVDF support immobilised in the IL 1-butyl-2,3-di-
methylimidazolium hexafluorophosphate ([bdmim][PF6]) [61]. The preparation 
of PVDF-blended membranes with dominating β-phase crystals was studied in ILs 
1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF4), [bmim][PF6] and 
1-methylimidazolium trifluoromethanesulphonic ([mim]CF3SO3) as the co-solvents 
for zwitterionic copolymers [62]. A PVDF membrane with piezoelectric β-form was 
prepared by immersion precipitation in mixed solvents containing an IL [bmim]
[BF4] [63]. Composite membranes were prepared as electroactive actuators using 
PVDF and [emim][Tf2N] as the plasticiser [64]. A 1-butyl-3-methylimidazolium 
triflate ([bmim]OTf)/PVDF composite membrane was prepared by the impregna-
tion method and used for the separation of C6H6/H2 and C6H12/H2, as shown in 
Figure 6 [65]. Thin films containing 1-ethyl-3-methylimidazolium nitrate ([emim]
[NO3]) IL and PVDF were investigated [66]. Another HPP-containing fluorine, 
polytetrafluoroethylene (PTFE), was often prepared using an SILM. For example, 
gelled SILMs were synthesised by the gelation of [bmim][PF6] in the pores of PTFE 
hollow fibres and used in the separation of butanol from acetone-butanol-ethanol 
mixtures (ABE) by sweep gas pervaporation [67]. Amino-acid-IL-based-facilitated 
transport membranes containing PTFE were prepared via impregnation [68].

The SILMs prepared with PSF supports are often used for CO2 separation such 
as CO2/He, CO2/CH4 and CO2/N2 separation, even at elevated temperatures [69–71]. 
In addition, ion-conductive membranes were prepared by casting a solution of 
Udel-type PSF and IL 1-butyl-3-methylimidazolium trifluoromethane-sulphonate 
([bmim][TfO]) or 1-ethylimidazolium trifluoromethanesulphonate ([eim][TfO]) 
[72]. The SILMs prepared with PES supports are frequently used in the separation 
of gases, especially SO2 [73, 74] and CO2 [75–78]. In addition, PES membranes 
with ion exchange and anti-biofouling properties were prepared by the surface 
immobilisation of Brønsted acidic ILs via double-click reactions [79]. A sulphonated 
PES (SPES) film containing ILs was obtained by solution casting and prepared 
using double-side, self-cleaning polymeric materials, as shown in Figure 7 [80]. 
Hydrophilic porous PES membranes and microcapsules were prepared via non-
solvent-induced phase separation (NIPS) using IL [bmim][PF6] as the structure 
control agent [81].

The surface wettability of negatively charged PI films was tuned by the elec-
trostatic self-assembly of ILs and formation of spherical nanoparticles, indicating 
the assembly of longer-substituent cations [82]. The membranes containing ILs 
prepared with PI supports were often used in gas separation [83–86] and fuel cells 
[87–89]. In addition, available PAIs [90], copolymers of poly(ethylene glycol) 
(PEG) and aromatic PI [91, 92], and SPI [93–95] were also used in the preparation 
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of membranes containing ILs. For example, SPI/IL composite membranes as 
proton-exchange membranes have been reported in recent years [96, 97].

Composite membranes based on sulphonated poly(ether ether)ketone (SPEEK) 
with ILs [CH3CH2CH2NH3][CF3COO] (TFAPA), [bmim][Cl] and [bmim][PF6] have 
been prepared [98, 99]. Composite membranes have been prepared using SPEEK 
ILs in the presence of Y2O3 [100].

2.3.2 Microcapsule

In 2007, monodispersed microcapsules enclosing [bmim][PF6] were prepared via a 
two-stage microfluidic approach, as shown in Figure 8; the hollow PSF microcapsules 
showed an encapsulation capacity of 30.8% [101]. PSF microcapsules containing 

Figure 6. 
Photographs (a and b) and SEM images (c and d) of the PVDF membrane before (a and c) and after 
impregnation (b and d) with [bmim] OTf.

Figure 7. 
Picture and schematic of the final material.
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[bmim][PF6] were also obtained by spraying a suspension dispersion with an encapsu-
lation capacity of 29% [102]. PSF microcapsules have practical use such as the removal 
of caprolactam from water [103]. PEEK microcapsules containing trihexyl(tetradecyl) 
phosphonium chloride IL was obtained in N,N-dimethylformamide (DMF) as the 
dispersing phase and dodecane [104]. PTFE microcapsules containing [hmim][Tf2N] 
IL lubricant with small sizes (below 10 μm) have been reported [105].

2.3.3 Electrolyte

ILs have also been used as solvents in extraction processes or as electrolytes. 
Polymer electrolytes comprising IL [emim][Tf2N] and soluble SPI showed 
a high ionic conductivity and reliable mechanical strength, suitable for HPP 
actuators [106]. Gel polymer electrolytes (GPEs) [107–109] and solid poly-
mer electrolytes [110–114] have been widely reported. A series of GPEs were 
prepared using the electrospun membranes of poly(vinylidene fluoride-co-
hexafluoropropylene) [P(VdF-co-HFP)] incorporating ILs, 1-alkyl-3-methy-
limidazolium bis(trifluoromethylsulphonyl)imide in the presence of lithium 
bis(trifluoromethylsulphonyl)imide (LiTf2N) [115]. An IL-GPE containing semi-
crystal PVDF, amorphous polyvinyl acetate (PVAc) and ionic conductive [bmim]
[BF4] was prepared via the solution-casting method for solid supercapacitors [116]. 
A PVDF-HFP/PMMA-blended microporous gel polymer electrolyte incorporating 
[bmim][BF4] was fabricated for lithium-ion batteries [117]. Solid polymer elec-
trolytes using poly(vinylidene-fluoridetrifluoroethylene) and N,N,N-trimethyl-
N-(2-hydroxyethyl) ammonium bis(trifluoromethylsulphonyl)imide ([N1112(OH)]
[Tf2N]) IL were fabricated for energy storage applications [118]. PI/IL composite 
membranes for fuel cells operating at high temperatures were prepared by impreg-
nating a porous Matrimid® membrane with protic ILs: 1-n-methyl-imidazolium 
dibutylphosphate ([C1im][DBP]), 1-n-butylimidazolium dibutyl-phosphate 
([C4im][DBP]) and 1-n-butylimidazolium bis(2-ethylhexyl)phosphate ([C4im]
[BEHP]). The electrolyte membranes were used as a proton-exchange membrane 
fuel cell (PEMFC) [119]. An IL-polymer electrolyte film based on a low-viscosity IL 
(1-ethyl-3-methylimidazolium dicyanamide) incorporated into a polymer matrix 

Figure 8. 
Optical microscopic images and composition of organic phase is PSF: dichloromethane (DCM): [bmim]
PF6 = 5 g: 80 ml: 3 g; continuous phase is 0.1 wt% gelatin solution; inner size of nozzle: 0.6 mm, IL 
microcapsules, flow rate of continuous phases (CP): 30 ml/min; and flow rate of droplet phases (DP): 
125 μl/min.
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(PVDF-HFP) was prepared, exhibiting liquid-like conductivity, and the maximum 
conductivity of PVDF-HFP + 25 wt% IL was as high as 10−3 S/cm, as shown in 
Figure 9 [120]. Quasi-solid-state electrolytes (QSEs) consisting of IL-LiTf2N-
fumed silica nanoparticles were prepared for use in bulk-type all-solid-state cell 
configuration lithium-sulphur rechargeable batteries [121].

2.3.4 Nanocomposite

Carbon nanotubes (CNTs) consist of rolled-up graphene sheets and can be used 
as electronic, conductive and reinforcing fillers for polymer composites. MWCNTs 
possess a nanoscale diameter, a high aspect ratio, excellent mechanical properties, and 
good electrical conductivity. In recent years, MWCNTs have gained considerable inter-
ests of scientists and engineers, especially in polymer composites containing HPPs and 
ILs. A PI composite film comprising finely IL-dispersed MWCNTs in IL was obtained 
with a high shielding effectiveness (SE) for use in the packaging of a 2.5-Gbps plastic 
transceiver module with numerous applications in fibre to the home lightwave trans-
mission systems [122]. PEI NCs consisting of bucky gels of industrial-grade MWCNTs 
and [bmim][PF6] were prepared; they are suitable for the aerospace and electronics 
industries, as shown in Figure 10 [123]. Some PI and PEI NCs consisting of MWCNTs 
and polymerised ILs (PILs) were prepared, exhibiting differential function [124, 125].

The crystal structure of PVDF was modified by utilising the long alkyl chains 
of [C16mim][Br] and IL-modified MWCNTs, and the crystallisation kinetics of the 
composites was investigated [126, 127]. A series of PVDF composites with ‘bucky 
gels’ of MWNTs and ILs were obtained by simple melt compounding. According to 
the DSC and XRD results, the addition of ILs in the composites changed the crystal-
linity and crystal form of the PVDF [128]. PTFT and PVDF as the components of 
NCs containing HPP and ILs have received increasingly more attention. The nano-
materials with a nanoscale structure were prepared using pyridinium, imidazolium 
and phosphonium ILs as new synthetic building blocks in a PTFT. The cation-anion 
combination and functionalisation of ILs affect the ionic networks and nanostruc-
tures of materials [129, 130]. These nanomaterials show optimised thermal and 
mechanical properties and have numerous potential applications such as supercriti-
cal CO2 [131]. PVDF/IL/GraNCs were fabricated via the solution casting of PVDF 
with graphene (Gra) modified with a long alkyl chain IL [C16mim][Br], exhibiting a 
low loss tangent and low conductivity in the PVDF/ionic liquid-modified graphene 

Figure 9. 
Photograph of (a) assemble DSSC and (b) I-V characteristics of DSSC comprising IL-incorporated PVDF-
HFP polymer electrolyte film (maximum conductivity).
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(GIL) composites [132, 133]. NCs, based on a homopolymer PVDF and IL, were 
fabricated, and the preparation process opens up a new synthesis route for nano-
structured polymer composites. Dielectric NCs based on PVDF, conductive carbon 
black (CB) and IL 1-vinyl-3-ethylimidazolium tetrafluoroborate [VEIM][BF4] were 
prepared via melt blending and electron beam irradiation (EBI) methods [134].

A nanostructured PAI was prepared in TBAB as a green medium by the step 
polymerisation reaction of 4,4′-methylenebis(3-chloro-2,6-diethyl trimellitimi-
dobenzene) with 3,5-diamino-N-(4-hydroxy-phenyl)benzamide. Then, amino 
acid-functionalised multiwalled carbon nanotubes (f-MWCNTs)/PAI NCs were 
prepared by a solution mixing method [30].

2.3.5 Grease

In 2012, two types of conductive lubricating greases consisting of ILs (abbreviated 
as ‘ILs lubricating greases’) and HPPs were synthesised using 1-octyl-3-methylimid-
azolium hexafluorophosphate ([omim][PF6]) (L-P108) and 1-octyl-3-methylimid-
azolium tetrafluoroborate ([omim][BF4]) (LB108) as the base oil and PTFE as the 
thickener, exhibiting higher conductivities than the traditional conductive lubricating 
greases containing conductive stuffing, as shown in Figure 11 [135]. The conductive 
lubricating greases using 1-hexyl-3-methylimidazolium tetrafluoro-borate ([hmim]
[BF4]) and 1-hexyl-3-methylimida-zolium bis(trifluoromethylsulphonyl)amide 
([hmim][Tf2N]) were prepared, and the conductivity and tribological performance 
of these greases were studied [136, 137]. By changing the type of ILs, different types 
of conductive lubricating greases were obtained [138].

In addition, the materials obtained by the blending of ILs with HPPs also include 
IL marbles containing PTFE and IL [139], PAI hollow fibre containing [bmim]

Figure 10. 
Processing of PEI/bucky gel nanocomposites; the obtained composites had good toughness as the film could be 
curved adequately without any damage.
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[Tf2N] [140], IL-coated PTFE tube [141], PVDF/IL functionalised graphene oxide 
(GO-IL) composite (PGL) films [142] and electro-active electrospun fibre contain-
ing PVDF and [bmim][Tf2N] [143]. For the materials obtained by the blending 
of ILs with HPPs, ILs based on imidazole and PF6

− and Tf2N
− are most often used 

[144, 145]. PVDF, PSF and PI are the most popular [44, 146–148].

3. Conclusions

Studies on ILs as the reaction media, monomers and additives in the synthe-
sis, chemical modification and physical processing of HPPs are in progress. In 
2017, the synthesis of poly(phenylene sulphide sulphone) (PPSS) in ILs was also 
presented. ILs are not only interesting as a replacement for traditional volatile 
and flammable organic solvents, but also have the potential to reduce energy 
consumption and increase chemical reactivity, thus leading to more efficient 
processes for the synthesis of HPPs. Using ILs in the synthesis of HPPs, promis-
ing and novel established approaches have been developed under mild condi-
tions. Owing to their high ionic conductivity and polarisability, ILs, as excellent 
MW-absorbing agents, were introduced to polymerisation reactions to achieve 
higher yields and purer products than the traditional heating method. Notably, 
the number of novel copolymers of HPPs with polymerisable ILs has steadily 
increased in recent years, and they were mainly used in separating gases such as 
O2, N2, CH4 and CO2. ILs are not only used as reaction media in polymerisations 
for preparing HPPs and as monomers in the chemical modifications of HPPs, but 
also ILs are miscible with some HPPs and used as various types of additives (such 
as the components of polymer materials, plasticizers and porogenic agents) in the 
physical processing of HPPs. The materials prepared include membranes, micro-
capsules, electrolytes, NCs and grease. HPPs and inorganic substrates have been 
used to support IL materials by the covalent bonding of ILs, where the properties 
of ILs may be changed to some extent, and HPP membranes and NC-absorbed 
ILs exhibit concomitant changes in ionic conductivity and mobility. These novel 
green chemical approaches provide diverse possible new materials, and it is 
expected that more modified materials of HPPs and ILs with special properties 
and applications would be obtained. It is believed that more studies on ILs con-
taining HPPs will be reported in the future.
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