
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

1

Chapter

Android Application Security
Scanning Process
Iman Almomani and Mamdouh Alenezi

Abstract

This chapter presents the security scanning process for Android applications.
The aim is to guide researchers and developers to the core phases/steps required to
analyze Android applications, check their trustworthiness, and protect Android
users and their devices from being victims to different malware attacks. The
scanning process is comprehensive, explaining the main phases and how they are
conducted including (a) the download of the apps themselves; (b) Android applica-
tion package (APK) reverse engineering; (c) app feature extraction, considering
both static and dynamic analysis; (d) dataset creation and/or utilization; and
(e) data analysis and data mining that result in producing detection systems, classi-
fication systems, and ranking systems. Furthermore, this chapter highlights the app
features, evaluation metrics, mechanisms and tools, and datasets that are frequently
used during the app’s security scanning process.

Keywords: Android, application, scanning, security, malware

1. Introduction

This section introduces the Android operation system and its applications.
Moreover, it defines Android malware and shares its recent statistics. Android
permissions and security model are also presented. This section ends with discuss-
ing the security scanning framework for Android applications.

1.1 Android and application definition

Android is one of the most popular operating systems that provide open-source
development environment based on Linux. It allows the development for mobile,
tablets, smartwatches, and smart TVs. Android was established by Open Handset
Alliance that started working in 2003, while Google released its first Software
Development Kit (SDK) in 2007, but the first commercial version was released in
September 2008 called as Android 1.0 [1] with the first device executed being HTC
Dream. The sale of the Android phone was increased from 75% in 2013 [2] to 88%
in 2018 [3]. Table 1 lists the sales of smartphones from 2011 to 2018 which show
a clear capture of the market over the years. This market penetration reveals the
successful implementation of features as well as cheap price.

The Android system is composed of five important layers:

• Applications refer to the software stack of native as well as user-based
applications.

Telecommunication Systems – Principles and Applications of Wireless-Optical Technologies

2

• Android runtime allows the application to run on mobile devices by convert-
ing the Android code into DEX format or byte code. The conversion of DEX
code into device-related code is done before compilation, and this kind of
technique is referred to as ahead of time (AOT).

• Application framework manages and runs the applications using the services
such as activity manager, content providers, telephony manager, package
manager, location manager, etc.

• Android libraries are a set of Java-based development application program-
ming interfaces (APIs) that can help in performing general purpose tasks, as
well as location-based and string handling.

• Android kernel is based on the Linux 2.6 kernel and is used to provide abstrac-
tion between device hardware and other software layers [4, 5].

The efforts for making each of the component secure have been made. However,
still there are issues due to open-source development, and every vendor and com-
pany following their own standards has led to serious security issues [6].

The Android application contains four types of components shown in Figure 1 [7]:

• Activities: each activity represents a single screen with a user interface.

• Services: a service operates in the background to execute long-running
operations. Services could be initiated by other components like activity or
broadcast receiver.

• Content providers: to share data between different applications.

• Broadcast receivers: to listen for specific system-wide broadcast announce-
ments and react to them.

Android applications are written in Java programming language and distributed
as .apk files. Android application package (APK) file is a ZIP compressed file that
includes the following files:

• AndroidManifest.xml file: it describes the application’s capabilities and
informs the OS about the other components of the application. It identifies the
needed hardware and software features such as the camera, in addition to, the
minimum API level required by the application. The permissions requested by
the app and the permissions required to access the application’s interfaces/data
are defined in its manifest file.

• Dalvik executable or classes.dex file: the Java classes and methods defined in
the application code are grouped into one single file (classes.dex).

• .xml files: which are used to define the user interface of the application.

• Resources: the external resources that are associated with the application (e.g.,
images).

Android applications run in a virtual environment to improve security. However,
they can be downloaded from any source whether trusted or not. After an applica-
tion is initiated, it grants its own virtual environment, so the code will be isolated

3

Android Application Security Scanning Process
DOI: http://dx.doi.org/10.5772/intechopen.86661

from other apps. Although the applications are isolated, still they can interact with
the system and other applications through APIs. Meanwhile, Android assigns Linux
user ID for each application.

API stands for application programming interface that refers to the set of tools
providing interfaces for communication between different software components. APIs
are used to access data and key features within Android devices. API framework con-
sists of a set of API packages that include specific classes and methods. Additionally, it
contains a set of XML elements and attributes for declaring a manifest file and access-
ing resources besides permissions and intents. Looking into API component calls in the
executable file may allow exploring the behavior of an app and reporting its capabili-
ties. However, in many cases, the attackers hide the API calls using cryptography,
reflection, or dynamic code loading techniques to increase the difficulty of analysis.

1.2 Malware definition and statistics

Presently, mobile device apps are distributed through online marketplaces such
as Google Play Store. Such marketplaces are considered hubs to allow developers

Figure 1.
The Android application components.

Year Android share iOS shares Other OS shares

2011 46.66 18.87 34.45

2012 66.34 19.11 14.53

2013 78.50 15.54 5.94

2014 80.70 15.37 3.91

2015 81.60 15.88 2.50

2016 84.79 14.44 0.75

2017 85.91 13.98 0.09

2018 88 11.75 0.03

Table 1.
The detail of the Android phone compared to iOS and other smartphone sales shares from 2011 to 2018 retrieved
from Statista.com [3].

Telecommunication Systems – Principles and Applications of Wireless-Optical Technologies

4

to publish their apps and distribute them as well. Today, there are more than 2.5
million applications available in the Google Play Store [8].

When downloading apps from unofficial markets, the user is usually at risk
because there is no centralized control like official markets. As more users shift to
Android devices, cybercriminals are also turning to Android to inflate their gain.
However, many Android apps turn out to be malicious. The number of malicious
software (malware) samples in the Android market has surged to an alarming
number reaching over 5.49 million by the end of 2018 [9, 10].

A recent report from F-Secure [11] showed that over 99% of all malware pro-
grams that target mobile devices are designed for Android devices. Another report
from the security firm G DATA shows that a new instance of Android malware
pops up nearly every 10 seconds. Another report from AV-TEST [12] states very
clearly that anyone seeking to make money by attacking mobile devices will choose
Android devices as targets.

Malware is an umbrella term used to stand for an assortment of types of hos-
tile or intrusive software, including viruses, worms, Trojan horses, ransomware,
spyware, adware, and different malicious programs [13].

Ransomware is considered one of the most threating malwares nowadays.
There are two types of ransomware: crypto ransomware and lock screen ransom-
ware. The crypto ransomware encrypts the information, while the locker ransom-
ware hinders users from gaining access to their data by locking the device’s screen.
For both types, the attack demands a payment (ransom) to recover the files or
access to the device. It is worth mentioning that paying the ransom money does not
guarantee that the files will be back or that the ransomware will be removed from
the device [14, 15].

According to Kaspersky, ransomware has taken place in most of the majority of
notorious security attacks for the past decade. Also, 116.5 million attacks were noted
in 2018, compared to 66.4 million in 2017, an increase of twofold in just 1 year [16].

Malicious apps, in general, are distributed mostly through phishing, drive-by
attacks, and app stores. Phishing messages might comprise links to malicious apps
and are sent over SMS or WhatsApp. Drive-by attacks are carried out by Web page
exploits. When the user has a vulnerable browser, the exploit is able to execute a
code. To infect users through app stores, malwares are submitted to them hiding
as some legitimate app. In fact, in some cases some popular apps are modified to
include malicious actions while keeping the app’s main functionalities [17].

Therefore, a reliable tool is needed to test the trustworthiness of these apps
before being installed. App risk scoring or rating should be empirically calculated
according to different risk scoring techniques. The visualization of these risks
should be easy enough for a normal user to recognize the risk associated with a
specific app.

1.3 Android permissions and security model

Android platform is very popular due to its available and comprehensive API
framework [18]. Android API offers the developers of mobile apps the ability to
gain access to hardware information, accessing user’s data, knowing phone state,
changing phone settings, etc. The developers are impacted by the permission model
while developing mobile applications. To develop a mobile app, the engineers are
required to determine, for each API functionality, what permissions are needed and
how they are correctly activated. Android asks the developers to list publicly what
permissions are used by the app; however, there are no mechanisms to know the
exact purpose of such permissions and what kind of sensitive data they could use.

Android permissions mainly fall under four categories [19]:

5

Android Application Security Scanning Process
DOI: http://dx.doi.org/10.5772/intechopen.86661

• Normal: minimal risk permission is assigned automatically by the system and
does not require an explicit declaration.

• Dangerous: the permission to private data, system process, and other hard-
ware is referred to as dangerous and should be assigned explicitly at the time of
installation or usage of the application.

• Signature: the applications get the same ID and the same access rights if the
two application certificates are the same.

• SignatureOrSystem: the applications that are signed with the same certificate
will get the same permission as the base system automatically.

Take the camera permission as an example; it belongs to the dangerous category.
These permissions also ensure the safety of the system by keeping the user aware of
what he is trying to do and what permissions have been requested. The issue with
Android permission is that they are coarse-grained and violate the principle of least
privileges (PoLP) that ensure that the only required thing is permitted. In contrast,
Android allows overall permission about most of the features such as phone contact
permission can allow checking phone state and other details.

The Android permission system obliges app’s developers to state which security
critical resources are needed. At runtime, the access requests are controlled by
the permission checker component in order to secure the critical resources and
operations.

In general, the security policy for the phones is delegated to their users. The
lists of permissions will be shown to the users where they can accept or reject. It is
essential and challenging to make sure that these apps appropriately deal with great
value sensitive data [18].

Since Android 6.0, dangerous permissions are now asked explicitly to the user
when requested the first time and then granted automatically. Android 6.0 changed
some areas with regard to permissions. Two major changes were introduced.
(1) Apps targeting SDK 23 (Software Development Kit) or higher can request
permissions at run-time. (2) If an app requests a dangerous permission, with
another permission from the same group that has been already granted, the system
immediately grants it without any further interaction with the user.

The Android permission system received several criticisms [20]. The system is
considered to be too coarse-grained since the user has to choose whether to accept
all of the permissions declared by an app or to refuse to install the app. Users are
usually not sure to determine if an app can be trusted or not. Actually, how Android
is showing the required permissions is not very user-friendly and quite difficult to
understand the risks associated with these permissions.

Android apps are allowed to define new custom permissions on Android. These
permissions are used to protect an app’s own resources from others. To define new
custom permission, a permission name is needed, optionally including a permission
group and a description regarding the permission purpose. Sixty-five percent of
Google Play Store apps define their custom permissions, whereas 70% of these apps
request them for their operation [21].

Mobile app history has shown that the users’ privacy and security must be
protected against benign applications not to mention malware ones. Actually, lots of
widely used apps have been reported as requiring too many permissions or leaking
user information to their servers intentionally [22].

Android uses both discretionary access control (DAC) and mandatory access
control (MAC) to form a multilayer security model [23]. The model implements a

Telecommunication Systems – Principles and Applications of Wireless-Optical Technologies

6

kernel-level application sandbox that uses Linux user identifiers (UIDs) and UNIX-
style file permissions. Since version 4.3, Security-Enhanced Linux (SELinux) was
introduced, and from version 4.4 it started being deployed in enforcing mode.

Android security has seen other improvements as well. In version 5.0, Google
introduced smart lock, which allows users to unlock the phone using a trusted
device, such as Bluetooth/NFC beacon, smartwatch, or facial recognition. In ver-
sion 6.0, they introduced a fingerprint API. All these features are an extra step to
make security easier for the average user. However, Android’s security model is still
based on a set of coarse-grained permissions.

Android builds its security basis on multiuser capabilities of Linux by assigning
a unique ID to each application that will manage its own processes [24]. The run-
time manager runs the applications in its sandbox that provides security as it does
not allow:

• Inter-process communication

• Data access to other processes

• Hardware access such as camera, GPS, or network

• Access to local data of the phone such as media libraries and contacts

As a contrast to other OS platforms, the sandbox facility is provided by runtime
manager for direct access to resources and hardware, while other operating systems
provide sandboxing based on their kernel. This is based on features such as all kinds
of requests outside the applications are by default denied and have to be permitted
explicitly. When an application is installed, the permissions are allocated in addition
to a unique, permanent identification (ID) that is also assigned to this app. This
application ID is used to enforce the permissions for application, processes, and file
system [25–27].

The files in the application are always private unless they are explicitly set
to be shared using two modes, (1) readable and (2) writable. In order for two
applications to share other’s files, then the application ID must be the same for
both applications, as well as the user ID. Additionally the public key infrastruc-
ture (PKI) certificate value must be shared to be considered as one application
[27]. The paranoid network security mechanism is used to protect the network
access by keeping all kinds of network access in separate groups such as WiFi, the
Internet, and Bluetooth. Thus, if the application or process gets the permission to
access a Bluetooth, then its application ID will be added to the group access list for
Bluetooth and similarly for others. Consequently, one application can be assigned
to one or more access groups [28].

Before any application distribution, Google that manages the main play store
requires to sign the application using developers’ personal certificate to make sure
that the distributed copy is done through the right developer and no modification
can be made to the application. If the two application matches the same certificate,
Android will assign the same application ID to both applications and will access to
private files for each application [27, 28].

Relying only on the current Android security model and permission levels to
secure Android app is inefficient. Other more comprehensive security systems need
to be considered and implemented to ensure efficient detection of malware apps.
Consequently, the following sections present a reference model for Android appli-
cation’s security scanning process.

7

Android Application Security Scanning Process
DOI: http://dx.doi.org/10.5772/intechopen.86661

1.4 Android application scanning framework

A reference model for Android scanning process is shown in Figure 2. This
model provides the core steps/phases vital to analyze Android apps and malware
detection. The following sections highlight each one of these phases, starting from
allocating the source of Android apps, downloading mechanisms, app’s source code
generation process, app’s features extraction, applying static and dynamic analysis,
generating datasets, detecting and classifying the app into benign or malware, and
ranking its risk if it is detected as a malware app. Moreover, the mostly used mecha-
nisms and tools utilized by researchers and developers at each process’s phase are
also presented.

Figure 2.
Android application security scanning model [29].

Telecommunication Systems – Principles and Applications of Wireless-Optical Technologies

8

2. Android application

The app’s source and how they are downloaded are presented in this section, in
addition to the source code generation for Android applications.

2.1 App source and download

Android application collection process includes gathering APK files from
different Android marketplaces. The main application sources include Google
Play, Anzhi, and AppChina. For every potential free app, the crawler script must
ensure that the app has not been downloaded before and then calculate the app’s
hash using the SHA256 algorithm [30]. Once the app is downloaded, it can be
archived for future use. Chrome APK Downloader, a desktop version of APK
downloader tool, can be used to download the APK files of the free Android appli-
cations into desktop from Google Play marketplace [31]. For the paid applications,
the Raccoon APK Downloader can be used to download APK files from Google
Play Store [32].

2.2 Source code generation

After downloading the apps, they need to be analyzed. In order to do that, APK
reverse engineering process is required to decompile, rebuild, and convert the
Android executable code (.apk file) into an intermediate language such as Smali,
Jimple, and Jasmin [33]. The aim of reverse engineering is to retrieve the source
file from the executable files in order to apply program analysis. Unzipping the
APK files generates .dex files. By reassembling the dex files using an APK reverse
engineering tool, the Java files can be retrieved. Three of the most popular tools
that have been used in Android APK reverse engineering are Apktool, Dex2jar, and
Soot. A comparison of Android reverse engineering tools was conducted in [33].
The results showed that Apktool which uses Smali reassembled 97% of the original
code, whereas Soot which uses Jimple and Dex2jar which uses Jasmin preserve 73%
and 69% of the app’s original code, respectively.

3. Android application analysis

The process of analyzing Android apps to detect different types of malwares and
the result of such analysis in terms of datasets are illustrated in this section.

3.1 Feature extraction

Once the app’s source code is retrieved, the feature extraction process starts. The
features that are usually extracted depend on the type of malware and the analysis
mode whether static or dynamic. This will be explained in the following two sub-
sections. Table 2 lists the most commonly used static and dynamic features [34].

3.2 Static analysis

The static analysis aims to check the existence of malware by disassembling the
source code without executing the application. Tools which perform static analysis
are mainly categorized into three approaches as shown in Figure 3: (1) signature-
based detection, (2) permission-based detection, and (3) Dalvik Bytecode detec-
tion. There is some limitation which is related to each static detection approach. The

9

Android Application Security Scanning Process
DOI: http://dx.doi.org/10.5772/intechopen.86661

signature-based detection which relies on stored signatures for known malwares
does not have the ability to detect unidentified malware signatures [35]. In the
permission-based detection, the benign app could be considered, incorrectly, as a
malware due to the minor variation of the requested permissions from the original
and the malware application [30]. Finally, the Dalvik Bytecode detection, which
assists in evaluating the applications actions, consumes more resources [36]. Several
tools were discussed and analyzed in [35–41] such as FlowDroid [39], PScout [40],
and ApkAnalyser [41]. Each of the aforementioned tools focuses on one or more
features. The most generally extracted static features are the permissions [18], API
calls [42], and source code metrics [43].

Years ago, different rival static approaches have been proposed like TaintDroid
[43], DroidRanger [45], and RiskRanker [46] to detect malicious malware features.
But all of them rely on manually crafted detection patterns which may not be able to
detect new malware and come with significant device performance cost [47].

Authors in [48] proposed DREBIN as the first approach which provides
detection of Android malicious code directly on the mobile device. They used

Static features Dynamic features

Permission Network, SMS, power usage, CPU, process info, native and Dalvik memory

API calls Data packets being sent, IP address, no. of active communications, system calls

String extracted Process ID, system calls collected by strace, returned values, times between

consecutive calls

Native commands Network traffic, destination IP address

XML elements System calls collected by strace, logs of system activities

Meta data Data collected by logger, Internet traffic, battery percentage, temperature collected

every minute
Opcodes from .dex

file

Task intents

Table 2.
Most commonly used features in static and dynamic analyses [34].

Figure 3.
Existing malware detection techniques.

Telecommunication Systems – Principles and Applications of Wireless-Optical Technologies

10

static analysis in a machine learning system to distinguish malware from trusted
applications. They considered linear support vector machines for classification.
This approach, however, cannot detect runtime loaded and obfuscated malicious
applications because it relies on static analysis [47].

Yang [49] developed a prototype (AppContext) that detects malicious apps
using static analysis. They mined 633 benign apps from Google Play and 202
malware apps from various malware datasets. AppContext identifies applications
using machine learning based on the contexts that trigger security-sensitive behav-
iors (e.g., the conditions and events that cause the security-sensitive behaviors to
occur). But this approach can be evaded by dynamic code loading and consumes
huge human efforts in labeling each security-sensitive behavior [50].

Akhuseyinoglu and Akhuseyinoglu [51] have proposed an automated feature-
based static malware detection system called AntiWare for Android devices. It is
automated since it engages the machine learning method for detecting malicious
applications by using the extracted apps’ features. They took into consideration the
requested permissions and Google market data, including developer name, down-
load time, and user ratings from Google Play as a feature set. AntiWare is designed
to predict the rank of an application inquired by the user as malicious or benign and
then report the results to the user. The main disadvantages are primarily depending
on market data on Google Play and the requested permissions. The market data
is not reliable since a lot of applications are invented by different new developers
every second. Additionally, the permissions by its own are not sufficient to assess
the malicious behavior of an application.

3.3 Dynamic analysis

In dynamic analysis, the application actions are dynamically analyzed and
monitored during the execution time. The unexecuted code might be missed by this
approach, but it can effectively detect the malware behaviors which are not detect-
able by the static analysis. Since this approach occurs during runtime, it can be
performed in a controlled environment to avoid damaging the device [52].

Android dynamic malware analysis detection techniques (see Figure 3) can be
classified into [53, 54]:

• Anomaly detection: the anomaly-based detection has the ability to identify
suspicious behaviors to indicate the presence of malware. A drawback for this
technique is that it can sometimes flag a benign application as malware because
it displayed similar behaviors of malware.

• Taint analysis: it is an efficient technique that checks and monitors sensitive
information; however, a limitation is that the performance becomes very slow
rendering it useless to be applied in real time.

• Emulation-based detection: it is a detection technique, where it scans the
application behavior by simulating the conditions of its execution environment
to determine if the application is a benign or malware application from the
behavior. Similar to this technique is sandbox-based detection, but the main
difference originates from the details of designing each approach. A major
drawback for this approach is that it requires more resources.

Tam [55] applied dynamic analysis method and machine language to detect
malware. They capture real-time system calls performed by the application as key
information to discriminate between ransomware, malware, and trusted files and

11

Android Application Security Scanning Process
DOI: http://dx.doi.org/10.5772/intechopen.86661

called it CopperDroid. CopperDroid runs the Android application in the sandbox
and records all system calls, in particular inter-process communications (IPC) and
remote procedure call (RPC) interactions which are essential to understanding an
application maliciousness behavior. However, some types of malware can detect the
virtual environment and act differently (as a benign) which gives false positives.

Recent research [56] dynamically classifies Android applications to malicious or
benign in the first launching of the app. The classification is applied based on the fre-
quency of system calls as an indicator of suspicious behavior. They have built a syscall-
capture system to capture and analyze the behavior of system call traces made by each
application during their runtime. They have achieved an accuracy level of 85% and
88% using the decision tree algorithm and the random forest algorithm, respectively.

Also, Wang [57] proposed a dynamic analysis to analyze an application on the fly
to detect malicious behavior. They developed a prototype called Droid-AntiRM to
identify malware applications that employ anti-analysis techniques. The prototype
identifies the condition statements in applications that could trigger the malicious
acts of malware, which are unable to be recognized by static analysis. However,
their prototype cannot handle dynamic code loading, encryption, or other various
obfuscation techniques.

Many tools have been developed based on the dynamic perspective such as
TaintDroid [44], Droidbox [58], and MobSF [59]. Additionally, some tools are consid-
ering both static and dynamic analysis in their solutions such as VirusTotal tool [60].

3.4 Ransomware detection

Unfortunately, there were very few researches studying ransomware where the
malicious app blocks access to the Android device or/and its data. In [61] the authors
presented a tool called Cryptolock that focuses on detecting ransomware by tracking
the changes in real-time user data. They have implemented the tool on Windows
platform. However, Cryptolock may send a false-positive alert because it cannot
differentiate whether the user or the ransomware is encrypting a set of files [62].
They focus on changes on user’s data rather than trying to discover ransomware by
investigating its execution (e.g., API call monitoring and access permissions).

HelDroid tool [63] was developed to analyze Android ransomware and to detect
both crypto and locking ransomwares. The tool includes a text classifier that uses
natural language processing (NLP) features, a lightweight Smali emulation technique
to detect the locking scheme, and the application of taint tracking for detecting file-
encrypting flows. The primary disadvantage of this approach is that it highly depends
on a text classifier as it assumes the availability of text. Also, it cannot be applied
to some languages that have no specific phase structure like Chinese, Korean, and
Japanese. This approach can be easily avoided by ransomware by applying techniques
such as encryption and code obfuscation [63]. Moreover, like whatever machine
learning approach, HelDroid trains the classifier in order to label an app as a ransom-
ware. The detection capability of the model depends on the training dataset [64–66].

Another work in literature exploring the ransomware detection in Android
mobiles was presented in [67]. The authors presented R-PackDroid as a static
analysis approach that classifies Android applications into ransomware, malware,
or benign using random forest classifier. The classification employed was based on
information taken from the system API packages. An advantage over the previous
approach (HelDroid) is its ability to detect ransomware regardless of the applica-
tion language. Also, it flags the applications that were recognized as ransomware
with very low confidence by the VirusTotal service. However, R-PackDroid cannot
analyze applications with a feature code that is dynamically loaded at runtime or
classes that are fully encrypted because it relies on static analysis.

Telecommunication Systems – Principles and Applications of Wireless-Optical Technologies

12

Likewise, Mercaldo [68] focused on ransomware detection specifically in
Android. They tested a dataset composed of 2477 samples with real-world ran-
somware and benign applications. The main issue of this approach is that it is
manual and requires a lot of effort to analyze and build logic rules used for the
classification [69].

Another automated detection approach was introduced in [70] to analyze and
penetrate the malicious ransomware. They have introduced some features of static
and dynamic analysis of malware. In static analysis, malicious features can be dis-
covered with permissions, API calls, and APK structure, while malicious features in
the dynamic analysis may include access to sensitive data or sensitive paths, access
to the HTTP server, and user charge without notification and bypass permissions.
The aim was to produce a better performance apparatus that supports ransomware
detection in Android mobiles which they have designed but did not implement.
The authors analyzed one malware and listed the steps of APK analysis as a concept
but did not implement the proposed design. Therefore, there are no results that can
prove the effectiveness of their approach.

In [71], the authors experimentally presented a new framework called
DNADroid which is a hybrid of static and dynamic techniques. This framework
employs a static analysis approach to classify apps into suspicious, malware, or
trusted. Only suspicious classified applications are then inspected by dynamic
analysis to determine if it is ransomware or not. The main weakness is that dynamic
analysis is only applied to suspicious applications leaving the possibility of having
malware not successfully recognized by static analysis.

3.5 Dataset creation and utilization

Datasets are mainly in two types. The first type is the Android application
datasets. These include both benign apps and malicious apps. For the benign apps,
the majority of researchers are collecting them from the app stores like Google
Play Store [30, 37, 60]. For malicious apps, it depends on malicious behavior under
study. For example, for malware Android apps, VirusTotal was one of the main
sources for many researchers [38, 60]. For ransomware apps, HelDroid project [63]
and RansomProper project [38] were also used.

The second type is the datasets generated after extracting the app’s features. The
researchers can either use existing constructed datasets considering the features
under study or build new ones by screening the apps and extracting their features.
The main concerns regarding the use of existed datasets are (1) absence of up-to-
date apps and operating system version (2) including many duplicate samples
(3) and not being accessible. These reasons could motivate researchers to build their
own up-to-date and labeled datasets.

4. Android malware application detection and ranking

Many previous works have considered the problem of ranking Android apps
and classify them to either malware or benign apps. The majority of these solutions
have relied mainly only on the permission model and what types of permissions are
requested/used by the application. They used different ways and depth of analysis
in this regard.

The work presented in [72] studied the permission occurrences in the market
apps and the malware apps. Also, the authors analyzed the rules (a combination of
permissions) defined in Kirin [73] in order to calculate the risk signals and to reduce
the warning rates. Gates et al. in [74] have compared work presented in [72, 73],
naïve-based algorithms and two proposed methods for risk scoring. These methods

13

Android Application Security Scanning Process
DOI: http://dx.doi.org/10.5772/intechopen.86661

consider the rarity of permissions as the primary indicator that contributes to rais-
ing a warning. The performance comparison was in terms of the detection rate.

The authors in [75] used similar hypotheses of listing the permissions in each
app and count occurrences of permissions in similar apps (a game category in their
case) excluding the user-defined permissions that are not affecting the privacy. In
their solution, they gave the user the choice to turn off the permission(s). In [76],
the authors used the combination of features (permissions) to compare the clean
app values with the malware values to come up with thresholds that will be used to
classify new Android apps. Within the same context, the idea presented in [77] was to
construct a standard permission vector model for each category, which can be used as
a baseline to measure and assess the risk of applications within the same category. For
each downloaded app, the permission vector will be extracted and compared with the
standard one; the amount of deviation from the baseline will calculate the app’s risk.

While discussing the approaches in the existing risk scoring systems and their
main dependency on the Android permissions, it is worth asking how many of them
have considered the involvement of the user with the scoring results and, if they
decided to involve the user, how the risk was displayed and communicated to the
user. The empirical study conducted in [78], which implemented an intensive study
on top, used permissions with a high-risk level. They calculated the risk level based
on the type of permissions and the probability they will be requested by the app.
The risk value for each permission in addition to its technical name and description
was transmitted to the users. Although a coloring code was used to indicate the level
of risk, still users are involved in technical details which will not help them to take
proper decisions regarding the apps’ installation. The work presented in [79] has
utilized fuzzy logic to measure the risk score. Also, in addition to the permissions
and their categories, they took input from different antivirus tools to calculate the
score. Their system allowed the user to upload the app’s APK through the browser and
provided them with a risk report. This report showed the risk score, permission usage
rate, and unnecessary permission usage rate in addition to the list of permissions,
their categories, and risk level. On the other hand, the authors in [80] have considered
the statistical distribution of the Android permissions in addition to the probabilistic
functions. The declared but not exploited permissions and vice versa were all consid-
ered in their risk analysis. Machine learning was also utilized to measure risk.

In terms of visualizing the permissions and their risks, the authors in [81] intro-
duced Papilio to visualize Android application permissions graphically. This helped
them to find the relations among the applications and applications’ permissions as
well. Papilio was able to find the permissions requested frequently by applications
and permissions that either never requested or requested infrequently. The authors
in [82] stressed the importance of visualizing the statistical information related to
Android permissions. Having graphical representation for the permissions’ statics
within a specific category encouraged the users to choose more often apps with a
lower number of permissions. A privacy meter was used in [83] to visualize the
permissions’ statistics through a slider bar which outperformed the existing warn-
ing system like Google’s permission screens. Visualizing app activities enhances
user’s awareness and sensitivity to the privacy intrusiveness of mobile applications
[84]. Another attempt to visualize the permissions statistics was also introduced in
[85] using lifelog analysis views in terms of risk history and app’s risk view.

From the above-related work, we can observe that the majority of the previous
solutions have mainly relied on permissions either statistically or based on prob-
ability to analyze Android apps, to classify them as malwares, and to measure their
risk level. Although permissions are important to analyze and classify Android
applications. However, these permissions should be up-to-date. Also, other impor-
tant static and dynamic metrics need to be considered to guarantee a comprehensive
evaluation and consequently an accurate detection of malware apps.

Telecommunication Systems – Principles and Applications of Wireless-Optical Technologies

14

There have been many types of research on designing malicious detec-
tion approaches. Such approaches resort to static analysis of the malware,
and others use dynamic analysis, while some methods utilize both static and
dynamic analyses to get better detection of a malicious incident. Moreover, the
generated datasets will be analyzed in order to detect any potential security
threats, regardless whether these datasets were constructed based on static or
dynamic tests or even both. Usually, data mining techniques could be used for
the purpose of detecting and classifying attacks [42, 52]. Moreover, intelligence
techniques could be utilized to even rank the risk by assigning the attack a risk
score [42, 86].

The scanning service might fruit in developing a mobile application that is
installed on user’s devices to examine the Android application and discriminate,
if it is a clean app or a malicious app to warn the user and protect her/his Android
device. DREBIN [87] is one of the malware detection systems available for smart-
phones. One of the major features that DREBIN provides is instantaneous malware
detection. When a new application is downloaded, DREBIN starts the analyzing
process directly. As a result, the user is protected against any unreliable sources.
Another example of anti-malware software is HinDroid [88] which has been
integrated as one of Comodo’s mobile security scanning tools. HinDroid structures
the APIs based on heterogeneous information network in order to make predictions
about the tested application. Consequently, HinDroid can reduce the time and cost
of analyzing Android apps.

5. Statistical analysis

This section presents a statistical study to show the frequency of the used
approaches, methods, datasets, and tools in the current systems. Various, related,
recent, published solutions in 2017–2018 were considered in this study.

In regard to reverse engineering tools utilized by researchers, APKtool was heav-
ily used by 54% in comparison with other tools (see Figure 4). Soot was next with
20% of usage.

Figure 4.
Reverse engineering tool usage in 2017–2018 research.

15

Android Application Security Scanning Process
DOI: http://dx.doi.org/10.5772/intechopen.86661

Figure 5 shows a comparison among the static tools which were utilized by research-
ers. It can be observed that 48% of the static-based systems used FlowDroid tool in their
solutions. PScout was the second most used with percentage reaching around 28%.

Dynamic analysis tool usage is illustrated in Figure 6. The majority of existing
solutions used Droidbox with 27% and TaintDroid with 24% in comparison with
other approaches. The rest of the results are shown in Figure 6.

The results in Figure 7 reveal that AndroZoo was the most used dataset in
2017–2018. The percentage of usage reached 43%. Genome and DREBIN datasets
came next with frequencies 30 and 16%, respectively.

Figure 5.
Static tool frequency in 2017–2018 research work.

Figure 6.
Dynamic tool frequency in 2017–2018 research work.

Telecommunication Systems – Principles and Applications of Wireless-Optical Technologies

16

6. Conclusions

This chapter highlighted the booming of Android technologies and their appli-
cations which make them more attractive to security attackers. Recent statistics of
Android malwares and their impact were presented. Additionally, this chapter has
provided the main phases required to apply security scanning to Android applica-
tions. The purpose is to protect Android users and their devices from the threats of
different security attacks. These phases include the way of downloading Android
apps, decoding them to generate the source code, and how this code is screened to
extract the required features to apply either static analysis or dynamic analysis or
both. The feature extraction process resulted in constructing different datasets.
Proper data analysis and data mining techniques could be applied to examine the
app and classify it as benign or malware with high accuracy. The malware detection
service could be implemented and provided in terms of a mobile application that
will communicate the scanning results to the user in a friendly way. The chapter
was concluded by presenting a statistical study that showed the most used tools and
datasets throughout the scanning process for the last 2 years 2017 and 2018.

Acknowledgements

We would like to acknowledge the Security Engineering Lab (sel.psu.edu.sa)
team and Prince Sultan University for supporting this work. Special thanks go to
Ms. Samah Alsoghyer and Ms. Aala Khayer.

Conflict of interest

The authors declare that there is no “conflict of interest” in regard to publishing
this book chapter.

Figure 7.
Dataset frequency in 2017–2018 research work.

17

Android Application Security Scanning Process
DOI: http://dx.doi.org/10.5772/intechopen.86661

Author details

Iman Almomani1,2* and Mamdouh Alenezi1

1 Prince Sultan University, Riyadh, KSA

2 The University of Jordan, Amman, Jordan

*Address all correspondence to: imomani@psu.edu.sa

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

18

Telecommunication Systems – Principles and Applications of Wireless-Optical Technologies

[1] Alliance OH. Android overview.
Open Handset Alliance. 2011;8:88-91

[2] Faruki P, Bharmal A, Laxmi V,
Ganmoor GM, Conti M. Android
security: A survey of issues, malware
penetration, and defenses. IEEE
Communications Surveys & Tutorials.
2015;17(2):998-1022

[3] Global smartphone sales to end users
from 1st quarter 2009 to 2nd quarter
2018 [Internet]. Available from: https://
www.statista.com/statistics/266219/
global-smartphone-sales-since-1st-
quarter-2009-by-operating-system/
[Accessed: 2019-03-22]

[4] Nimodia C, Deshmukh HR. Android
operating system. Software
Engineering. 2012;3(1):10

[5] Brahler S. Analysis of the android
architecture. Karlsruhe Institute for
Technology. 2010;7(8):3-64

[6] Drake JJ, Lanier Z, Mulliner C, Fora PO,
Ridley SA, Wicherski G. Android Hacker's
Handbook. New Jersey, USA: John Wiley
& Sons; 2014

[7] Mithilesh Joshi BlogSpot. What
is android application components
and how we use it? 2015. https://
mithileshjoshi.blogspot.com/2015/06/
CITATIONS 74 what-is-android-
application-components.html [Accessed
November 27, 2017]

[8] AppBrain. Number of Android
applications on the Google Play store |
AppBrain. 2019. Available from: https://
www.appbrain.com/stats/number-of-
android-apps [Accessed: 2019-03-02]

[9] AV-TEST The IT-Security Institute.
Malware Statistics and Trends Report |
AV-TEST. The AV-TEST Institute; 2018.
Available from: https://www.av-test.
org/en/statistics/malware/ [Accessed:
2019-03-02]

[10] GData. Cyber attacks on Android
devices on the rise. 2018. Available
from: https://www.gdatasoftware.com/
blog/2018/11/31255-cyber-attacks-on-
android-devices-on-the-rise [Accessed:
2019-04-15]

[11] F-Secure State of cyber security.
Available from: https://www.f-secure.
com/documents/996508/1030743/
cyber-security-report-2017 [Accessed:
2019-04-15]

[12] Security Report 2016/17 [Internet].
Available from: https://www.avtest.
org/fileadmin/pdf/security_report/
AV-TEST_Security_Report_2016-2017.
pdf [Accessed: 2019-04-15]

[13] Delac G, Silic M, Krolo J. Emerging
security threats for mobile platforms,
MIPRO. In: 2011 Proc. 34th Int. Conv.
2011. pp. 1468-1473

[14] Savage K, Coogan P, Lau H.
Security Response – The Evolution of
Ransomware. Mountain View (CA):
Symantec Corporation; 2015

[15] Liska A, Gallo T. Ransomware:
Defending Against Digital Extortion.
California, USA: O'Reilly Media, Inc;
2016

[16] (KasperSky) Chebyshev V. Mobile
Malware Evolution 2018 [Internet].
Available from: https://securelist.com/
mobile-malware-evolution-2018/89689/
[Accessed: 2019-04-16]

[17] Grégio A, Abed R, Afonso V, Filho
D, Geus P, Jino M. Toward a taxonomy
of malware behaviors. The Computer
Journal. 2015;58(10):2758-2777

[18] Alenezi M, Almomani I. Abusing
android permissions: A security
perspective. IEEE Jordan Conference
on Applied Electrical Engineering and
Computing Technologies (AEECT);
Amman, Jordan. 2017

References

19

Android Application Security Scanning Process
DOI: http://dx.doi.org/10.5772/intechopen.86661

[19] Developer.Android. “Permission
Types” [Internet]. Available from:
https://developer.android.com/guide/
topics/manifest/permission-element
[Accessed: 2019-04-15]

[20] Gianluca D, Martinelli F,
Matteucci I, Petrocchi M, Saracino A,
Sgandurra D. Risk analysis of android
applications: A user-centric solution.
Future Generation Computer Systems.
2018;80:505-518

[21] Seray T, Demetriou S, Ganju K,
Gunter C. Resolving the predicament
of android custom permissions. In:
ISOC Network and Distributed Systems
Security Symposium (NDSS). 2018

[22] Arstechnica.com. Your iPhone
Calendar isn’t Private. 2012. Available
from: http://arstechnica.com/
apple/2012/06/your-iphone-c

[23] Haining C, Li N, Enck W, Aafer Y,
Zhang X. Analysis of SEAndroid
policies: Combining MAC and DAC in
android. In: Proceedings of the 33rd
Annual Computer Security Applications
Conference. Orlando, FL, USA: ACM;
2017. pp. 553-565

[24] Ratazzi EP. Understanding and
Improving Security of the Android
Operating System. No. AFRL-RI-
RS-TP-2018-001. New York, USA: Air
Force Research Laboratory/Information
Directorate Rome United States; 2016

[25] Backes M, Bugiel S, Hammer C,
Schranz O, von Styp-Rekowsky P.
Boxify: Full-fledged app sandboxing
for stock android. In: Proceedings of the
24th {USENIX} Security Symposium
({USENIX} Security 15). 2015. pp. 691-706

[26] Bennet Y, Sehr D, Dardyk G, Chen J,
Muth R, Ormandy T, et al. Native client:
A sandbox for portable, untrusted x86
native code. In: Proceedings of the 2009
30th IEEE Symposium on Security and
Privacy. Berkeley, CA, USA: IEEE; 2009.
pp. 79-93

[27] Elenkov N. Android Security
Internals: An in-Depth Guide to
Android's Security Architecture. San
Francisco, California, USA: No Starch
Press; 2014

[28] Georgios P, Homburg P,
Anagnostakis K, Bos H. Paranoid
android: Versatile protection for
smartphones. In: Proceedings of
the 26th Annual Computer Security
Applications Conference. Austin, Texas,
USA: ACM; 2010. pp. 347-356

[29] Almomani I, Alkhayer A. Android
applications scanning: The guide. In:
Proceedings of the IEEE International
Conference on Computer and
Information Sciences (ICCIS); 3-4 April
2019; Saudi Arabia. Jouf: IEEE; 2019

[30] Allix K, Bissyandé F, Klein J, Traon,
L. AndroZoo. In: Proceedings of the
13th International Workshop on Mining
Software Repositories—MSR 16. 2016.
DOI: 10.1145/2901739.2903508

[31] Abubaker H. Analytics on malicious
android applications. International
Journal of Advanced Software
Computer. 2018;10:106-118. ISSN
2074-8523

[32] Ikram M, Kaafar M. A first look
at mobile ad-blocking apps. In:
Proceedings of the 2017 IEEE 16th
International Symposium on Network
Computing and Applications (NCA).
2017. DOI: 10.1109/nca.2017.8171376

[33] Arnatovich L, Wang L, Ngo N, Soh
C. A comparison of android reverse
engineering tools via program behaviors
validation based on intermediate
languages transformation. IEEE Access.
2018:12382-12394. DOI: 10.1109/
access.2018.2808340

[34] Baskaran B, Ralescu AA. Study of
android malware detection techniques
and machine learning. In: Proceedings
of the Mod. Artif. Intell. Cogn. Sci.
Conf. 2016. pp. 15-23

Telecommunication Systems – Principles and Applications of Wireless-Optical Technologies

20

[35] Arshad S, Ali M, Khan A, Ahmed M.
Android malware detection &
protection: A survey. International
Journal of Advanced Computer Science
and Applications. 2016;7(2):463-475.
DOI: 10.14569/ijacsa.2016.070262

[36] Zachariah R, Yousef M, Chacko A.
Android malware detection and
prevention. International Journal of
Recent Trends in Engineering and
Research. 2017;3(2):213-217. DOI:
10.23883/ijrter.2017.3028.0uhbl

[37] Baskaran B, Ralescu A. A study of
android malware detection techniques
and machine learning. In: Proceedings
of the IEEE International Conference on
Smart Internet of Things (SmartIoT).
2018. DOI: 10.1109/smartiot.2018.00034

[38] Chen J, Wang C, Zhao Z, Chen K,
Du R, Ahn G. Uncovering the face of
android ransomware: Characterization
and real-time detection. IEEE
Transactions on Information Forensics
and Security. 2018;13(5):1286-1300

[39] Arzt S, Rasthofer S, Fritz C, Bodden
E, Bartel A, Klein J, et al. Flowdroid:
Precise context, flow, field, object-
sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan
Notices. 2014;49(6):259-269

[40] Au K, Zhou Y, Huang Z, Lie D.
Pscout: Analyzing the android
permission specification. In: Proceedings
of the 2012 ACM Conference on
Computer and Communications
Security; October 2012. Raleigh, North
Carolina, USA: ACM; 2012. p. 217-228

[41] Mujahid S, Abdalkareem R, Shihab
E. Studying permission related issues in
android wearable apps. In: Proceedings
of the IEEE International Conference
on Software Maintenance and Evolution
(ICSME); September 2018. Madrid,
Spain: IEEE; 2018. pp. 345-356

[42] Tao G, Zheng Z, Guo Z, Lyu M.
MalPat: Mining patterns of

malicious and benign android
apps via permission-related APIs.
IEEE Transactions on Reliability.
2018;67(1):355-369. DOI: 10.1109/
tr.2017.2778147

[43] Alenezi M, Almomani I. Empirical
analysis of static code metrics for
predicting risk scores in android
applications. In: Proceedings of the
5th Symposium on Data Mining
Applications (SDMA2018); 21-22
March, 2018; Riyadh, KSA

[44] Enck W. TaintDroid: An
information-flow tracking system
for realtime privacy monitoring on
smartphones. In: Proceedings of the
ACM Transactions on Computer
Systems (TOCS) 32.2. 2014. p. 5

[45] Zhou Y“H. You, get o_ of my
market: Detecting malicious apps in
official and alternative android markets.
In: Proceedings of the NDSS. 2012.
pp. 50-52

[46] Grace M. Riskranker: Scalable and
accurate zero-day android malware
detection. In: Proceedings of the 10th
International Conference on Mobile
Systems, Applications, and Services.
ACM; 2012. pp. 281-294

[47] Security Affairs. DREBIN
Android app detects 94 percent of
mobile malware [Internet]. Available
from: http://securityaffairs.co/
wordpress/29020/malware/drebin-
android-av.html [Accessed: 2017-12-01]

[48] Arp D. DREBIN: Effective and
explainable detection of android
malware in your pocket. Proceedings of
the NDSS. 2014

[49] Yang W. Appcontext:
Differentiating malicious and benign
mobile app behaviors using context.
In: Proceedings of the Software
Engineering (ICSE); 2015 IEEE/ACM
37th IEEE International Conference.
IEEE. 2015. pp. 303-313

21

Android Application Security Scanning Process
DOI: http://dx.doi.org/10.5772/intechopen.86661

[50] Yang W. Malware detection in
adversarial settings: Exploiting feature
evolutions and confusions in android apps.
Proceedings of the Proc. ACSAC. 2017

[51] Akhuseyinoglu N, Akhuseyinoglu
A. AntiWare: An automated Android
malware detection tool based on
machine learning approach and official
market metadata. In: Proceedings
of the 2016 IEEE 7th Annual
Ubiquitous Computing, Electronics
Mobile Communication Conference
(UEMCON). October 2016. pp. 1-7. DOI:
10.1109 /UEMCON.2016.7777867

[52] Allix K, Bissyandé T, Klein J, Traon
Y. AndroZoo: Collecting millions
of android apps for the research
community. In: Proceedings of the 13th
International Workshop on Mining
Software Repositories—MSR. 2016.
DOI: 10.1145/2901739.2903508

[53] Zachariah R, Akash K, Yousef M,
Chacko A. Android malware detection a
survey. In: Proceedings of the 2017 IEEE
International Conference on Circuits
and Systems (ICCS). 2017. pp. 238-244

[54] Kaspersky Lab. “Emulator.”
[Internet]. Available from: https://www.
kaspersky.com/enterprise-security/
wiki-section/products/emulator
[Accessed: 2019-04-01]

[55] Tam K. CopperDroid: Automatic
reconstruction of android malware
behaviors. Proceedings of the NDSS.
2015

[56] Bhatia T, Kaushal R. Malware
detection in android based on
dynamic analysis. In: Proceedings of
the 2017 International Conference
on Cyber Security And Protection
Of Digital Services (Cyber Security).
2017. pp. 1-6. DOI: 10.1109/
CyberSecPODS.2017.8074847

[57] Wang ZD-ARM. Taming control
flow anti-analysis to support automated
dynamic analysis of android malware.

In: Proceedings of the 33rd Annual
Conference on Computer Security
Applications (ACSAC'17). 2017

[58] Huang H, Zheng C, Zeng J, Zhou
W, Zhu S, Liu P, et al. A large-scale
study of android malware development
phenomenon on public malware
submission and scanning platform. IEEE
Transactions on Big Data. 2018:
15-23. DOI: 10.1109/tbdata.2018.2790439

[59] Kaur R, Li Y, Iqbal J, Gonzalez H,
Stakhanova NA. Security assessment
of HCE-NFC enabled E-wallet banking
android apps. In: Proceedings of the
2018 IEEE 42nd Annual Computer
Software and Applications Conference
(COMPSAC); July 2018. Tokyo, Japan:
IEEE; 2018. pp. 492-497

[60] VirusTotal Malware Intelligence
Services [Internet]. n.d. Available from:
https://www.virustotal.com/learn/
[Accessed 2018-12-15]

[61] Scaife N. Cryptolock (and drop it):
Stopping ransomware attacks on user
data. In: Proceedings of the Distributed
Computing Systems (ICDCS), 2016
IEEE 36th International Conference on.
Nara, Japan: IEEE; 2016. pp. 303-312

[62] Tripwire. Early-Warning
Ransomware Detection Tool Could
Help Protect Users Despite Drawbacks
[Internet]. Available from: https://www.
tripwire.com/state-of-security/security-
data-protection/cyber-security/
early-warning-ransomware-detection-
tool-could-help-protect-users-despite-
drawbacks/ [Accessed 2017-12-02]

[63] Mercaldo F, Nardone V,
Santone A. Ransomware inside
out. In: Proceedings of the 2016
11th International Conference on
Availability, Reliability and Security.
ARES; 2016. pp. 628-637. DOI: 10.1109/
ARES.2016. 35

[64] Li J, Sun L, Yan Q, Li Z, Srisa-an
W, Ye H. Significant Permission

Telecommunication Systems – Principles and Applications of Wireless-Optical Technologies

22

Identification for Machine-Learning-
Based Android Malware Detection,
IEEE Transactions on Industrial
Informatics; July 2018;14(7):3216-3225

[65] Mercaldo F, Nardone V, Santone A.
Ransomware inside out. Proceedings
of the 11th International Conference
on Availability, Reliability and Security
(ARES); Augest. 2016:628-637. DOI:
10.1109/ARES.2016.35

[66] Sun L, Wei X, Zhang J, He L, Yu
PS, Srisa-an W. Contaminant removal
for Android malware detection
systems. Boston, MA, USA: 017 IEEE
International Conference on Big
Data (Big Data); 11-14 Dec 2017. pp.
1053-1062

[67] Maiorca D. R-PackDroid: API
package-based characterization and
detection of mobile ransomware.
In: Proceedings of the Symposium
on Applied Computing. Marrakech,
Morocco: ACM; 2017. pp. 1718-1723

[68] Mercaldo F. Ransomware
steals your phone. Formal methods
rescue it. In: Proceedings of the
International Conference on
Formal Techniques for Distributed
Objects, Components, and Systems.
Heraklion, Greece: Springer; 2016.
pp. 212-221

[69] Mercaldo F. Extinguishing
ransomware-a hybrid approach to android
ransomware detection. In: Proceedings
of the 10th International Symposium on
Foundations Practice of Security. 2017

[70] Yang T. Automated detection and
analysis for android ransomware. In:
Proceedings of the High Performance
Computing and Communications
(HPCC), 2015 IEEE 7th International
Symposium on Cyberspace Safety
and Security (CSS), 2015 IEEE 12th
International Conference on Embedded
Software and Systems (ICESS), 2015
IEEE 17th International Conference on.
IEEE; 2015. pp. 1338-1343

[71] Gharib A, Ghorbani A. DNA-droid:
A real-time android ransomware
detection framework. In: Proceedings
of the International Conference on
Network and System Security. Helsinki,
Finland: Springer; 2017. pp. 184-198

[72] Sarma BP, Li N, Chris Gates C,
Potharaju R, Nita-Rotaru C, Molloy
I. Android permissions: a perspective
combining risks and benefits.
In: Proceedings of the 17th ACM
symposium on Access Control Models
and Technologies. Newark, New Jersey,
USA; 20-22 June 2012. pp. 13-22

[73] Enck W, Ongtang M, McDaniel P.
On lightweight mobile phone
application certification. In: Proceedings
of the 16th ACM Conference on
Computer and Communications
Security. Vol. 2009. pp. 235-245

[74] Gates C, Li N, Peng H, Sarma B,
Qi Y, Potharaju R, et al. Generating
summary risk scores for mobile
applications. IEEE Transactions on
Dependable and Secure Computing.
2014;11(3):238-251

[75] Mathew J, Joy M. Efficient risk
analysis for android applications.
In: Proceedings of the IEEE Recent
Advances in Intelligent Computational
Systems (RAICS); 10-12 December
2015. Trivandrum, India: IEEE; 2015.
pp. 382-387

[76] Guo C, Xu G, Liu L, Xu S. Using
association statistics to rank risk of
android application. In: Proceedings
of the IEEE International Conference
on Computer and Communications
(ICCC); 10-11 October 2015. IEEE;
2015. pp. 1-5

[77] Hao H, Li Z, Yu H. An effective
approach to measuring and assessing
the Risk of android application.
Proceedings of the International
Symposium on Theoretical Aspects of
Software Engineering (TASE); 12-14
Sept. 2015:31-38

23

Android Application Security Scanning Process
DOI: http://dx.doi.org/10.5772/intechopen.86661

[78] Wang Y, Zheng Y, Sun C,
Mukkamala S. Quantitative security
risk assessment of android permissions
and applications. In: Proceedings
of the Lecture Notes in Computer
Science, LNCS-7964. Newark, NJ, USA:
Springer; 2013. pp. 226-241

[79] Yuksel A, Yuksel E, Sertbasa A,
Zaim A. Implementation of a web-
based service for mobile application
risk assessment. Turkish Journal of
Electrical Engineering & Computer
Sciences. 2017;25(2):976-994

[80] Merlo A, Georgiu G. RiskInDroid:
Machine learning-based risk analysis
on android. In: Proceedings of the
IFIP International Conference on ICT
Systems Security and Privacy Protection
(SEC). 2017. pp. 538-552

[81] Hosseinkhani M, Fong P, Papilio CS.
Visualizing android application
permissions. In: Proceedings of
the Eurographics Conference on
Visualization. 2014. pp. 1-10

[82] Kraus L, Wechsung I, Möller
S. Using statistical information
to communicate android permission
risks to users. Workshop on Socio-
Technical Aspects in Security and Trust
(STAST). Vienna, Austria: Co-located
with 27th ieee computer security
foundations symposium (CSF); 18 July
2014. pp. 1-9

[83] Kang J, Kim H, Cheong YG, Huh
JH. Visualizing privacy risks of mobile
applications through a privacy meter.
In: Information Security Practice and
Experience. Lecture Notes in Computer
Science. Vol. 9065. Beijing, China:
Springer; 2015. pp. 548-558

[84] Eze C, Nurse J, Happa J. Using
visualizations to enhance users’
understanding of app activities on
android devices. Journal of Wireless
Mobile Networks, Ubiquitous
Computing, and Dependable
Applications. 2016:39-57

[85] Yoo S, Ryu H, Yeon H, Kwon T, Jang
Y. Personal visual analytics for android
security risk lifelog. In: Proceedings of
the 10th International Symposium on
Visual Information Communication and
Interaction. 2017. pp. 29-36

[86] Dash S, Suarez-Tangil G, Khan S,
Tam K, Ahmadi M, Kinder J, et al.
DroidScribe: Classifying android
malware based on runtime behavior.
In: 2016 IEEE Security and Privacy
Workshops (SPW). 2016. DOI: 10.1109/
spw.2016.25

[87] Arp D. Drebin: Effective and
explainable detection of android
malware in your pocket. In: Proceedings
of the 2014 Network and Distributed
System Security Symposium. 2014. DOI:
10.14722/ndss.2014.23247

[88] Hou S. HinDroid. In: Proceedings
of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery
and Data Mining—KDD 17. Halifax,
NS, Canada: ACM; 2017. DOI:
10.1145/3097983.3098026

