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Chapter

Development of Benzimidazole
Compounds for Cancer Therapy

Puranik Purushottamachar,
Senthilmurugan Ramalingam and Vincent C.O. Njar

Abstract

A fact that is largely unknown in the lay press and even the scientific community
is that today cancer kills more people worldwide than tuberculosis (TB), malaria,
and human immunodeficiency virus (HIV) combined. Benzimidazole is a
heterocyclic aromatic organic compound considered to be a useful pharmacophore
in a variety of impactful drugs. The purpose of this review is to highlight the
benzimidazole-containing agents that are currently in clinical use or in clinical
development as anticancer drugs. It is hoped that this review would function as
comprehensive working reference of research accomplishment in the field of
discovery and development of benzimidazole-based anticancer drugs.

Keywords: benzimidazole derivatives, privileged pharmacophore,
anticancer drugs/agents

1. Introduction

Benzimidazole (1) (Figure 1) is used as the major scaffold or as a moiety on
other scaffolds for the development of a variety of drugs [1-4]. The wide range of
pharmacological activities of benzimidazole-containing agents are attributed to the
unique fused benzene and imidazole rings, which can interact in a noncovalent
manner with a range of biological targets due to the presence of an electron-rich
aromatic system and the two hetero-nitrogen atoms [5, 6]. Because of the ability of
benzimidazole derivative to interact with a variety of unrelated molecular targets,
the term “privileged substructure/moiety” is ascribed to this unique azole agent.

It is believed that the interest in benzimidazole chemistry and as a scaffold/moiety
in the discovery and development of drugs arose from the discovery of the rare
and most prominent benzimidazole compound in nature, N-ribosyl-
dimethylbenzimidazole (2) (Figure 1), which serves as an axial ligand for cobalt
in vitamin B12 [7].

Although several benzimidazole derivatives have been approved for clinical
use, including antiparasitic, antiulcer, antihypertensive, antihistaminic, and
antiemetic drugs [1-4], only one anticancer drug, bendamustine (3) (Figure 2), has
received FDA approval [8-10]. Two prominent benzimidazole agents,
selumetinib (4) (Figure 2) [1, 6] and galeterone (5) (Figure 2) [11], that advanced
to phase III clinical trials, but are yet to be approved as anticancer drugs, will also
be discussed.
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Figure 1.
Chemical structures of benzimidazole (1) and N-ribosyl-dimethylbenzimidazole (2).
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Figure 2.
Chemical structuves of bendamustine (3), selumetinib (4), and galeterone (5).

2. Benzimidazole agents in the clinic and in clinical development
2.1 Bendamustine (3)

Bendamustine (3) (Figure 2) was discovered in a structure-activity relationship
(SAR) campaign directed to obtain more effective and safer water-soluble analogs
of chlorambucil (6) (Figure 3), a nitrogen mustard, which is used clinically against
chronic lymphatic leukemia, lymphomas, and advanced ovarian and breast carci-
nomas [12]. The strategy was replacement of the benzene ring in compound 6 with
purine-like N-methylbenzimidazole moiety in the hope of obtaining an anticancer
agent with antimetabolite and DNA-alkylating activities. Although bendamustine
was first synthesized in the early 1960s [13], it was approved under the trade name
Treanda® by the US Food and Drug Administration (FDA) in 2008 for the treat-
ment of chronic lymphocytic leukemia, multiple myeloma, and non-Hodgkin’s
lymphoma [10, 14-16].
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Figure 3.

Replacement of avomatic benzene ring of chlorambucil (6) to produce bendamustine (3).
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2.1.1 Chemistry

Bendamustine (3) 4-{5-[bis(2-chloroethyl)amino]-1-methylbenzimidazol-2-yl}
butanoic acid was first synthesized via eight synthetic steps with an overall yield of
12% [13, 17]. However, Chen and colleagues have developed a new, more efficient,
and cost-effective route focused on the use of sustainable chemistry for the synthe-
sis of bendamustine hydrochloride, with the overall yield improved from 12 to 45%
as outlined in Figure 4 [18]. This new synthesis is currently used for the commer-
cial production of 3.

2.1.2 Summary of bendamustine’s preclinical and clinical pharmacology

Even though bendamustine is an alkylating agent, due to its ability to cause
intra-strand and inter-strand cross-links between DNA bases, it has been reported
that the DNA breaks induced by bendamustine are more extensive/durable than
those induced by other alkylating agents, such as chlorambucil, cyclophosphamide,
or carmustine [19-21]. In addition, the drug was shown to exhibit partial cross-
resistance to other alkylating agents. These data suggested that bendamustine may
possess additional mechanisms of action. Indeed, a comprehensive study by Leoni
and colleagues clearly demonstrated that bendamustine exhibits a distinct pattern
of activities unrelated to other alkylating drugs. Using a variety of lymphoid cancer
cell lines, the study concluded that mechanisms of action include induction of
mitotic catastrophe, inhibition of mitotic checkpoints, and activation of DNA-
damage stress response and apoptosis. Compared to other alkylating agents,
bendamustine was shown to activate the base excision DNA repair pathway rather
than the alkyl transferase DNA repair mechanism [20].

Although bendamustine is approved for the treatment of a variety of lymphoid
cancers, its activity has also been reported in several cancers, including cancers of
small cell lung, breast, hepatic, bile duct, and head and neck. The studies by Chow
and colleagues using leukemic cell lines in vitro or ex vivo cells from patients with
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Figure 4.
New optimized synthesis of bendamustine hydrochloride (3).
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leukemic progression to clarify interactions between bendamustine and other che-
motherapeutic drugs unraveled synergy with cladribine, in contrast to observed
antagonism with mitoxantrone or doxorubicin. The observation of synergism
between bendamustine and rituximab (an anti-CD20 antibody) in in vitro CD20-
positive DOHH-2 and WSU-NHL cell lines and ex vivo B-cell chronic lymphocytic
leukemia (CLL) cells [22] and in mice with Daudi xenografts [23] provided the
impetus for clinical trials combining these two drugs [24, 25].

Based on the discussion above, it is obvious that bendamustine is an “old drug
rediscovered.” For over 30 years, bendamustine was used in Eastern Germany as
monotherapy for several cancers, including breast cancer, chronic lymphocytic
leukemia (CLL), Hodgkin’s lymphoma, non-Hodgkin’s lymphoma (NHL), and
multiple myeloma (MM) [26-37]. However, following the reunification of Ger-
many, other countries initiated clinical trials of bendamustine as a single agent and
in combination with other drugs. Bendamustine has achieved worldwide regulatory
approval and is a standard-of-care drug for the treatment on many lymphoid
malignancies. Several articles that provide comprehensive reviews of the discovery
and development of this unique drug are available [8-10].

2.2 Selumetinib (4)

Selumetinib (4) (AZD6244: ARRY-142866) is an orally available, potent, selec-
tive inhibitor of mitogen-activated protein kinase (MAPK)/extracellular signal-
related kinase (ERK) kinases 1 and 2 (MEK1 and MEK?2) [6]. This agent has been
extensively studied in many preclinical and clinical studies in several tumor types
with mixed results. Here, we will summarize the chemistry, preclinical studies, and
clinical studies.

2.2.1 Chemistry

Selumetinib (6-(4-bromo-2-chloroanilino)-7-fluoro-N-(2-hydroxyethoxy)-3-
methyl benzimidazole-5-carboxamide) (4) is a diarylamine hydroxamide,
containing mono-methylated benzimidazole subunit [38, 39]. It is a second-
generation, orally active small molecule that acts as a selective and ATP-
uncompetitive inhibitor of MEK1 and MEK2, binding to the allosteric binding site
[38, 39]. The synthesis of selumetinib is yet to be reported in the literature.

2.2.2 Summary of selumetinib’s preclinical and clinical pharmacology

Selumetinib inhibits the enzymatic activity of purified constitutively active
MEK1 with a half maximal inhibitory concentration (ICsy) of 14 nM and was shown
to be highly selective for inhibition of these targets compared to other related
kinases [39]. Using several human cancer cell lines such as NSCLC, melanoma, and
pancreatic and colorectal cell lines, it was shown that selumetinib was a potent
antiproliferative agent. Analysis of the data revealed that cell lines with mutant
BRAF and RAS were sensitive to selumetinib [40]. Selumetinib had little effect on
the growth of Malme-3, the control cell line to the melanoma. Additional studies
suggested that the growth inhibitory effects of selumetinib was not due to wide-
ranging cytotoxicity [39], and it was also established that selumetinib effectively
inhibits the phosphorylation of ERK 1 and ERK 2, which are substrates of MEK1 and
MEK?2 in the MAP kinase pathway. This mechanism of action was confirmed in
tumor xenografts. Additionally, increased markers of apoptosis such as cleaved
caspase 3 and decreased cell proliferation were seen in response to treatment with
selumetinib in the xenograft models [39, 40].
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The promising preclinical in vitro and in vivo data provided the rationale for
multiple clinical trials in cancers with activated Raf-MEK-ERK signaling. In prepa-
ration for clinical evaluation of selumetinib, it was originally developed as a free
base and administered as a liquid suspension, but subsequently a capsule formula-
tion of the hydrogen sulfate salt was found to be more suitable for further develop-
ment [38]. Several phase I and II clinical trials conducted against solid tumors to test
the impact of selumetinib as a monotherapy were unsuccessful [41-44]. This led to
the conduct of several clinical trials with selumetinib in combination with other
cancer drugs. A notable trial was the randomized phase II study of selumetinib in
combination with docetaxel, as a second-line treatment for patients with KRAS-
mutant advanced NSCLC which showed very promising results [45]. The median
progression-free survival was 5.3 months with selumetinib + docetaxel and
2.1 months with docetaxel alone. The objective response rate was 37% for
selumetinib + docetaxel vs. 0% for docetaxel alone (p < 0.001), and the median
overall survival was 9.4 months for selumetinib + docetaxel vs. 5.2 months for
docetaxel alone (HR for death, 0.80 [80% CI, 0.56-1.14]; one-sided p = 0.21).
Unfortunately, in a multinational 510 randomized patients with previously treated
advanced KRAS-mutant NSCLC trial, the combination of selumetinib with
docetaxel did not improve progression-free survival compared with docetaxel alone
[46]. Clearly, addition clinical studies are required to realize the potential impact of
selumetinib alone and in combination with other drugs for the treatment of a
variety of cancers [47, 48].

2.3 Galeterone (5)

Galeterone (also called VN/124-1 or TOK-001) is an orally available anticancer
agent. It was rationally designed as an inhibitor of androgen biosynthesis via inhi-
bition of 17a-hydroxylase/17,20-lyase (CYP17), the key enzyme which catalyzes the
biosynthesis of androgens from the progestins. Through extensive and rigorous
preclinical studies, galeterone was shown to modulate two other targets in the
androgen/androgen receptor (AR) signaling pathway [11] and shown to inhibit the
eukaryotic initiation factor 4E (eIF4E) protein translational machinery [49].
Galeterone advanced successfully through phases I and II clinical trials in prostate
cancer patients but was unsuccessful in the pivotal phase III clinical trial in men
with castration-resistant prostate cancer (CRPC), harboring AR splice variants
(e.g., AR-V7). We present a summary of the chemistry, preclinical studies, and
clinical studies [50].

2.3.1 Chemistry

Galeterone, 3f-hydroxy-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (5), is
one of a series of novel A'®-17-azolyl steroid, which, unlike previously known 17-
heteroaryl steroids, the azole moiety is attached to the steroid nucleus at C-17 via a
nitrogen of the azole. The synthesis of galeterone from commercially available 3-
acetoxyandrosta-5-en-17-one (12) is presented in Figure 5 [11, 51], and a facile and
large-scale preparation (commercial process) of the compound has been developed
but is yet to appear in the literature.

2.3.2 Summary of galeterone’s preclinical and clinical pharmacology
Using intact CYP17 expressing Escherichia coli, galeterone was shown to be a

potent inhibitor of the enzyme with an ICsg value of 300 nM and was shown to be
more potent than abiraterone (ICsq value of 800 nM) [52]. Additional studies by
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Synthesis of galeterone.

our group revealed that galeterone could disrupt androgen signaling through mul-
tiple targets [51-54].

We strongly believe that the increased efficacy of galeterone in several prostate
cancer models both in vitro and in vivo is due to its ability to downregulate the AR
and block androgen binding to AR. Using well-established AR-competitive binding
assays (against the synthetic androgen [°H]R1881), galeterone was equipotent to
Casodex in LNCaP cells but had a slightly higher affinity for the wild-type receptor
in PC3-AR cells. In transcriptional activation assays (utilizing a luciferase reporter),
galeterone was shown to be a pure AR antagonist of the wild-type AR and the T877A
mutation found in LNCaP cells [53]. In prostate cancer cell lines, galeterone
inhibited the growth of CRPCs, which had increased AR and were no longer sensi-
tive to Casodex [53] and was also shown to inhibit the growth of AR-negative
prostate cancer cells [54]. In addition, galeterone demonstrated superior synergy
for growth inhibition in combination with everolimus or gefitinib compared with
Casodex [55].

Recent in vitro studies have shown additional activities of galeterone, including
proteasomal degradation of AR and its splice variants [56, 57] and inhibition of the
eukaryotic initiation factor 4E (eIF4E) protein translational machinery via induc-
tion of proteasomal degradation of mitogen-activated protein kinase-interacting
kinases 1 and 2 (Mnk1 and Mnk2) [58, 59].

Because of the short half-life (1, = ~40 min) in mice, galeterone was adminis-
tered twice daily in our antitumor efficacy studies. Galeterone (0.13 mmol/kg twice
daily) caused a 93.8% reduction (p = 0.00065) in the mean final LAPC-4 xenograft
volume compared with controls, and this efficacy was significantly more effective
than castration or our most potent CYP17 inhibitor, VN/85-1 [51]. In another
antitumor efficacy study, treatment of galeterone (0.13 mmol twice daily) was very
effective in preventing the formation of LAPC4 tumors (6.94 vs. 2410.28 mm? in
the control group). Galeterone (0.13 mmol/kg twice daily) and VN/124-1
(0.13 mmol/kg twice daily) + castration induced regression of LAPC4 tumor xeno-
grafts by 26.55 and 60.67%, respectively [53]. Using castration-resistant prostate
cancer (CRPC) HP-LNCaP tumor xenografts, we showed that
galeterone + everolimus (m-TORC1 inhibitor) acted in concert to reduce tumor
growth [60]. Utilizing the androgen-dependent LAPC-4 prostate cancer xenograft
model, we have shown galeterone is more efficacious than the blockbuster prostate
cancer drug abiraterone (Zytiga®) [61]. We also reported that galeterone potently
inhibits the growth of CRPC CWR22Rv1 tumor xenografts [56].
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Based on these impressive preclinical data, galeterone was licensed by the Uni-
versity of Maryland, Baltimore, to Tokai Pharmaceuticals, Inc., who initiated
Androgen Receptor Modulation Optimized for Response 1 (ARMOR1) phase 1/
phase 2 trials in castrate-resistant prostate cancer patients on November 5, 2009
[11]. The ARMOR phase I and phase II studies conducted with galeterone demon-
strated that galeterone is well tolerated with promising clinical activity in patients
with CRCP [62, 63]. To determine whether galeterone has clinical activity in
patients with C-terminal loss of the androgen receptor, circulating tumor cells were
retrospectively tested for C-terminal loss. Of the seven patients identified, six had
PSA50 responses. These promising phases I and II studies enabled the selection of
galeterone 2500 mg/day dose for the pivotal phase III trial (ARMOR3-SV,
NCT02438007). The retrospective data of patients with C-terminal loss of the
androgen receptor supported the design of ARMOR3-SV pivotal trial in which
patients with AR-V7 were randomized to receive either galeterone or enzalutamide.
Regrettably, the trial was discontinued following review by the independent Data
Monitoring Committee, though no safety concerns were cited regarding this rec-
ommendation [50]. Gratifyingly, Educational and Scientific LLC (ESL), Baltimore,
announced (December 17, 2018) that the University of Maryland, Baltimore
(UMB), has granted ESL an exclusive license for the development of galeterone for
the treatment of patients with CRPC. We eagerly await the initiation of a new phase
III clinical study of galeterone in men with prostate cancer.

3. Concluding remarks

Despite the enormous literature on the synthesis and preclinical evaluation of
numerous benzimidazole-containing compounds, it is unclear why very few of this
class of compounds have entered clinical trials for evaluation as potential anticancer
drugs. Given the fact that many benzimidazole-containing drugs have achieved
blockbuster status for other diseases, it may be reasonable to suggest that the
researchers interested in the development of benzimidazole-contained anticancer
drugs should carefully study the process that have resulted in successful non-cancer
benzimidazole drugs. We hope that this review will stimulate research activities
that would eventually produce new anticancer benzimidazole drugs.
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Note added in proof

During the review of this manuscript, it was reported that an analog of
Selumetinib called Binimetinib (Mektovi) in combination with a BRAF inhibitor



Chemistry and Applications of Benzimidazole and its Derivatives

(Encorafenib, Braftovi) was approved by US Food and Drug Administration
(FDA) for the treatment of unresectable or metastatic melanoma with BRAF

mutations [64].
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