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Chapter

An Assessment of the Prediction
Quality of VPIN
Antoine Bambade and Kesheng Wu

Abstract

VPIN is a tool designed to predict extreme events like flash crashes. Some
concerns have been raised about its reliability. In this chapter we assess VPIN
prediction quality (precision and recall rates) of extreme volatility events including
its sensitivity to the starting point of computation in a given data set. We bench-
mark the results with the ones of a “naive classifier.” The test data used in this study
contains 5.6 year’s worth of trading data of the five most liquid futures contracts of
this time period. We found that VPIN has poor “flash crash” prediction power with
the traditional 0.99 decision threshold. Increasing the decision threshold does not
significantly improve overall prediction quality. Nevertheless we found VPIN has a
more interesting predictive power for flash events of lower amplitude. Finally, we
found that, for practice, the last bar price structure is the least sensitive to the
starting point of computation.

Keywords: high-frequency data, probability of informed trading, VPIN, liquidity,
flow toxicity, volume imbalance, flash crash
JEL codes: C02, D52, D53, G14, G23

1. Introduction

1.1 Main study purpose

Easley et al. [1] designed a tool, nicknamed volume-synchronized probability of
informed trading (VPIN), with the aim to predict flash crashes. It appeared it could
predict the “flash crash” of May 6, 2010, a few hours before it happened [2]. A lot of
papers were published [3–5], and it was proposed to use it for regulation through a
VPIN contract [2, 6]. However, critics pointed out some flaws, questioning its
reliability [7–11] but without providing a quantitative evaluation of the prediction
quality (e.g., in terms of precision and recall rates). In this study, we design a
framework to detect flash crashes and thereby assess the behavior of the VPIN tool
enabling as well as comparing and benchmarking with other predictive algorithms.

1.2 Motivation

The amount of trading data has exploded in finance thanks to the continuing
progress of high-frequency techniques. It constrains practitioners to use more and
more state-of-the-art algorithms to deal with this overwhelming amount of
information. Computers and algorithms are more and more efficient, but still
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decision-making is highly dependent on both the quantity and the quality of
information. Thus, errors and speculations that can make the financial market toxic,
i.e., conducive to crashes, are possible. Examples in the past, such as the “flash
crash” of May 6, 2010, have shown that this new paradigm in finance has made it
possible to introduce a new kind of crashes characterized by their suddenness. Such
quick crashes seem dangerous because of a kind of inherent unpredictability.
However, predictive models to model this new framework do exist.

1.3 Model

Easley et al. [12] designed a model of the high-frequency financial market based
on flows of informed and uninformed traders. They showed that information is a
key parameter of the spread between ask and bid of prices. The model works as
follows. Each day, general conditions and circumstances may or may not result in
events that can help predict the evolution of the price of a future. More precisely,
for each day, nature decides whether or not there is an event that can help predict
the evolution of the price of a future. This is modeled with a Bernoulli law of
parameter α. If an event occurs, nature also decides with a Bernoulli law of param-
eter δ if this event is a low signal. With these conditions, buys and sells for this
future come then from flows of informed and uninformed traders. They are
modeled by Poisson processes of respective parameters μ and ϵ. This framework can
be summarized by the following tree in Figure 1 [13].

The whole trading process studied is thus a mixture of Poisson processes. It
enabled authors to compute ask and bid and then the spread. They showed that for
reasonable cases the spread is linearly linked with the following probability they
named probability of informed trading (PIN) [12]:

PIN ¼
αμ

αμþ 2ϵ
: (1)

Later, Easley et al. [2] designed a new framework to easily compute this proba-
bility. Indeed PIN numbers come from a parametrized framework, and one does not
have access to all these parameters. They showed however that PIN can be well
approximated through a volume-clock paradigm [14], thanks to data of futures

Figure 1.
A tree summarizing the trading process.
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with a new formula. The approximated version of PIN was then called the
volume-synchronized probability of informed trading (VPIN). It appeared that this
new tool could predict the “flash crash” of May 6, 2010, a few hours before it
happened [2].

Nevertheless, the model has received a lot of critics. For example, Andersen and
Bondarenko have shown [7] that VPIN is quite sensitive to the starting point of
when one starts computing VPIN on a data set. It indeed questions VPIN prediction
quality. Moreover, they have also shown that VPIN is sensitive to other parameters,
such as the trade classification rule used [8] or how one defines the average daily
volume of trades [9]. Changing the classification rule may drastically change VPIN
behavior [9]. Pöppe et al. have reached the same conclusions with a different
approach. Using a different classification rule can change VPIN prediction power
toward a crash (in their paper a German blue-chip stock [11]). Besides, controlling
ex ante parameters seems to give poorer prediction quality [8, 9]. This point has also
been checked by Abad et al. [10]. Controlling ex ante realized volatility, and trading
intensity, as did Andersen and Bondarenko [9], prediction quality seems to vanish.
More deeply, they have also underlined that it is not obvious how one should define
a VPIN prediction, analyzing more precisely toxic and nontoxic halts, as well as
toxic events. Furthermore, Torben G. Andersen and Oleg Bondarenko interpret
VPIN as being too sensitive to trading intensity. They have also explained that VPIN
metric is sometimes unexpectedly correlated with other usual ones (such as VIX or
RV) [7, 8]. More recently, it has been shown theoretically that the volume-clock
paradigm of VPIN framework does not enable to really approximate fully the PIN
value, although the proposed formula is close [15, 16].

More generally, all these critics have pointed out that:

• First, it is not obvious how one should use VPIN.

• Second, prediction quality has not been studied sufficiently to assess it as being
reliable.

• Third, the study lacks objective benchmark.

1.4 Goal

The purpose of this chapter is to quantify the prediction quality of VPIN in order
to enable practitioners to assess whether or not it can be used in the real world (e.g.,
for trading or regulation). That’s why:

• First, we want to design a proper framework to compute precision and recall
rates as well as prediction length of VPIN. This will be possible by providing a
formal definition of flash crashes. To be more precise, we will use the
maximum of intermediate return (MIR) [5] to define it.

• Second, we want to study through this framework how sensitive VPIN is to the
starting point of the data set.

1.5 Plan

In the following, we first recall VPIN model and propose a definition for flash
crashes (Section 2). Second, we assess within this framework VPIN prediction
quality (Section 3). Finally, we assess VPIN sensitivity to the starting point of the
data set (Section 4).
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2. VPIN software and formal flash crash definition

In this section, we first recall the VPIN model. Second, we propose a definition
of flash crashes used to compute precision and recall rates. Finally, we present the
data used in our tests.

2.1 VPIN software

Easley et al. [12] designed a model of the high-frequency financial market based
on informed and uninformed traders. It is then possible to compute a probability of
informed trading (PIN). Easley et al. [1] use these results and define an easy way to
compute PIN only through the data of trades. We describe briefly VPIN model used
in previous literature. The theoretic study of the model is treated in another
research study.

2.1.1 Bars

Following Easley et al. [1], a bar is a fixed volume of trades that are successive
in time. With such a definition, one can associate the following quantities with
each bar:

• A nominal price, computed according to a given technique (mean price,
median price, closing price, opening price, etc.)

• A nominal time (first trade time, last trade time)

• Local maximum and minimum values of trades

In practice, the last few trades that do not fill up a bar are dropped to the
next bar.

2.1.2 Bulk volume classification

The computation of VPIN requires to determine directions of trades, i.e., classi-
fying each trade as a buy or a sell. The method used here is the following: bulk
volume classification (BVC) [1, 5]. Let us note Vb the volume of a bar and j the label
of bar number j (j>0) and Pj its price (closing, opening, median, mean). Then the
number of buys Vb

j within bar j is determined according to this formula:

Vb
j ¼ VbZ

Pj � Pj�1

σ

� �

(2)

where Z is the cumulative function of a given law (usually student or normal
distribution) and σ is the standard deviation of the numerator on successive
number of bars. In our test, σ is computed once on all successive values of the data
set, and the student law is of parameter one. Within bar j the number of sells V s

j is
obviously

Vs
j ¼ Vb 1� Z

Pj � Pj�1

σ

� �� �

(3)
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2.1.3 Buckets

A bucket is defined to be a fixed number of successive trades. Here to simplify,
as bars are defined also as a fixed number of trades, a bucket will be m successive
bars. Let us note Vbucket the fixed volume of a bucket. We naturally have
Vbucket ¼ mVb.

2.1.4 VPIN formula

VPIN formula is computed on n successive buckets, where n is VPIN support. A
buffer is defined as n successive buckets. Here is VPIN formula, approximating (1)
upon bucket number j (j≥ n):

VPINj ¼
∑

j
i¼j�nþ1∣V

b
bucket, i � Vs

bucket, i∣

nVbucket
(4)

For a given bucket i:

• Vs
bucket, i ¼ ∑j∈ bucketiV

s
j

• Vb
bucket, i ¼ ∑j∈ bucketiV

b
j

In order to distribute all VPIN values between 0 and 1, in practice, VPIN is
normalized through a normal law. We thus consider VPINnormalized in the following:

2.1.5 VPIN event

A VPIN event is declared when the following occurs:

VPINnormalized ≥ θVPIN (5)

where θVPIN is a given decision threshold. In practice [5] θVPIN ¼ 0:99.

2.2 Defining flash crashes with MIR

2.2.1 Formal definition

Let pt
� �

t be a time series (e.g., of prices). Here is the definition of MIR:

MIRt,η ¼ maxi 6¼j, i, j∈ t;tþη½ �

∣pi � pj∣

pi
(6)

A flash crash will depend on two things here:

• The amplitude of the crash, which means extreme MIR values (e.g., 10%)

• The shortness of the fall, which means the shortness of the time window within
η that computes MIRt,η (e.g., 10 minutes), more precisely, noting

i ∗ , j ∗ ¼ argmaxi 6¼j, i, j∈ t;tþη½ �

∣pi�pj∣
pi

, the fall has length ∣j ∗ � i ∗ ∣
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2.2.2 Empiric definition

We reported in this data set only one flash crash, i.e., on May 6, 2010, which
lasted approximately 10 minutes according to media and financial institutions. Our
definition of flash crash will obviously take into account this event.

2.3 The data

2.3.1 Futures used

In this work, we use a comprehensive set of liquid futures trading data to
illustrate the techniques to be introduced. More specifically, we will use 67 months’
worth of tick data of the five most liquid futures traded on all asset classes. The data
comes to us in the form of 5 CSV files, one for each futures contract traded. The
source of our data is TickWrite, a data vendor that normalizes the data into a
common structure after acquiring it directly from the relevant exchanges. The total
size of the comma-separated value (CSV) files is about 45.1 GB. They contain about
millions of trades spanning from the beginning of January 2007 to the end of July
2012. The data set contains five of the most heavily traded futures contracts. Each
has more than 100 million trades during this 67-month period. The most heavily
traded futures, the file containing E-mini SP500 futures, symbol ES, has about 500
million trades involving a total number of about 3 billion contracts. The second
most heavily traded futures is Euro exchange rates, symbol EC, which is 188 million
trades. The next three are Nasdaq 100 (NQ), 173 million trades; light crude oil (CL),
165 million trades; and E-mini Dow Jones (YM), 110 million trades. In Figure 2, one
can see an evolution of prices with time (here each tick corresponds to a bucket).

2.3.2 Definition of flash crash

We want to define empirically a flash crash using the tools of VPIN framework,
namely, bars and buckets. As volume-clock paradigm does not allow to control
filling times of fixed volume of trades, here below is a summary of the steps we have
followed to manage to detect flash crashes using MIR. As it is quite long and the
main purpose of study is the prediction of results of the following section, we
present principles and do not go into technical details:

Figure 2.
Bucket S&P 500 values with time.
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• To be sure not to miss a flash crash because of being too long in time bar or
bucket, we have chosen a reasonable granularity level as in [5] (buckets per
day, 200, and bars per bucket, 30).

• For each financial instrument, we have recorded the number of bars necessary
to capture the local 10 minutes of maximum fall of May 6, 2010, known as the
“flash crash”; we refer to these numbers as “window lengths” below.

• As the window lengths defined above do not have a stable distribution in time
(because of the volume-clock paradigm), we have arbitrarily filtered out all
events in which the time difference between minimum and maximum within a
window length is longer than 20 minutes, in order to capture only quick
events. Indeed, one given window length may be too big and thus allow at
some date to measure a time difference between local minimum and maximum
which is longer than 10 minutes whereas it would be a true flash crash with a
smaller window length.1

• For each instrument we recorded the amplitude of the “flash crash” and their
respective MIR values.

The results made it possible to classify the five financial instruments into two
groups:

• Data sets where the “flash crash” and other flash crashes are significantly
present: ES, NQ, and YM.

• Data sets where the “flash crash” and other flash crashes are not really present.
More precisely, the “flash crash” is not a rare event in the data set, and
generally magnitude levels of flash crashes are low compared to other
instruments.

3. Assessing VPIN prediction quality

In this section, first we present our methodology to find VPIN optimal predic-
tion quality (for which recall and precision rates are maximal and more useful for
practice). Second, we present all the results: best parameters, associated remarks,
and prediction lengths.

3.1 Methodology

3.1.1 Parameters to test

Here are the parameters we will test:

1 This is not perfect because we can still miss some crashes (whereas in this data set, it will not be that

much, and it will be with a smaller probability), but first we do not want to change too much the

definition in time of a flash crash (we will not increase the tolerance level to 1 day), and second this

problem is inherent to the fact that fixing volume of bars and of buckets prevents us from controlling

precisely filling bar and bucket times. Finding a solution for this precise data set does not guarantee at all

a general solution neither for one data set nor for a financial instrument.
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• Bar price: mean, median, last price, first price

• MIR decision threshold θMIR to detect a flash crash

• VPIN support n

• VPIN classifier (student, normal)

• Prediction window ω (described below)

• VPIN decision threshold θVPIN to predict a flash crash

3.1.2 Defining true positive events

Here we describe how we define true positive, false-negative, and false-positive
events. For a given prediction window length ω:

• From a MIR flash crash detection (i.e., MIRj ≥ θMIR) at a bucket j (j ≥ ω), if in
the window of buckets [j-ω,j-1] there is a VPIN event (i.e., VPINNormalized,

i ≥ θVPIN, i ∈ [j-ω,j-1]), then we consider it as a true positive event.2 Otherwise
it is a false-negative event.

• From a VPIN event at a bucket j (i.e., VPINNormalized,j ≥ θVPIN,
jþ ω≤ end Of  DataSet), if in the window of buckets [j + 1,j + ω] there is a flash
crash ((i.e., MIRi ≥ θMIR, i ∈ [j+1,j+ω]), then we consider it as a true positive
event.3 Otherwise it is a false-positive event.

3.1.3 Choosing the maximum value of ω

To make a useful deep search, we have computed the distribution of time
difference between different amounts ω of buckets. Indeed, we want to control a
temporal time window reasonable for practitioners and still sufficiently wide so that
we can analyze which events VPIN can detect or not. We have focused this research
to have a stable bounded distribution of time difference between ω buckets of about
1 month. Below one can see the respective distribution for the S&P500 instrument;
the four other distributions of the instruments studied look the same (Figure 3).

In Table 1 one can see the medians of the different distributions.
For the next step, ω ≤ 2500.

3.1.4 Describing deep search of flash crash prediction

Here we describe how we intend to make a first deep search of VPIN prediction
quality of events close to the “Flash Crash” of May 2010. In this algorithm described
below θVPIN = 0.99.4

For each VPIN classifier (student or Gaussian), for each bar price structure
(last, first, median, average) do:

• For each θMIR ∈ 5:2%; 6:2%½ � with step 0.1% for ES instrument,
θMIR ∈ 2:2%; 3:2%½ � with step 0.1% for CL instrument, θMIR ∈ 0:4%;0:9%½ � with

2 If j � ω < 0, the window of buckets considered is [0,j-1].
3 If jþ ω>endOfDataSet, the window of buckets considered is [j + 1,endOfDataSet].
4 Previous research, such as [5], showed that this threshold is a good one.
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step 0.1% for EC instrument, θMIR ∈ 8%; 9%½ � with step 0.1% for NQ
instrument, θMIR ∈ 5:4%; 6:4%½ � with step 0.1% for YM instrument5 do:

• For each VPIN support n∈ 30; 60½ �, with step 10, do:

◦ For ω∈ 100; 2500½ � with step 100, do:

◦ test prediction

◦ store current parameters, precision and recall if and only if
recallþ precision≥ previousLocalMaximum

◦ store prediction length (distance between VPIN event and MIR
event).

Remark: we first try to maximize precision+recall rate. If the local maximum
found is interesting for practice (at least superior or equal to 1.2) and more powerful
than a “naive” algorithm, then it sounds worth making a more serious search of
precision and recall rates separately to find a good trade-off between them (e.g.,
thanks to a ROC curve).

Figure 3.
Time difference distribution between 2500 S&P 500 buckets.

Futures Days Number of bucket chosen

ES 14.8 2500

EC 13.8 2500

CL 15.0 2500

YM 14.3 2500

NQ 15.2 2500

Table 1.
Median of time difference between 2500 buckets for the different instruments.

5 As each MIR value for the flash crash is different, one must adapt the area of deep search to be precise

and have a quicker calculation time.
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3.2 Results

3.2.1 Best parameters found

In Tables 2–5 one case see the best parameters that maximize precision+recall
for each financial instrument and bar price structure studied.

3.2.2 Remarks and first interpretation

We remark overall the following:

• The choice of bar structure does not really affect the optimal choice of other
parameters; nevertheless mean and median bar price structures have best
precision+recall rate on average.

• Recall rates are very close to 1.

• Since ES, NQ, and YM precision rates are “low”, thus precision + recall rates
are “low.”

• Since EC and CL precision rates are “high,” thus precision + recall rates are
“high” since recall is already “high.”

• CL and EC had on May 6, 2010, a very low flash crash threshold, which
increases a lot the number of crash of same magnitude detected in the data set.

• CL and EC obtain their maximum value to the minimum bound of the deep
search (respectively, a 2.2% fall and 0.6% fall). It is not the case for other

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier Bar price

ES 0.9737 0.2171 1.1908 0.062 60 2400 Gaussian Last

EC 0.9080 0.9644 1.8724 0.006 30 2500 Gaussian Last

CL 0.9406 0.9045 1.8451 0.022 60 2500 Student Last

NQ 1 0.0034 1.0034 0.08 30 400 Gaussian Last

YM 0.8421 0.1512 0.9933 0.064 60 2500 Gaussian Last

Table 2.
Best parameters maximizing precision+recall rate for different futures and last bar price structure in the first
deep search.

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier Bar price

ES 0.9737 0.2024 1.1761 0.062 60 2400 Gaussian First

EC 0.9127 0.9681 1.8808 0.006 30 2500 Student First

CL 0.9534 0.9012 1.8546 0.022 60 2500 Student First

NQ 1 0.0038 1.0038 0.08 30 400 Gaussian First

YM 0.8421 0.1449 0.9870 0.064 60 2500 Gaussian First

Table 3.
Best parameters maximizing precision+recall rate for different futures and first bar price structure in the first
deep search.
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instruments (in NQ cases, precision+recall optimal rate is constant from
0.8 to 0.9).

The results give two first findings:

• When the flash crash is significantly present for the instrument, i.e., of high
magnitude and rare in the data set (ES, YM, and NQ cases), then recall is high,
which means that VPIN makes a prediction before this happens, but precision
is low: VPIN detects other events that are not flash crashes.

• When the flash crash is not significantly present for the instrument, i.e., of low
magnitude and not rare (there are a lot of events of 10–20-minute length of
same magnitude), then recall and precision are high.

This may suggest one of the following hypotheses:

• VPIN seems to be a poor indicator of flash crash prediction with the usual
recommended threshold 0.99.

• VPIN can be a better indicator of another type of event (crashes of less
important amplitude).

We will compare the results of the same deep search with the one of a naive
classifier, to see whether or not the good prediction results in CL and ES cases are
relevant.

3.2.3 Benchmark with a “naive classifier”

We made a comparison of VPIN prediction quality result with a “naive
classifier,” which randomly chooses whether or not there will be a crash from each

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier Bar price

ES 0.9737 0.1950 1.1687 0.062 60 2400 Student Mean

EC 0.9058 0.9691 1.8749 0.006 30 2500 Student Mean

CL 0.9789 0.8654 1.8443 0.022 40 2500 Student Mean

NQ 1 0.0036 1.0036 0.08 30 400 Gaussian Mean

YM 1 0.1921 1.1921 0.055 30 2500 Student Mean

Table 5.
Best parameters maximizing precision+recall rate for different futures and mean bar price structure in the first
deep search.

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier Bar price

ES 0.9737 0.1996 1.1733 0.062 60 2400 Gaussian Median

EC 0.9037 0.9718 1.8755 0.006 30 2500 Student Median

CL 0.9447 0.8951 1.8398 0.022 60 2500 Student Median

NQ 1 0.0036 1.0036 0.08 30 400 Gaussian Median

YM 1 0.1911 1.1911 0.054 30 2500 Student Median

Table 4.
Best parameters maximizing precision+recall rate for different futures and median bar price structure in the
first deep search.
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bucket of the data set. In Table 6 one can see the results of the naive classifier for
the first deep search set of parameters.6 As it is a naive classifier, results do not
depend on direction of prices (bar price classifier) and bar price structure.

We remark the following:

• “Naive classifier” has poor results comparable to those of VPIN for ES, NQ,
and YM instruments; although poor, VPIN predictions are better than “naive
algorithm” on ES cases.

• “Naive classifier” has better results than VPIN on EC instrument.

• “Naive classifier” has worse results than VPIN on CL instrument.

We can interpret it as follows:

• EC flash crash definition is barely inconsistent, with a MIR threshold of
0.006%; it is obvious that a naive algorithm does better results as the constraint
is very small to detect a “flash crash” of such a magnitude.

• On CL and ES cases though, VPIN predictions are better, and these results are
obtained when θMIR threshold was on the lower bound of the deep search. It
might indicate that VPIN software has a better predictive power than a “naive
algorithm” not on a “flash crash” amplitude basis but on a lower amplitude
level. Nevertheless, one may wonder whether or not this level of amplitude is
useful for practitioners.

Anyway, previous results may conclude that for “flash crash” prediction, VPIN
has overall equivalent poor power prediction with the traditional threshold
θVPIN = 0.99, as a “naive” algorithm.

That’s why in the next paragraph, we benchmark predictive power of “naive”
and VPIN algorithms:

• First on higher θVPIN constraints

• Second on lower bounds of crash amplitude θMIR while θVPIN = 0.99

• Third on higher θVPIN constraints and at the same time lower bounds on θMIR

Futures Recall Precision Precision+recall θMIR n ω (buckets)

ES 1 0.0355 1.0355 0.052 50 2500

EC 1 0.9948 1.9948 0.004 50 2500

CL 1 0.3413 1.3413 0.022 50 2500

NQ 1 0.0076 1.0076 0.084 60 2500

YM 1 0.0174 1.0174 0.055 50 2500

Table 6.
Best parameters maximizing precision+recall rate for different futures for the naive classifier.

6 First tests conducted with EC instrument have been realized with an average to get more robust

results. They are really close to the one obtained here with a single realization of randomness.
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Indeed, the first hypothesis is that there are too many false VPIN predictions,
i.e., false-positive events, as precision rate is too low and recall rate is too high.
That’s why one may hope that making θVPIN constraints higher may reduce the
number of VPIN “useless” predictions while not reducing too much recall rate.

3.2.4 Deep search allowing higher bounds for θVPIN

In the following we have looked to higher bounds for θVPIN from 0.99 to
0.99999. All other parameters of the deep search are the same. Below, one can see
the results in Tables 7–10. The results for the naive algorithm are indeed the same.

We remark the following:

• Precision rate has increased for each bar price structure for ES instrument,
maintaining recall rate constant to θVPIN = 0.99 case.

• Precision + recall rate has increased for YM instrument only with a last or first
bar price structure, but recall decreased a bit compared to θVPIN = 0.99 case.

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier θVPIN

ES 0.9737 0.4677 1.4414 0.062 60 1600 Gaussian 0.99999

EC 0.9080 0.9644 1.8724 0.006 30 2500 Gaussian 0.99

CL 0.9406 0.9045 1.8451 0.022 60 2500 Student 0.99

NQ 1 0.0034 1.0034 0.08 30 400 Gaussian 0.99

YM 0.7091 0.3160 1.0251 0.054 60 2500 Student 0.9999

Table 7.
Best parameters maximizing precision+recall rate for different futures and last bar price structure allowing
higher bounds for θVPIN.

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier θVPIN

ES 0.9737 0.3412 1.3149 0.062 60 1200 Gaussian 0.99999

EC 0.9127 0.9681 1.8808 0.006 30 2500 Student 0.99

CL 0.9534 0.9012 1.8546 0.022 60 2500 Student 0.99

NQ 1 0.0038 1.0038 0.08 30 2500 Gaussian 0.99

YM 0.7091 0.3545 1.0636 0.054 60 2500 Student 0.9999

Table 8.
Best parameters maximizing precision+recall rate for different futures and first bar price structure allowing
higher bounds for θVPIN.

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier θVPIN

ES 0.9737 0.3306 1.3043 0.062 30 1700 Gaussian 0.99999

EC 0.9037 0.9718 1.8755 0.006 30 2500 Student 0.99

CL 0.9447 0.8951 1.8398 0.022 60 2500 Student 0.99

NQ 1 0.0036 1.0036 0.08 30 400 Gaussian 0.99

YM 1 0.1911 1.1911 0.054 30 2500 Student 0.99

Table 9.
Best parameters maximizing precision+recall rate for different futures and median bar price structure allowing
higher bounds for θVPIN.
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• Compared to the “naive” algorithm, VPIN results are effectively better in ES
case. In YM case we still find comparable results.

• On average, mean and median bar price structures have the best precision
+recall rate.

To verify whether or not we can get at least better results than a naive algorithm
in data sets with a real flash crash, we study in the following first the results
allowing lower bounds on θMIR while θVPIN = 0.99 and second the results allowing
lower bounds on θMIR and higher constraints on θVPIN. Indeed, the intuition is that
on NQ case, the “flash crash” amplitude constraints are far too high to have a good
precision rate, because in this case there are too few events detected with MIR
algorithm.

3.2.5 Deep search allowing lower bounds for θMIR

We remark the following in Tables 11–14:

• Results have changed for every instrument except the ES one which has kept
the same local maximum as in the first deep search.

• Precision is far higher than before, while recall is still high. Therefore, overall
precision + recall rates are “high.”

• Optimal θMIR is around 0.015 for ES, CL, NQ, and YM financial instruments,
whereas for EC the previous local maximum around 0.006 remains higher.

• On average, median bar price structure has the best precision+recall rate.

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier θVPIN

ES 0.9737 0.3786 1.3523 0.062 60 1600 Gaussian 0.99999

EC 0.9058 0.9691 1.8749 0.006 30 2500 Student 0.99

CL 0.9789 0.8653 1.8442 0.022 40 2500 Student 0.99

NQ 1 0.0036 1.0036 0.08 30 400 Gaussian 0.99

YM 1 0.1921 1.1921 0.055 30 2500 Student 0.99

Table 10.
Best parameters maximizing precision+recall rate for different futures and mean bar price structure allowing
higher bounds for θVPIN.

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier Bar price

ES 0.9421 0.9541 1.8962 0.015 30 2500 Student Last

EC 0.9080 0.9644 1.8724 0.006 30 2500 Gaussian Last

CL 0.9297 0.9806 1.9103 0.016 30 2500 Student Last

NQ 0.9179 0.9019 1.8198 0.015 30 2500 Gaussian Last

YM 0.9460 0.9696 1.9156 0.015 50 2500 Gaussian Last

Table 11.
Best parameters maximizing precision+recall rate for different futures and last bar price structure allowing
higher bounds for θMIR.
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In the following, we will first compare the results to the case where we allow
higher bound on θVPIN, to see if there is a difference. Second, we will benchmark
both results to the one of a “naive” classifier.

3.2.6 Deep search allowing lower bounds for θMIR and higher bounds for θVPIN

We remark in Tables 15–18 that compared to previous deep search:

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier Bar price

ES 0.9404 0.9402 1.8806 0.015 30 2500 Gaussian First

EC 0.9127 0.9681 1.8808 0.006 30 2500 Gaussian First

CL 0.9233 0.9728 1.8961 0.016 30 2500 Student First

NQ 0.8291 0.9833 1.8124 0.01 30 2500 Student First

YM 0.9517 0.9673 1.9190 0.015 50 2500 Student First

Table 12.
Best parameters maximizing precision+recall rate for different futures and first bar price structure allowing
higher bounds for θMIR.

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier Bar price

ES 0.9499 0.9498 1.8997 0.015 30 2500 Student Median

EC 0.9037 0.9717 1.8754 0.006 30 2500 Student Median

CL 0.9265 0.9718 1.8983 0.016 30 2500 Student Median

NQ 0.9243 0.9017 1.8260 0.015 30 2500 Gaussian Median

YM 0.9829 0.9427 1.9256 0.015 30 2500 Gaussian Median

Table 13.
Best parameters maximizing precision+recall rate for different futures and median bar price structure allowing
higher bounds for θMIR.

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier Bar price

ES 0.9526 0.9454 1.8979 0.015 30 2500 Student Mean

EC 0.9058 0.9691 1.8749 0.006 30 2500 Student Mean

CL 0.9302 0.9670 1.8972 0.016 30 2500 Gaussian Mean

NQ 0.9407 0.8796 1.8203 0.02 60 2500 Gaussian Mean

YM 0.9446 0.9779 1.9225 0.015 60 2500 Student Mean

Table 14.
Best parameters maximizing precision+recall rate for different futures and mean bar price structure allowing
higher bounds for θMIR.

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier θVPIN

ES 0.9421 0.9541 1.8962 0.015 30 2500 Student 0.99

EC 0.9080 0.9644 1.8724 0.006 30 2500 Gaussian 0.99

CL 0.9297 0.9806 1.9103 0.016 30 2500 Student 0.99

NQ 0.9076 0.9217 1.8293 0.02 50 2500 Student 0.999

YM 0.9460 0.9696 1.9156 0.015 50 2500 Gaussian 0.99

Table 15.
Best parameters maximizing precision+recall rate for different futures and last bar price structure allowing
lower bounds for θMIR and higher bounds for θVPIN.
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• There are changes only for NQ and YM instruments in, respectively, last,
median, and mean bar price structures and first bar price structure, where
θVPIN equals 0.999.

• There is no general trend for precision or recall rates with the increase of θVPIN.

• On average median bar price structure has the best precision+recall rate.

3.2.7 Benchmark with a “naive” classifier

We remark the following for the “naive” classifier (Table 19):

• It has worse results than VPIN on ES and YM cases.

• It has comparable results than VPIN on NQ case.

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier θVPIN

ES 0.9404 0.9402 1.8806 0.015 30 2500 Gaussian 0.99

EC 0.9127 0.9681 1.8808 0.006 30 2500 Student 0.99

CL 0.9232 0.9728 1.8960 0.016 30 2500 Student 0.99

NQ 0.8291 0.9833 1.8124 0.01 30 2500 Student 0.99

YM 0.9341 0.9872 1.9213 0.015 50 2500 Gaussian 0.999

Table 16.
Best parameters maximizing precision+recall rate for different futures and first bar price structure allowing
lower bounds for θMIR and higher bounds for θVPIN.

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier θVPIN

ES 0.9499 0.9498 1.8997 0.015 30 2500 Student 0.99

EC 0.9037 0.9717 1.8754 0.006 30 2500 Student 0.99

CL 0.9265 0.9718 1.8983 0.016 30 2500 Student 0.99

NQ 0.8881 0.9525 1.8406 0.02 30 2500 Student 0.999

YM 0.9829 0.9427 1.9256 0.015 30 2500 Gaussian 0.99

Table 17.
Best parameters maximizing precision+recall rate for different futures and median bar price structure allowing
lower bounds for θMIR and higher bounds for θVPIN.

Futures Recall Precision Precision+recall θMIR n ω (buckets) Classifier θVPIN

ES 0.9526 0.9454 1.8980 0.015 30 2500 Student 0.99

EC 0.9058 0.9691 1.8749 0.006 30 2500 Student 0.99

CL 0.9302 0.9670 1.8972 0.016 30 2500 Gaussian 0.99

NQ 0.9188 0.9150 1.8338 0.02 40 2500 Gaussian 0.999

YM 0.9446 0.9779 1.9225 0.015 60 2500 Gaussian 0.99

Table 18.
Best parameters maximizing precision+recall rate for different futures and mean bar price structure allowing
lower bounds for θMIR and higher bounds for θVPIN.
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• It has better results than VPIN on EC and CL cases, where the flash crash is not
really effective.

• It reaches obviously best local results on lowest MIR bound of the deep search.

We may partially conclude that:

• VPIN has an interesting predictive behavior on flash events of magnitude far
lower (around 1.5%) than what would be considered as a crash for specific
financial instrument (relatively liquid such as NQ, YM, or ES).

• But VPIN has poor results comparable to those of a “naive” classifier (precision
+recall rate inferior to 1.2) on flash crash events for these financial instruments.

• For other instruments such as CL or EC, VPIN behaves worse than a naive
classifier for these flash events. On flash events of higher amplitude (at least
1.5%), VPIN behaves better than a “naive” classifier for CL instrument.

4. VPIN sensitivity to the starting point of a data set

In this section, first we present the problem of VPIN’s sensitivity to the starting
point of the bucketing process. Second, we present different calibrations to test its
sensitivity. Third we make a summary of our results.

4.1 The problem

VPIN received among critics one which is important to precisely assess. Indeed,
Bodarenko and Anderson [7] pointed out in their work that VPIN is sensitive to the
starting point of the bucketing process. More precisely, if one removes the first
buckets of the data set, results change. It is indeed right. We would like to know to
which extent one can or cannot mitigate this effect. One idea is to test the different
price bar structures. Indeed a bar structure influences trade imbalance and thus
influences the appearance of VPIN events.

4.1.1 Methodology

There are at least two interesting ways of analyzing the sensitivity to the starting
point of a data set:

Futures Recall Precision Precision+recall θMIR n ω (buckets)

ES 1 0.7483 1.7483 0.01 40 2500

EC 1 0.9999 1.9999 0.001 60 2500

CL 1 0.9995 1.9995 0.01 40 2500

NQ 1 0.8465 1.8465 0.01 30 2500

YM 1 0.6892 1.6892 0.01 40 2500

Table 19.
Best parameters maximising precision+recall rate for different futures for the naive classifier allowing lower
bounds for θMIR.
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• Study the sensitivity of best precision+recall rate to the number of trades
erased and to the bar price option.

• Given one set of local optimal parameters, study the sensitivity of precision
and recall rates to bar price option and data removed.

We have removed l∈0; 1000; 2000; 3000 number of bars to study the sensitiv-
ity in the two previous cases, which corresponds to several hours of trading data
removed. Indeed one does not want to erase first flash crash detected in the data set
and erase more buckets than the average prediction length to detect it. Moreover we
would like to study to which extent VPIN is locally sensitive.

4.2 Summary of results

4.2.1 Sensitivity of precision+recall rate

We summarize in Table 20 for each bar price structure the average percentage
change of local new best precision+recall rates with the number of bar erased.

We remark the following:

• The sensitivity mentioned by Bodarenko and Anderson does exist.

• Its amplitude is not very big, at least for best precision+recall rate, as the
maximum change is about 6%.

• Median bar price structure is far less sensitive than other price structure.

Bar price structure 1000 bars erased 2000 bars erased 3000 bars erased

Last 3.089 2.166 0.939

First 2.410 3.649 6.727

Median 0.611 0.801 0.781

Mean 1.348 2.149 3.944

Table 20.
Average absolute percentage change of local best precision+recall rates with the number of bar erased for each
bar price structure.

Bar price structure 1000 bars erased 2000 bars erased 3000 bars erased

Last 1.192 1.171 1.067

First 1.612 1.725 1.049

Median 3.514 3.137 1.396

Mean 2.648 3.180 2.489

Table 21.
Average absolute percentage change of local best precision+recall rates with the number of bar erased for each
bar price structure.
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4.2.2 Sensitivity to local best parameter choice

In Table 21 we summarize for each bar price structure the average
percentabe change of the initial local best precision+recall rates with the number
of bar erased.

We remark the following:

• Again the amplitude of the sensitivity is not very large as the maximum change
is about 3.5%.

• Last bar price structure is less sensitive than other price structure to this
phenomenon.

5. Conclusion

In this last section, we present first a general summary of our findings. Then we
propose new suggestion of research concerning this precise subject.

5.1 Summary of results

We found that:

• VPIN has interesting predictive power (i.e., better than a naive algorithm and
at least of local prediction+recall maximum higher than 1.2) for flash events of
lower amplitude than flash crashes (about 1.5%) for a certain class of
instruments, where flash crashes are at least present (which is not the case for
currency Euro FX or Energy Light Crude NYMEX).

• VPIN is sensitive to the starting point of computation, but the amplitude of this
sensitivity is not really high. For practice, which means not changing local best
parameters while erasing some data, last bar price structure is the least
sensitive to this phenomenon.

5.2 Suggestion for further studies

For further studies, this might be worth analyzing:

• Define a bigger constraint to capture crashes taking into account, for example,
their V-shape. It would indeed filter out more events and enable analyzing
more accurately which kind of crash VPIN predicts better.

• Benchmark within this framework other predictive tools between them (VIX
with a naive algorithm, with VPIN, etc.).

• Analyze VPIN time-clock version predictive power.

• If previous predictive power of lower amplitude flash events is interesting for
practitioners, analyze more precisely parameters that would be interesting for
them.
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• Describe more precisely to which class of financial instrument VPIN predictive
power is most effective (if such one is worth being more studied for
practitioners).

• Define a normalization of events defining crash events within a whole cluster
of instruments. It is not easy to put in place as instruments are more or less
correlated by crashes and response times are not trivial to analyze, but it would
be also interesting indeed to assess prediction quality on common events
shared by different instruments of a same cluster. It would make it possible to
see whether or not VPIN predictive power is effective beyond different
financial instruments embedding different aspects of the financial world to
which VPIN is sensitive to.

• This area of research studies a very particular class of events: those that are
potentially very rare. Taking into account this setting and that the algorithms
used are fed with previous information and are sensitive to the starting point of
computation, is it possible to build a consistent cross-validation approach? This
aspect has not been treated yet as others needed to be first addressed, but it is
still important to be studied.

Appendix

See Table 22.

Symbol Description Exchange Class Volume

ES S&P500 E-mini CME Equity 478,029

EC Euro FX CME Currency 188,837

CL Light Crude NYMEX NYMEX Energy 165,208

YM Dow Jones E-mini CBOT Equity 110,122

NQ Nasdaq 100 CME Equity 173,211

Table 22.
List of future contracts and their total volume of trades from January 2007 to July 2012.
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