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Abstract

The state of the ecosystems can be inferred in two ways, known as bioinference. One 
way (ground-based) is the use of some organisms to determine the environmental 
conditions within an ecosystem. The other is the use of multiband airborne or satellite 
imagery to identify the vegetation cover status, and also to track the biological diversity 
in marine ecosystems such as coral reef status, resources variation, and pollution. The 
standard example for the first state is the plankton as they represent a primary tool for 
ecologists to assess the health state of the marine environment. Their fast responses to 
the variability of the ecosystem, their nonexploitation as commercial organisms, and 
their favoring of subtle environmental conditions have suggested them to be bioindica-
tors of climate variability. These organisms can be used to identify many environmental 
problems including water acidification, eutrophication, and pollution. Remote sensing 
technique is being widely used today to solve many environmental problems due to the 
broad view and accuracy of the results and its participation in determining the environ-
mental conditions of different ecosystems. For example, remote sensing applications are 
used in vegetation and mangrove ecosystem management. Moreover, it is used to assess 
eutrophication problems by multiband spectrum remote sensing.

Keywords: bioindicators, remote sensing, plankton, mangrove, seagrass,  
aquatic and terrestrial

1. Introduction

New tools provide information that reduces the ever-increasing level of resources and cost 

now borne by regulatory agencies. Remote sensing tools, including satellite and airborne 
flights, as well as in situ devices, hold great promise for detecting selected taxa [1]. Alternative 
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monitoring technologies and methods should be developed to enhance existing options used 

for regulatory purposes, further reducing the cost incurred by monitoring agencies. This 

should also include integration of new technologies into current monitoring programs, such 

as molecular probes, remote sensing data, and in situ instrumentation.

2. Remote sensing and land coverage

The estimation of vegetation cover utilizing remote sensing tools has become a primary 

method to gauge the impacts of regional and worldwide scale drought and agricultural sta-

tus. It is likewise valuable in recognizing vegetation types in districts, including cultivated 

and wild assortments. Different investigations have exhibited that general biomass develop-

ment can be estimated as well as biodiversity can be differentiated from the obtained data; 
additionally regular seasonal changes, like when blossoming happens and the effects of 
drought, and how dry season influences the associated species, could be estimated utilizing 
more incessant intra-seasonal imagery [2].

The application of different techniques of remote sensing to habitat monitoring, characteriza-

tion of landscape, and geographical analyses of the cover change of the earth surface has 

made significant advances in the previous three decades [3]. However, at the least-developed 

areas, simple remote sensing tools are still relatively underused in ecological applications 

and especially in wetland systems and hydrobiology. Here, they have specific significance 
to inform environmental management system. There are several types of land cover changes 

that can be detected by using remote sensing applications that include agriculture cover 

thickening, regeneration and disturbance of vegetation, overgrazing, expansion of the urban, 

spatial changes in aquatic environment, and consequently the extent of the surface water, in 

addition to several changing processes of soil disturbance including accretion, abrasion, and 

erosion of the soil [4].

Turner et al. [5] checked out the application of remote sensing for monitoring biodiversity as 

well as conservation (reni application) over a wide spatial scale. Ecologists can use the help of 

the remote sensing applications in monitoring the vegetation state and detecting the changes 

in the environment and in areas where hard terrain, access difficulties, and extreme climate 
cause field studies very difficult. At spatial scales, remote sensing data are also appropriate for 
exploring the natural condition, type, biomass, geographical distribution, and productivity as 

well as quality of the vegetation ([4–8]). Classification of overall land use and change detection 
of cover [9–11] have worldwide applications particularly concerning assessments of the size 

and conversion rate of landscapes into urban and/or agricultural high-productivity systems. 

For aquatic ecosystems, data of airborne and satellite have a special use for monitoring changes 
of vegetation and water within these systems, as well as wetlands  [12–14].

In Africa, remote sensing techniques have introduced valuable contributions in monitor-

ing the environmental situation and diversity within multiple aquatic ecosystems [15–17]. 

Landsat information, for instance, has empowered the identification of the effects of both 
natural and human interaction on African wetlands, lakes, and freshwater eco-biological 
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systems [18]. Results from the studies using information have uncovered that contamination 
coming about because of land-use changes, ecological modification, and different practices 
related with quick populace development increment and abstraction of water has caused or 

quickened many negative changes in the African lakes [19, 20].

The primary dangers to water quality in Africa are eutrophication, contamination, increasing 

water demand, and the expansion of invasive aquatic plant species like the water hyacinth 

[21]. NASA’s earth observing system program studied Lake Chad; the results indicated that 
the lake declined to 1/20th of its original known size 35 years ago [22]. Abo-Taleb et al. [23] 

proved that the problems of eutrophication and pollution in Lake Idku have increased to the 

highest levels in addition to the shrinking of its total area and the depth of water in it. The 

Egyptian Lake Nasser development in North Africa and the new delta in the lake southern 

section have been monitored by remote sensing. Also the environmental changes of North 

African Lake Ichkeul in Tunisia were monitored [24, 25].

The use of remotely sensed data for monitoring North African wetlands has been effective 
[26] when combined with ground surveys and existing field data. An obvious example was 
the monitoring of environmental conditions and plankton distribution at the North African 

“El-Mex Bay” at the Egyptian Mediterranean Coast by Abo-Taleb et al. [27] by comparing in 

situ data with the satellite ones using GIS program. Turner et al. [5] focused on the signifi-

cance of acquiring validator ground proof to empower to translate remote detecting items. 

For the administration of North African seaside ponds, remote sensing strategies give excel-
lent methods for recognizing vegetation cover on a spatial scale and defining the open water 
extent, in addition to peripheral aggravation and quality of water [28, 29].

One of the most significant utilizations of remote sensing has been estimating agricultural 
yield through measurements of NDVI as this enables local and global organizations to 

assess what the outputs of yield will be. NDVI has been utilized to prognostic in advance 

of yield outcomes by standing on the developmental stage of agricultural vegetation and 

contracting it to the past. The usefulness of this permits sufficient time for drought prob-

lem-related choices and decisions to be made by relevant organizations and governments 

[30]. Techniques have been inserted to integrate imagery, symbolism, and statistical and 

simulation-based outcomes to foresee yields in various areas. Various sensitivities and sea-

sonal changeability to natural conditions have made prediction challenging in some nations. 

Therefore, the best option might be using multiple techniques, where strategies could be 

developed more particularly for nations or areas that have more prominent opportunity for 

environmental variability [31].

Korets et al. [32] studied Northern Siberia boreal forests of Evenkia (~3600 km2). An algo-

rithm of forest cover mapping based on combined GIS-based analysis of ground truth data, 

digital elevation model (DEM), and multiband satellite imagery was developed. Using the 

classification principles and Kolesnikov approach, maps of forest growing conditions (FGC) 
and forest types were built. The resulted first map (Figure 1) was based on remote sensing 

(RS) composite classification, while the second one was developed by the digital elevation 
model (DEM) composite classification (Figure 2). The percentage of each forest component 

can result in Table 1.
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2.1. Requirements

1. The images with very high spatial resolution (metric and sub-metric ones), obtained in 

mono or stereo mode, to identify agroforestry plot and tree crop structure, mixed cropping 

and intercropping, and agroecological infrastructures (riparian and hedgerow forests)

2. High image cloud-free obtaining recurrence of one to three on the biweekly sequence to 

distinguish practices whose recognition depends on the extraction of phenology-based 

features

3. Different consecutive croppings and so forth or practices of which the impact is of the brief 
term and needs many image acquisitions to be duly observed, for example, the date of the 

harvest and the mode, management of soil tillage, and residues of the crop

Figure 1. Two-layer composite map of potential forest growing conditions for two hierarchical classification levels: 
geomorphological (GMC) and types of forest growing conditions (FGC) [32].
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Figure 2. Remote sensing-based forest-type layer overplayed by digital elevation model (DEM-based) morphometric 
classes for the fragment of the study site [32].

Number Types and other land cover classes Area percent (%)

1 Larch stands, ledum, feather moss 10.6

2 Larch stands, dwarf shrub, lichen, feather moss 25.9

3 Birch stands, blueberry, sedge, feather moss 9.9

4 Larch stands, dwarf shrub, ledum, lichen 8.9

5 Larch open woodlands, feather moss, dwarf shrub, lichen 19.7

6 Larch stands, dwarf shrub, feather moss 16.7

7 Birch stands, sedge, feather moss 1.7

8 Open surfaces, rocks 2.9

9 Burned area of 2009 2.0

10 Another 1.6

Table 1. Percent of different forest components (class percent) of northern Siberia boreal forests of Evenkia [32].
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4. Using hyperspectral images in crop variety identification

5. Airborne lidar information (light detection and ranging technologies) utilized for a 3D 

tree structure (tree harvests and hedgerows) and the characterization of soil culturing and 

tillage

6. The synthetic aperture radar (SAR) information utilized in cloudy regions for analy-

sis of crop succession, multiple cropping mapping, and some product administration 

techniques

2.2. The encountered difficulties

1. Most of the research was done at the local scale, on small-size zones, and on a little number 
of fields, raising the issue of the cloning of the methodology and consequently the capacity 
to be developed at a local scale.

2. The small investigation areas are subjected to having a limited spectral variability because 

of environmental conditions and homogeneous practices, and at this scale, local informa-

tion can be effortlessly utilized in the image interpretation process.

3. Remote sensing studies on the vegetation coverage need large training data sets that can 
be difficult to get to.

4. At the point when high-resolution images are utilized, the examinations are for the most 

part limited to small regions, because of the massive processing requests in time and hard-

ware capacities.

5. The conversion of the satellite data to information about a cropping practice is gener-

ally completed through regulated picture classification, or statistical analysis, and often 
involves derived features such as spectral indices and, most commonly, vegetation 

indices.

By and large, most of the studies are discovering examinations, tried at a regional small scale 

with a main reliance on ground information, including one detecting sensor at the same time, 

and are building up on the knowledge of local conditions and data. The fundamental challenge 

in acquiring data from remote sensing at a local scale with high precision is the temporal as 

well as spectral changes of vegetation cover that is multifactorial. These changes or variability 

is connected to nature (soil compose, nature of the climate. Atmosphere, topography, and 

other factors), the cropping framework (of the area or field, soil type and plowing assortment, 
planting pattern, variety, and others), and the obtained image configuration (proportion of 
shadow to the sunlit pictures with high spatial resolution). Luckily, individual cases and 

exceptions to this general comment exist, and some great outcomes have been accomplished 

at the regional scale, like for harvest pattern or sequent cropping mode mapping. Be that as it 
may, these maps were created mainly for the vast areas and large-scale agricultural systems 

because of the utilization of coarse spatial resolution time series [33]. The Landsat image con-

tains seven bands, with different characteristics and uses (Table 2).
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3. Mangrove status detection

Mangroves consist of intertidal flora and fauna found in the tropical and subtropical regions of 
the world. Mangrove forests mostly occur along the estuarine areas, where there is a uniform 

mixture of sea and river water. Mangroves play both protective and productive roles for the 

coastal community. Mangroves in the mudflats along the coastline reduce the impact of cyclones 
and tidal waves entering the mainland. The mangrove wetlands serve as spawning and nursery 

grounds for many economically important finfish and shellfish [35]. They prevent soil erosion 

and stabilize the coastline and also help in land building process by trapping sediments and 

suspended solids. Mangrove forests harbor many endangered fauna including saltwater croco-

diles and many resident and migratory birds. Mangrove wetlands play an important role in 

enhancing the fishery production of the adjacent neritic waters by exporting organic and inor-

ganic nutrients [36]. Mangrove plants are capable of surviving in the saline water environment 

through unique adaptations such as stilt roots, viviparous seeds, salt glands, salt-excluding 

mechanism, leathery leaves with thick cuticle, and pneumatophores [37].

Mangrove wetlands in India are more than 487,100 ha, of which 275,800 ha represents 56.7% of 

mangroves existing along the east coast, while 114,700 ha (23.5%) along the west coast and the 

remaining Indian mangrove 96,600 ha (19.8%) is found in the Andaman and Nicobar Islands. The 

extent and species diversity of mangrove wetlands in the east coast of India are more than the west 

coast due to a large number of east flowing rivers characterized by the presence of larger brackish 
water bodies and a complex network of tidal creeks and canals [38].

Mangrove ecosystems are undergoing widespread degradation due to a variety of human-

induced stresses and factors such as changes in water quality, soil salinity, diversion of river 

water, sedimentation, and conversion of mangroves to other land-use practices like agriculture, 

aquaculture, and industrialization [39]. Mangroves are also degraded due geomorphological 

(topographic changes) and hydrological changes. Indiscriminate use of mangrove resources 

and clear felling of mangrove forests for catering the firewood requirement earlier were also 
responsible for the present degraded status. Collection of fish prawns, crabs, and mollusks 
is the major fishing activity apart from the collection of prawn juveniles for aquaculture [40].

Band No. Name Wavelength (μm) Characteristics and uses

1 Visible blue 0.45–0.52 Maximum water penetration

2 Visible green 0.52–0.60 Good for measuring plant vigor

3 Visible red 0.63–0.69 Vegetation discrimination

4 Near infrared 0.76–0.90 Biomass and shoreline mapping

5 Middle infrared 1.55–1.75 The moisture content of soil and vegetation

6 Thermal infrared 10.4–12.5 Soil moisture; thermal mapping

7 Middle infrared 2.08–2.35 Mineral mapping

Table 2. Thematic bands of NASA’s Landsat satellite [34].
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This section portrays how remote sensing methods were utilized to study the impact of dif-

ferent woody coastal vegetations and mangroves as a defensive measure against the Indian 

Ocean Tsunami during 2004. Remote sensing makes it possible to do a comparison about pre- 
and post-tsunami pictures of huge areas [41]. An example on this case study is the coastal veg-

etation detection in multispectral remote sensing images for the 2004 Indian Ocean Tsunami, 

where Chouhan and Rao [34] selected the investigation site based on the already existed 

topographic maps and medium-resolution Landsat imagery. Determination criteria included 

significant banns reported, the existence of woody non-vegetated and vegetated shorelines, 
homogeneous bathymetry, and good coverage imagery before and after tsunami satellite. 

The before and after tsunami Ikonos and QuickBird images were analyzed and compared 

through the multispectral analysis and the visual interpretation of coastal vegetation before 

the disaster and after its harm. The outcomes were approved in the field. The investigation 
site covers around 20 km of coastline along the eastern shoreline of Tamil Nadu, India (see 

Figures 4 and 5). The Pichavaram mangrove is arranged in the northern piece of the investiga-

tion site. Whatever is left of the site contained shrimp and agriculture farms. The mangrove is 

associated with the Coleroon estuary in the south through various backwater channels.

Figure 4. Images demonstrate the eastern piece of the whole village of Kodiyampalayam and the seriously harmed 

agricultural zones southeast of the village: (a) before tsunami and (b) after tsunami [34].

Figure 3. Satellite images demonstrate the seriously harmed agricultural region southeast of TS Pettai: (a) before tsunami 
and (b) after tsunami [34].
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Visual interpretation at Figures 3, 4, and 5 gives models of how the pre- and post-tsunami 

images were translated. Figure 3 demonstrates the enormously harmed agriculture zone 

southeast of Pettai. The post-tsunami picture (Figure 3b) demonstrates that all highlights in 

the agrarian land have either vanished or are obscured contrasted with the pre-tsunami pic-

ture (Figure 3a). The multispectral interpretation showed that the image demonstrating the 

Figure 5. Map is delineating the damage degree and the territories protected by woody vegetation [34].
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damage and the existence and nonattendance of the woody vegetation appears in Figure 5. 

The white contour shows the study zone, the light green alludes to open woody vegetation, 

the dark green alludes to thick woody vegetation, the red alludes to regions immensely 

harmed by the tsunami, the red-striped alludes to regions just in part harmed, and the spotted 
blue alludes to zones immersed by water, yet generally unharmed. The vast dim green region 

in the northern piece of the map is the Pichavaram mangrove.

Five villages are arranged close to this mangrove. Two of them are situated on the coast, while 
three villages are located to the west backward the mangrove. Ground truth information dem-

onstrated that the two villages on the coast were totally destroyed, while the three villages 

behind the mangrove did not deteriorate by any means. Only north of these villages, territo-

ries at a similar distance from the ocean, yet without woody vegetative protection (defense 

wall), were immersed [34].

4. Remote sensing and aquatic system

For example, a large collection of aquatic organisms that reside in all aquatic ecosystems 
(oceans, seas, lakes, rivers) are known as plankton (aquatic animals and plants have limited 

powers for locomotion; they are under the mercy of the general water movement). These 
organisms are divided into two main groups, one of which is phytoplankton, and the second 

is zooplankton. They play a vital role in the food chain within the aquatic systems as they are 

located at the base of the food chain in the ocean water. It is known as the primary products 

that convert inorganic materials and elements into organic materials using sunlight in what is 

known as photosynthesis. It is transmitted to the higher levels in the food chain and therefore 
is the origin of life for the immature phases of all the aquatic organisms (like mother’s milk 

for the terrestrial mammal) and is the stable food of many mature organisms at the top of the 

food chain such as some fish and whales. It also has a vital and essential role in stabilizing 
carbon in the ocean.

Photosynthesis represents a primary tool for the ecologists to assess the health state of the 

marine environment because of their role as bioindicators. Due to their fast response to the 

variability of the ecosystem, their nonexploitation as commercial organisms, and their favor-

ing of environmental conditions, they have been suggested to be bioindicators of climate 

 variability [42].

The presence and distribution—either vertically or horizontally—of these organisms are 

closely related with the surrounded aquatic environmental conditions as water salinity, tem-

perature, viscosity, acidity, and density as the following equation in which depending on it 

the different water layer will be poor or rich with the organisms depending on their floating 
or sinking:
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On the other hand, these organisms can be used to indicate the direction of the water move-

ment. This mechanism is related to the natural movements of the oceanic water layers (heat 

convection and Langmuir convection cells).

4.1. Heat convection

In the ocean the surface water heats up during the day and cools at night. These alternating 

heating and cooling change the density and create convection cells. Convection cells are the 

small units of water either sinking or rising according to their density. Plankton can utilize 

these gentle movements of the water particles to move up and down (Figure 6).

4.2. Langmuir convection cells

It results from the action of the wind blowing over the water and causes vertical movement 

of the water. It is produced when wind speed is above 3 m/sec. Each Langmuir cell is a 

Figure 6. Heat convection cells. Source: Google search engine.

Figure 7. Langmuir convection cells.
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few meters wide and hundreds of meters long. In each cell wind causes the water to move 

away from the center toward the outside (divergence). It meets the water from the adjusting 

Langmuir cell (convergence) where they go down along the line of convergence for a short 

distance and then move horizontally until they meet the water moving in the same direction 

from the adjusting cell where they rise to the surface again (Figure 7). The plankton organ-

isms are carried upward and downward with the water movement.

5. Water acidification bioindication

In urbanized areas along the coastal zone, there is an obvious effect of water pH decreasing, and 
the ocean uptake of carbon from atmosphere increases the declining pH. The pH lowering is 

expected to continue in the next years. As the total inorganic carbon increases, the water depth is 

decreased. As a result, dissolving of calcium carbonate will be affected (because of the decreas-

ing of water column in which the solubility occurs), causing a decline in surface water pH [43].

We can detect the water pH nature by monitoring the occurrence or absence of some aquatic 

groups. For example, pteropods (Figure 8) are characterized by a unique nature as they own 

shells composed mainly of aragonite which can significantly be dissolved in the acidic media. 
Hence, the absence of it is considered a strong signal and refers to the increase of the water 

acidity as recorded in hot spot areas of the Mediterranean Sea [42]. It is considered a highly 

sensitive organism to the environmental condition changes in pH.

6. The water quality state biosensors

Some aquatic groups like ciliated Protozoa are considered as environmental state bioindica-

tors. The disappearance of these organisms from any water body indicates the presence of 

Figure 8. Some radiolarian species Archiriscus hertwigi and Myxosphaera coerulea which are very sensitive to water 

acidity rising [42].
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toxic pollutants, such as cyanide, phenols, and heavy metals. On the other hand, the flourish-

ing of these organisms indicates that the system is overloaded with oxygen deficiency and 
presence of putrefaction. The noticed increasing in the number of several different bacteria 
and the presence of Ciliata, Cyanophyta, and Zooflagellate are considered as an indication of 
aquatic system overloads with organic matter and an indication of oxygen deficiency and 
polysaprobic processes.

Some protozoan genera like Euplotes, Centropyxis, and Difflugia are considered as indicators 

on the pollution with sewage pathogens. These freshwater protozoan species are not encoun-

tered naturally in the marine water except when there is a freshwater discharging or sewage. 

Froneman, (2004) and Abo-Taleb et al. [42] reported that the presence of freshwater protozoan 

species in any marine coastal areas is considered as biomarkers on the presence of freshwater 

discharge into this region, and according to type of this species, we can determine the source 

of water discharged either rivers, drainage, lakes, or sewage (Figure 9).

Nematode organisms are sometimes encountered in the water column samples; the presence 
of these organisms is a sound cautionary signal on the contamination of the water body with 

sewage and final stage of putrefaction of organic matter. Additionally, it may be a signal on 
the pollution with the hydrogen sulfide.

7. Eutrophication biosensors

The words hypertrophic, eutrophic, mesotrophic, and oligotrophic have been used by scien-

tists to describe the different nutritional statuses of the aquatic environment. The biologists 
use these words to describe the quantitative biomass which is potentially available.

Eutrophication is arising in the chemical nutrient salt content in the water, optimally com-

pounds containing phosphorus or nitrogen, in an ecosystem. Consequently, it results in pri-

mary productivity increase in the ecosystem (excessive plant flourishing, growth, and decay) 
and further effects including oxygen deficiency and severe declining in water quality, fish 
stock, and other aquatic animal populations (Figure 10).

During the eutrophication, the concentration of the different nutrient salts in the water 
changes. Sometimes, one of the nutrients possibly linked to one of the aquatic organisms 

Figure 9. Some ciliate protozoan species. (1 and 2) Euplotes sp., (3) Centropyxis aculeata, (4) C. ecornis, (5) Difflugia urceolata [42].
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excludes, so it will not be available for further algal growth. This excluded nutrient is called 

“the limiting factor.” The nitrogen-to-phosphorus ratio in the water is an essential factor, 

and depending on it we determine which element of the two will be the limiting factor and 

consequently reduce the bloom [44]. Nitrogen is the limiting nutrient at many marine areas 

worldwide, especially during summer.

Some algal blooms, otherwise called “harmful algal blooms,” are toxic to plants and animals. 

Toxic compounds they produce accumulate in shellfish and more generally in seafood, reach-

ing dangerous levels for human and animal health.

The primary ocean productivity (plankton abundance) is primarily controlled by the fluctuations 
in several physical environmental conditions and nutrient concentration, which lead to high 

seasonality differences. Due to the eutrophication and pollution problems, many species thrive, 
while others become extinct. Without a doubt, for a clear understanding of the ecosystem, there is 

a necessity for a long-term monitoring data on the biological and physicochemical components.

The sensitivity of some groups, especially plankton species, to some chemical and physical 

conditions allows them to be used as biosensors or bioindicators of aquatic environment sta-

tus. Being rather tolerant to different environmental conditions, a group like rotifers is a good 
indicator (biosensors) of the water quality due to its capability to tolerate severe environmen-

tal conditions especially the eutrophication and can be used for the environmental monitoring 

of the different water bodies.

With the progress of phytoplankton biomass increasing, the abundance of these primary pro-

ducers causes herbivorous zooplankton organisms to abound. As a result of eutrophication 

and pollution, some species belonging to different groups like the copepod Acartia clausi is 

prevailed, while others became wade.

Figure 10. Eutrophication process and the main factors. Source: Google search engine.
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8. Biosensors of fisheries

Amid the previous 40 years, the fishery efficiency of the world has been declining because 
of overfishing activities increasing, pollution, global warming, and climate change or natu-

ral surrounding change, contamination, and environmental change. Sustainable utilization 

of aquatic resources requires viable management, observation, and administration of the 

world’s fish stocks. Remote sensing systems are being utilized to help in fishery sustainable 
management while additionally directing the fishing ships to the wealthy fishery ground and 
detecting the more effective fish shoal location. In the ocean, fishes tend to aggregate in some 
areas which have favorable conditions that change from one species to another; these condi-
tions like primary productivity (watercolor), ocean surface temperature, and maritime fronts, 

which firmly impact common changes of fish stocks, Cannot be monitored and estimated by 
airborne and satellite remote sensors. The remotely detected information is provided in near-

actuality time to help fishers save sailing time and fuel during their seeking for fish, modelers 
who offer fishery prognostications, and researchers who help evolve strategies for sustainable 
fishery administration [45].

Because of the human population increasing, overfishing, global environmental change, 
contamination, and natural surrounding corruption, around 40 years prior, sea productivity 

started declining, having achieved maximum sustainable yield. Almost 80% of the world fish 
stocks are wholly either currently exploited or overexploited [46]. Also, world interest for 

fish has been rising all over, both in developed nations because of rising standards of living 
and also developing nations, whose populace continues developing quickly [47]. Sustainable 

utilization of aquatic resources requires strict monitoring and management of whole eco-

systems, not just abused fish stocks. Ordinary methodologies of sampling at the sea utiliz-

ing research vessels are restricted in both time and space scale of coverage, making it hard 

to think about the studying of the whole ecosystem. Since the beginning of satellite remote 

sensing, particularly remote sensing of sea surface temperature and color, it has become con-

ceivable to sample the worldwide ocean on synoptic scales and with acceptable temporal 

resolutions [48–51].

There is also a wide range of practical fishery-related applications of remotely sensed data, 
including bycatch reduction, detection of harmful algal blooms, detection of fish shoal, aqua-

culture site selection, and identifying marine managed areas, as well as oceanographic and 

meteorological forecasting that improve scientific knowledge and safety of operations at sea 
[52, 53].

Discovering fish shoals and rich fishing sites is the fundamental reason for fuel consump-

tion and vessel time cost in numerous commercial fisheries. To bring down the expense 
of fishing operations, there is a need to utilize biosensors, similar to a two-edged sword, 
which can be utilized not exclusively to help manage fisheries at sustainable levels yet, 
additionally, to guide fishing fleets to raise their catch. Early investigations demonstrated 
that satellite-determined fishery-help diagrams could lessen the search time of the US com-

mercial fisheries up to 25–50%. Satellites can be utilized to find and anticipate prospective 
favorable zones of fish aggregation given the remotely sensed ecological indicators. These 
indicators may incorporate seafronts, separating waters of various colors or temperature; 
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upwelling zones, which are cooler and greener (more productive) than background waters; 
particular temperature ranges favored by certain fish; and so forth [45].

Laurs et al. [54] found that the catch rates of albacore—tuna that travels in large shoals and is 

of commercial importance as a food fish—were the maximum in blue warm oceanic waters, 
as satellite estimation correlated with the oceanfront (frontier between coastal and oceanic 

waters) (Figures 11 and 12). This image of satellite is one of a kind in that it displayed for 

the first time that remotely watched oceanographic features, like fronts, could be specifically 
concerning to fish catch. Shoreward interferences of oceanic water are synchronized with 
albacore aggregation zones. Laurs et al. [54] explain the gathering of albacore on the warmer 

side of the thermal fronts as a behavioral mechanism correlated with the feeding action, i.e., 

conglomeration of the tuna in clear water on the seaside of fronts in close shore zones mirrors 

a failure to proficiently get movable, large prey in turbid coastal water and a dependence on 
nourishment that moves over the oceanic coastal boundary.

Figure 11. Nimbus-7 coastal zone color scanner (CZCS) satellite image showed locations of fish catch and their relation 
to the water color and showed a transition from coastal waters (orange color refers to the coastal water with high 

productivity, and blue color refers to the offshore areas). Source: NASA.
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8.1. Airborne biosensors

Airborne biosensors are utilized to investigate the habitat of the fish and recognize fish 
shoals for the last 40 years. The main merit of using airborne remote sensing technique is that 

researchers can determine the remote sensing system characteristics. By picking the suitable 

focal length and flight altitude, they can steer the spatial resolution as well as the coverage. 
Moreover, the researcher can pick convenient atmosphere (like clear atmosphere without 

cloud), suitable tidal range (like the low tide), and sun angle ([56, 57]).

Drones are in particular cost-effective for coastal fish habitat detection nearshore. Trained 
atmospheric spotters have possessed the ability to detect menhaden, herring, and sardines’ 
shoals, from low elevations. Skilled spotter pilots are used by fishing fleets to locate differ-

ent fish shoals and direct the vessels by radio transmission [52, 58]. At night, fish shoals can 
be detected by the naked eye when plankton produces bioluminescence as a result of its 

Figure 12. Two instant areal density images of fish shoals near the continental shelf edge obtained by ocean acoustic 
waveguide remote sensing on 14 May 2003 (A) and 15 May 2003 (B); and (C) is the spectrum analysis [55].
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stimulation by fish motions. To remedy this instance, a large number of airborne sensors have 
been added, including digital cameras, thermal infrared radiometers, low-light-level TV, and 

LIDAR and radar systems [52].

Airborne LIDAR (LIDAR is a system that emits laser light pulses that can penetrate up to three 

times the Secchi depth of a water column) has likewise been utilized to study coral reef, fish 
habitats and other sea life. An essential application of high-resolution imagers and airborne 

lidar is in coral reef fisheries, which is an area of significant source of income and food in devel-
oped and developing countries. Coral reef ecosystems are topographically complex environ-

ments, and this structural heterogeneity influences the behavior, abundance, and distribution of 
local ocean organisms. Satellite imageries, lidar, and high-resolution airborne images are being 

utilized to study and map these complex coral reef fish habitats and other ocean life [59–61]. 

Due to the strong relationship between the coral reef habitat and potential fish abundance and 
diversity, these maps are utilized by reef managers to facilitate ecosystem-based fishery man-

agement (EBFM) approaches, to guide sampling strategies, and to identify conservation areas.

Another useful airborne sensor is side-looking airborne radar (SLAR). Its operation depends 
upon emitting pulses and receiving signals that represent the backscattering intensities from 
the sea surface. The swimming fish close to the surface produces small-scale waves (2–20 cm 
length) which the radar can detect. The size and intensity of these wavelets rely upon school 

size, fish behavior at the surface, swimming activities, and fish size. The SLAR can pick up the 
little changes in the backscatter pattern caused by the fish shoal [52].

8.2. Advanced satellite remote sensing

Satellite images combined with other in situ data can be construed to find the suitable oceanic 
environmental conditions for fish aggregation [62]. Because certain species of game and com-

mercial fish are indigenous to waters of a specific temperature and environmental conditions, 
fishers can spare ship tide and fuel by being capable of locating the higher potential sites more 
quickly [48, 63].

Other reason, that satellites are at the most modern and sophisticated in fisheries studies 
and resources management because the variability and magnitude of seas primary pro-

ductivity that are very highly unknown on a vast worldwide scale, mainly due to the high 

temporal and spatial fluctuation of ocean phytoplankton abundance and diversity. As an 
example, in coastal regions, wind induced upwelling that conveys nutrients up to the water 

surface, causing patchy areas with high productivity, in addition to high chlorophyll and 

phytoplankton abundance, which can be monitored and detected by temperature and color 

sensors on satellites ([48, 64]: [65, 66]).

As appears in Figure 13, thermal infrared imagers and sea color sensors are utilized effec-

tively to tracking coastal upwelling regions. In the upwelling areas in Figure 13, the water that 

ascends from the sea bottom conveying the nutrients upward to the sea surface appeared in 
the image of the thermal infrared as cool, while the sensor of sea color showed that the upwell-

ing site as highly productive zone (the left image). Satellite sea color data was utilized to pri-

mary production measuring and fisheries status observing, as measuring the productivity of 
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Figure 13. Satellite Ocean color and temperature maps (right) along the California coast showing the upwelling 

areas and chlorophyll distribution (left) along the California coast. Source: P. Zion and M. Abbott, jet Propulsion 
Laboratory, NASA.

Sensor CZCS SeaWiFS MODIS Terra MODIS Aqua MERIS

Agency NASA NASA NASA NASA ESA

Satellite Nimbus-7 OrbView-2 Terra Aqua Envisat-1

Operating dates 1978–1986 1997–2010 Launch 1997 Launch 2002 Launch 2002

Spatial resolution (m) 825 110 250/500/1000 250/500/1000 300/1200

Number of bands 6 8 36 36 15

Spectral coverage (nm) 433–12,500 402–885 405–14,385 405–14,385 412–1050

Note that the MODIS instrument is carried aboard two platforms (Terra and Aqua).

Table 3. Some satellite remote sensing systems used to measure ocean color.
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the four Eastern Boundary Currents (EBC) the Benguela, California, Humboldt, and Canary, 

as well as the currents over the first 24 months of Sea-Viewing Wide Field-of-View Sensor 
(SeaWiFS) operation. Inside every EBC, primary production has been assessed for dynamic 
zones of high chlorophyll concentration (more than 1 mg/m3) that showed levels of produc-

tivity probable to be used by higher trophic levels. Within every EBC the primary produc-

tion diminished with latitude, while the range of the active zones is related to the volume of 

off-shore transfer. Differences in monitored fish catch were also correlated with the different 
trophic structure and spatial accessibility ([48, 52, 67, 68]).

The characteristics of some of the important satellite systems used to measure ocean color, 

such as Nimbus-7 Coastal Zone Color Scanner (CZCS), SeaWiFS, and Moderate Resolution 
Imaging Spectroradiometer (MODIS), are presented in Table 3.

9. Conclusions and recommendations

1. Newly developed satellite remote sensing techniques, combined with in situ measure-

ments, constitute the most effective ways for efficient management and controlled exploi-
tation of marine resources by combining in situ measuring data with satellite remote 

sensing ones.

2. Spectral and spatial resolutions of biosensors are the most important characteristics of the 

sensor.

3. Biosensors on board of satellites are capable of detecting and identifying conditions of 

mangrove and coral reef as well as water salinity, eutrophication, heat, and dynamics of 

fish shoals in the aquatic environment.
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