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Abstract

IGF-I, insulin-like growth factor 1, is present in normal fetal/neonatal brain 
development and reappears in the mature brain participating in the development of 
malignant tumor, glioblastoma multiforme. Targeting the IGF-I system has emerged 
as a useful method to reduce glial malignant development. Downregulation in the 
expression of IGF-I using antigene anti-IGF-I technology (antisense, AS, and triple 
helix, TH) applied in glioma cell culture established from glioblastoma biopsies 
induces the expression of B7 and MHC-I antigens in transfected cells (immuno-
genicity). The transfected cancer cells, “vaccines,” after subcutaneous injection, 
initiated an immune response mediated by T CD8+ lymphocytes, followed by tumor 
regression (immunotherapy). The median survival of patients treated by surgery 
followed by radiotherapy and immunotherapy was 21–24 months. On the other side, 
the experimental work has demonstrated that IGF-I AS or TH transfected tumor 
cells fused with activated dendritic cells, DC, showing more striking immunogenic 
character. Using IGF-I TH/DC “vaccination,” the efficiency in suppressing rat 
glioma tumors is not only relatively higher than that obtained using IGF-I TH cells 
but is also more rapid.

Keywords: brain neoplastic development, glioblastoma, IGF-I, antisense,  
triple helix, immunogene therapy, cell hybridomas, dendritic cells, CD8

1. Introduction

There is a convergence between onto-genesis and onco-genesisgenesis and the 
same specific oncoproteins like alpha-fetoprotein (AFP) or growth factors, such as 
IGF and TGF-beta, are present in embryo/fetal tissues and in neoplastic developing 
tissues and particularly in the central nervous system (CNS). As far as AFP and IGF-I 
are considered, there is an important remarque: the first antigen is present in both 
neural and glial developing and cancerous cells, whereas the second one is only pres-
ent in glial developing and tumoral cells. This striking difference has oriented our 
studies toward the most malignant brain tumor expressing IGF-I gene: glioblastoma.

In this chapter, we have described our scientific approach coming from the 
analysis of neoplastic CNS development conducted to glioblastoma malignancy 
up to the establishment of immunogene therapy of this tumor: the first cancer 
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immunogene therapy. The strategy of therapy consisted of blocking IGF-I synthesis 
in cancer cells inducing apoptotic and immunogenic phenomena. Both phenomena, 
related to the arrest of IGF-I expression in neoplastic glial cells, were used to pre-
pare antitumor cell vaccines for therapy of glioblastoma. Successful clinical results 
were obtained in USA, EU, and China and the therapy is introduced in Colombia 
(Wikipedia—Gene therapy, History 1990s–2010s).

2. Neoplastic brain

To understand the morphology of CNS neoplastic development, the model 
of mouse teratocarcinoma derived from PCC3 and PCC4 embryonal carcinoma 
cell lines was investigated. Thanks to this unique model reproducing “caricatural” 
development of the normal CNS, after examining histologic and electron micros-
copy sections, the different stages of abnormal nervous tissue histogenesis [1–4] 
were established as follows: 1. undifferentiated carcino-embryonic structures; 2. 
medulloepithelial structures (composed of a mixture of ectoblastic and neuroecto-
blastic components); 3. neuroblastic structures; and 4. neuroepithelial structures. 
The final differentiation was the encephaloid tissue. These results were confirmed 
by studying the localization of oncoproteins as alpha-fetoprotein (AFP), serum-
albumin (SA), and IGF-I directly included in normal and neoplastic histogenesis, 
the last using teratocarcinoma model [3, 5–8].

As to the application of these observations in the pathology of human central 
nervous system (CNS) tumors, the model of mouse teratocarcinomas, containing 
neuroglial structures [3, 6, 9, 10] (described in the first studies of Stevens and then 
by his followers during almost 40 years of investigations [11–20]), should be useful 
as well in understanding human embryonic tumors of the CNS, which are able to 
differentiate into both neuronal and glial lineages [1, 10, 21–23], as in future gene 
therapies, including CNS malignant tumors [24–27].

3. IGF-I

In 1992, Trojan and his coworkers demonstrated that another oncodevelop-
mental antigen, an insulin like-growth factor, IGF-I [28–32], is present in glioma 
cells but absent in neuroblastoma cells [33]. Using the teratocarcinoma model, 
Trojan and his coworkers showed that neoplastic neuroblastic cells express IGF-II 
[34]. These observations permitted to study separately, using IGF-I and IGF-II 
as the oncoprotein markers, different tumors, especially glial and neural tumors 
[28–31, 35–40].

Comparative studies of the presence of AFP, IGF-I, and IGF-II in neoplastic 
cells [3, 33, 40–49] have demonstrated that IGF-I constitutes an essential target 
for genetic testing and therapy purpose. IGF-I, similar to AFP, is involved in tissue 
development and differentiation, especially in the development of the nervous 
system [6, 50, 51] as a mediator of growth hormone and glucose metabolism and 
acting locally with autocrine/paracrine, with a predominant role compared to other 
growth factors [29, 39, 51–55]. IGF-I is currently considered as one of the most 
important growth factors related to normal and neoplastic differentiation, and its 
overproduction is considered to be a participating factor in cancer development 
[32, 54, 56–58] (Figure 3). IGF-I reconstitutes the first step of the following signal 
transduction pathway: IRS/PI3K-PKC/PDK1/AKT-Bcl2/GSK3/GS [59, 60]. The 
elements of the said IGF-I-related transduction pathway were also considered as 
targets for diagnostic and therapeutic purposes [51, 59, 61–70].
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Considering the IGF-1 gene, an overexpression of this gene in mature tissues is a 
sign of neoplastic processes, especially brain tumors [40]. IGF-I becomes useful in the 
molecular diagnosis of neonatal CNS malformations and tumors [9, 21, 38, 51, 71, 72]. 
Diagnosis and treatment should logically be related, at first using IGF-I gene testing 
for diagnosis [73–75] and then targeting IGF-I gene through special therapy, such as 
cancer gene therapy, especially therapy of gliomas [40, 76–79].

4. Gene therapy

4.1 Introduction

IGF-I and -II are expressed at high levels in nervous system–derived tumors, for 
example, astrocytomas and meningiomas [37, 44, 80]. In contrast, the block of IGF-I 
synthesis in these tumors induces apoptotic and immunogenic phenomena [81].

Our experimental approach of gene therapy has centered on the comparative 
use of IGF-I RNA antisense and IGF-I RNA–DNA triple helix [82, 83], to stop the 
translation and transcription of the IGF-I gene, respectively. Triple helix strat-
egy [84, 85] and antisense strategy [86–88] have been applied successfully to a 
growing number of genes in cultured cells. However, the antisense approach has 
sometimes been not completely efficient due probably to insufficient antisense 
RNA levels [89].

We have applied the antisense strategy by employing a self-amplifying episomal 
vector that replicates to high copy numbers extrachromosomally [33]. The utility 
of episome-based expression vectors for the effective inhibition of cellular RNA 
expression has been subsequently confirmed by others [90]. C6 rat glioma cells 
expressed MHC-I [91, 92] and B7 [55, 93, 94] antigens when transfected with 
vectors producing IGF-I antisense RNA (IGF-I AS) or inducing IGF-I triple helix 
RNA-DNA (IGF-I TH) [95, 96]. IGF-I AS or IGF-I TH blockade of IGF-I syntheses 
changes the phenotype of transfected CNS-1 and PCC-4 cells. Moreover, it was 
demonstrated that transfected C6 cells become pro-apoptotic [96]. The AS and 
TH cells lost tumorigenicity and were able to induce a T-cell–mediated immune 
response in syngeneic animals against both themselves and the nontransfected 
tumorigenic parental cells [34, 40, 82, 97]. The experiment described here has 
permitted us to prepare human “vaccine” for a Phase 1 clinical trial.

4.2 Material and methods

Cell culture. The CNS-1 cell line was offered by the Dartmouth Medical 
School, Hanover, NH, USA (Dr W. Hickey) and then cultivated in the Laboratory 
of INSERM, Salpetriere Hospital, Paris (Dr M. Sanson). The PCC-4 cell line was 
provided by Institut Pasteur, Paris (Dr J.F. Nicolas). The cell lines were cultivated as 
described earlier [97]. Primary cell cultures of human glioma derived from tumors 
of glioblastoma multiforme patients were established (Clinical Laboratory of 
Collegium Medicum, UJ University, and School of Medicine, CWRU) according to 
the technique described earlier [96, 98–100] (Figure 1).

Plasmids. The vector pMT-EP [6, 26] was described earlier [33] (Figure 2). 
IGF-I “antisense” and “triple helix” technology was used to construct episome-
based plasmids expressing IGF-I RNA antisense, pMT-anti IGF-I [26], or IGF-I 
triple helix–inducing vector, pMT-AG TH [33, 82]. The vector pMT-EP containing 
cDNA expressing IGF-II antisense RNA as insert was used in control experiments 
[34]. In parallel, using the vector pMT-EP, the vectors expressing MHC-I and B7, as 
well as vectors “antisense” MHC-I and B7, were prepared [96].



Brain and Spinal Tumors - Primary and Secondary

4

Transfection. The FuGENE 6 Transfection Reagent (Boehringer Mannheim) 
was used. Hygromycin B (Boehringer Mannheim) at a concentration of 0.05 mg/ml 
was added 48 h after transfection to select for transfected cells.

Northern blot. The content of IGF-I antisense RNA was determined in 50% 
confluent cell cultures. Northern blot and hybridizations were done according to 
Maniatis [98]; the 770 bp human IGF-I cDNA and 500 bp rat IGF-I cDNA were used 
as probes (Figure 3).

Flow cytometric analysis. Cells were incubated (30 min, 40°C) with saturated 
amounts of monoclonal antibodies, rat or human MHC-I (HLA ABC), MHC- II, 
CD80, and CD86 (Becton Dickinson Pharmingen). Cells were collected (10.000 
events per sample) in FACScan BD cytometer (Figure 4).

Ex vivo generation of dendritic cells. Two techniques for the generation of 
dendritic cells were used:

1. CD34+ hematopoietic progenitor cells were isolated, using the MACS CD34 
Cell Isolation Kit, and functional DC cells were generated by culturing CD34+ 
cells in the presence of GM-CSF, TNFalpha, and SCF for 10 days [101].

2. Monocytes were isolated, using MACS CD14 MicroBeads. Monocytes were 
cultured in the presence of GM-CSF and IL-4 generated activated DCs [102].

Hybridomas of transfected cells with dendritic cells. The fusion of dendritic 
cells with tumor transfected cells was obtained as follows [103]: activated DCs (one 
of the two techniques mentioned above) were fusioned with tumo IGF-I antisense 
or triple helix transfected cells using polyethylene glycol—PEG [104]. Fusions were 
carried out with 40% PEG in PBS without Ca2+ and Mg2+.

In vivo experiment. For the determination of tumorigenicity, 5 x 106 rat CNS-1 
cells were injected subcutaneously into Lewis rats. Experimental sets were injected 
with: (a) parental cells; (b) IGF-I “triple helix” transfected cells expressing MHC-
I; and (c) IGF-I “triple helix” transfected cells expressing both MHC-I and B7 
molecules.

4.3 Results and discussion

Northern blot analysis is shown in Figure 3. The RNA of nontransfected cells is 
distributed in 7.5 and 1.0 kb bands. The RNA of anti-IGF-I transfected cells shows 

Figure 1. 
In vitro staining of IGF-1 biomarker human in human glioma cell culture. The tissue and cells are stained for 
IGF-1 using anti-IGF-1 antibodies applied in immunoperoxidase technique. Nine days of culture established 
from human glioblastoma biopsy. (left down) Note the cells (head arrows) proliferating from compact tissue 
of biopsy (left down corner) (200×); (right up) Note the cluster of cells showing dark cytoplasm of staining 
(400×).
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only an abundant 1.0 kb band. The transfected cultures were positively stained 
either for both MHC-I and B7 antigens (in 60% of cloned lines) or for MHC-I (only 
in 40% of cloned lines). The data show that transfection with “antisense” and 
“triple helix” vectors induced a significant increase in the expression of MHC-I and 
B7 (Table 1). The “triple helix” rat and human cells as compared to “antisense” cells 
showed slightly higher expression of MHC-I or B7. As to apoptosis, it was detected 
in approximately 70% of the IGF-I antisense and triple helix transfected cells. As 
expected, the hybridomas of IGF-I triple helix or IGF-I antisense cells fused to acti-
vated dendritic cells, IGF-I TH//DC or IGF-I AS//DC, were negative for IGF-I. The 
most important observations concerned the increased level of MHC-I and MHC-II, 
and especially the presence of B7 in IGF-I TH//DC and IGF-I AS//DC hybridomas 
(Table 1). No tumors were observed in animals injected subcutaneously with CNS-1 
cells transfected with IGF-I “triple helix” vector, expressing both MHC-I and B7.

The simultaneous increase in the presence and role of B7 and MHC-I antigens in 
the induction of T-cell immunity against tumors has been extensively investigated 
[33, 93, 94]. The injection of IGF-I antisense and triple helix transfected cells pre-
senting both MHC-I and B7 molecules stopped effectively the established rat glioma 
tumors. This was not the case for cells expressing MHC-I only (Table 1). Injection 
of cell hybridomas composed of IGF-I antisense cells and activated dendritic cells 
(IGF-I AS//DC) into tumor-bearing animals suppressed the established glioma 

Figure 2. 
Diagrammatic representation of steps employed to construct the episomal vector pMT/EP used for preparation 
of IGF-I antisense and triple helix expression vectors.
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tumors in 4/6 cases of Lewis rats. The experience was repeated using cell hybrid-
omas composed of IGF-I triple helix cells and activated dendritic cells (IGF-I TH//
DC). In this case, the subcutaneous injection of the hybridomas into glioma-bearing 
animals completely suppressed tumors in a ratio 6/6.

MHC-I molecules were in general not sufficient to stimulate T-cell response. In 
the absence of B7 molecule, MHC-peptide complexes could selectively inactivate 
T cells [105]. B7 molecules bound to the counter-receptor CD28 and/or CTLA4 
expressed on the T cells [9, 106, 107]; enhancement in B7 costimulation through a 
cAMP mechanism linked to tyrosine kinase of the CD28 receptor has been previ-
ously reported [108]. The mechanism of signaling (tyrosine kinase activates IRS-1, 
and then IRS-1 activates PI3K [109, 110]) could be considered in the cytokine 
induced B7-1 expression demonstrated in fetal human microglia in culture [111].

Using CNS-1 glioma, we have confirmed the relation between the immunogenic-
ity and apoptosis found in IGF-I transfected cells [96]. The phenotypic modifica-
tions due to apoptosis may explain the recognition of the transfected cells by the 
immune system like tumor-specific immunity mediated by CD8+ T described 
earlier by us [40, 98]. Apoptotic cells, in the context of MHC-I, are recognized 
by dendritic cells activating lymphocytes T-CD8 [112, 113]. B7 molecules can be 
included in this mechanism, because both MHC-I and B7 molecules are necessary 
for T-cell activation [4, 55, 79, 93, 114–116]. Considering the role of dendritic cells, 
the presented results may be useful in introducing IGF-I TH//DC “vaccines” into 
cellular therapy of human gliomas. Moreover, the obtained results of tumor sup-
pression are in agreement with the immunogenic character of used “vaccines”—the 
efficiency of “vaccines” being related to the expression level of MHC-I, -II, and B7 
(Table 1) [97, 117–119].

Figure 3. 
Antisense transcripts in cultured C6 glioma cells. Molecular sizes of IGF-I transcripts are shown in kilobases. 
Lane 1, parental nontransfected C6 glial cells exposed to serum-free medium. Lanes 2 and 3, transfected C6 
glioma cells incubated in serum-free medium in the absence (lane 2) or presence (lane 3) of ZnSO4. For lanes 2 
and 3, nick-translated rat IGF-I cDNA was used.
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5. Clinical gene therapy

5.1 Methodology

Using radiotherapy and chemotherapy, the mortality of glioblastoma remains 
close to 100% and the median survival, using conventional therapy, is 9–14 months. 
Current pharmacology increases the survival to 15 and rarely to 18 months [120]. The 
etiology of glioma is still being investigated using molecular biology techniques [64]. 
New or proposed therapies are based either on immune treatment or on immuno-gene 
strategies [121]. The AS and TH technologies [84–87] have permitted us to establish 
new and successful immuno-gene therapy strategies targeting glioma’s growth factors 
[40, 122]. Other technologies include those of potentially useful siRNA [123, 124] and 

Cells Rat glioma CNS-1 cells

MHC-I MHC-II B7

NT <0.5 <0.5 <0.5

IGF-I AS 12.3 <0.5 18.1

IGF-I TH 14.6 <0.5 19.6

IGF-I AS/IGF-I TH 12.8 <0.5 18.4

IGF-I AS/MHC-I AS/B7 AS 1.0 <0.5 1.0

IGF-I TH/MHC-I AS/B7 AS 1.0 <0.5 1.0

IGF-I AS//DC 14.7 3.8 19.3

IGF-ITH//DC 16.9 4.2 21.9

NT: parental nontransfected cells; pMT-EP: cells transfected with “empty vector”; IGF-I AS or IGF-II AS: cells 
transfected with IGF-I or IGF-II antisense expression vector; IGF-I TH: cells transfected with IGF-I triple helix 
expression vector; IGF-I AS/IGF-I TH: cotransfection with antisense and triple helix vectors; IGF-I AS/MHC-I AS/
B7 AS, and IGF-I TH/MHC-I AS/B7 AS: triple cotransfection with IGF-I antisense or triple helix, MHC-I antisense 
and B7 antisense expression vectors; IGF-I TH//DC or IGF-I AS//DC: cells transfected with IGF-I antisense or triple 
helix expression vectors, and fused to dendritic cells. 
*The data of flow cytometry (the average of three experiments) are presented as percent change in value of 
fluorescence relative to fluorescence in control nontransfected cells (CC). The increase in MHC-I, -II, and B7 is 
significant at the P < 0.01 level (Wilcoxon’s signed rank test).

Table 1. 
Expression of MHC-I, MHC-II, and B7 in the cells of rat glioma.*

Figure 4. 
Flow cytometry analysis (FACScan Becton Dickinson). Expression of MHC-I (left) and B7 (right) in primary 
human glioblastoma cell line. Upper panels: non transfected cells; lower panels: transfected cells (upregulation 
of MHC-I and B7).
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Figure 5. 
Antisense immunotherapy. Example of antisense anti-IGF-I treatment of glial malignant tumor—
glioblastoma. The schema of therapy shows transfected in vitro brain tumor glial cells using a vector containing 
cDNA of IGF-I in antisense orientation. After transfection, the cells express IGF-I RNA antisense stopping the 
IGF-I synthesis characteristic for tumor cells. They become MHC-I [+] and B7 [+], and partially apoptotic. 
The transfected cells, together with apoptotic cells and APC cells induced in vivo, activate T lymphocytes (CTL 
CD8+CD28+). Abbreviations used in signal transduction pathway: TK (tyrosine kinase of growth factors 
receptor); PI3K (phosphatidylinositol 3 kinase); PKC (protein kinase C); TAP 1,2 (transporter associated with 
antigen processing antigen); APC (antigen presenting cell).

miRNA (microRNA) [125]. The role of 21–23mer double-stranded RNA (siRNA) in 
the silencing of genes is strongly similar to that of the TH DNA mechanism, which 
also involves 23mer RNA [85]. Whether or not siRNA technology or miRNA knock-
down will supplant the AS oligodeoxynucleotide approaches remains in question at 
this time [124, 126, 127]. The AS oligodeoxynucleotides reinforced by association with 
polycations (polyethyleneimine), polylysine, or cationic lipids (DOTMA, DOTAP) 
were also used for transfection of cells with plasmids encoding antisense RNA [128].

As to growth factors, historically, first IGF-I and its receptor and then TGF-
beta were targeted in experimental preclinical studies [40, 57, 122, 129, 130] and 
then glycogen synthase, GS [51]. The absence of IGF-I, TGF-beta, and GS synthe-
sis in “AS” transfected cells leads to a compensated increase in IGF-I-receptor [51] 
(relation between the signal transduction pathway of tyrosine kinase (IGF-I-R) 
and the induction of B7 [131]). Other growth factors such as EGF and VEGF, 
and their receptors, have also been investigated by AS technology in preclinical 
studies. The in vitro and in vivo results were similar to the results obtained with AS 
IGF-I technology [51, 130]. Thus IGF-I via IGF-I-R not only increases cell prolifer-
ation but also “supervises” mitogenic action of other growth factors (EGF, PDGF, 
etc.) by its autocrine-paracrine stimulation, becoming some kind of growth factor 
director. In clinical IGF-I antisense/triple helix immunotherapy, the cells used for 
“vaccination” were downregulated in IGF-I and presented both MHC-I and B7.1 
molecules (Figure 4).

5.2 Results and discussion

The first clinical assay for human GBM using AS IGF-I approach was per-
formed by Anthony et al. and by Trojan et al. [96, 100, 114]. After each of three 
AS IGF-I vaccinations, there was an increase in the percentage of CD8+ T cells 
in peripheral blood lymphocytes with a characteristic phenotype—switch 
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CD8+CD11b+/CD8+CD11b− (Figure 5). In patients with GBM treated in Bromberg 
(NATO Science Programme—U.S.A./France/Poland), life from time of diagnosis to 
time of demise was 19 and 24 months.

Histopathologic examination of resected tumors showed peritumor necrosis 
and infiltration by lymphocytes CD8+ T and CD4+ T cells [100]. Moreover, we can 
underline, as described in our previous studies [51], that using anti-IGF-I approach 
without chemotherapy, median survival in GBM-treated patients has reached 
19 months and has increased to more than 21 months (NATO Programme) when 
applied in combination with chemotherapy (temozolomide). The individualized 
therapy using IGF-I antigene treatment and pharmacology (temozolomide) has 
been applied in phase I/II trials [132].

In 2001, simultaneously with the first assay with AS IGF-I, Andrews et al. [133] 
treated 12 patients with recurrent glioblastoma and anaplastic astrocytoma using 
an antisense to IGF-I receptor, AS IGF-I-R, strategy. Histological analysis of tumors 
resected from patients with disease progression revealed lymphocytic infiltra-
tion and necrosis [133]. As new experimental therapies and efficient viral vectors 
expressing AS IGF-I-R are being developed, clinical trials using this approach will 
increase [66, 133, 134].

The approach of AS TGF-beta using an AS oligodeoxynucleotide, compound 
AP 12009, has given satisfactory results [135–137]. In another clinical AS TGF-beta 
study, a phase I clinical trial in grade IV astrocytoma (GBM) was performed using 
autologous tumor cells modified by an AS TGF-beta2 vector. There were indications 
of humoral and cellular immunity induced by the vaccine [138].

6. Conclusions

The clinical strategies of glioma treatment, using either inhibitors (i.e., ima-
tinib and gefitinib) or antibodies (i.e., Avastin) targeting growth factors and their 
receptors [139–143], are currently focusing on antisense technology combined with 
pharmacological treatment.

The neuro-oncology research on glial cells focuses on the PI3K/AKT pathway 
becoming a potential target in antisense/triple helix strategy for the treatment 
of glioblastoma patients [59, 69]. The arrest of at least two links either IGF-I or 
TGF-beta or VEGF and GS of the pathway TK/PI3K/AKT/GSK3/GS [64] seems to 
be in line for a future clinical gene therapy trial strategy for treatment of GBM. The 
final result of this signal transduction pathway element inhibition is an immune 
response mediated in vivo by lymphocytes T CD8 and APC cells (Figure 5). But the 
near future in treating this group of disorders belongs to a combination of treat-
ment [4, 42, 70, 79, 115, 130, 144–150]: classical surgery; radiotherapy with immu-
notherapy, including the use of dendritic cells pharmacologic therapy; growth 
factor inhibitors; and the use of the antisense/triple helix gene blockade approach 
targeting signal transduction pathway elements of cancer processes.
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