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1. Introduction 

Most flows occurring in nature and in engineering applications are turbulent. The boundary 
layer in the earth's atmosphere is turbulent; jet streams in the upper troposphere are 
turbulent; cumulus clouds are in turbulent motion. The water currents below the surface of 
the oceans are turbulent. The Gulf Stream is a turbulent wall-jet kind of flow. The 
photosphere of the sun and the photospheres of similar stars are in turbulent motion; 
interstellar gas clouds are turbulent; the wake of the earth in the solar wind is presumably a 
turbulent wake. Boundary layers growing on aircraft wings are turbulent. The study of 
turbulence clearly is an interdisciplinary activity, which has a very wide range of 
applications. In fluid dynamics laminar flow is the exception, not the rule: one must have 
small dimensions and high viscosities to encounter laminar flow.  
Turbulence is the feature of fluid flow but not of fluids. Most of the dynamics of turbulence 
is the same in all fluids, whether they are liquids or gases, if the Reynolds number of the 
turbulence is large enough; the major characteristics of turbulent flows are not controlled by 
the molecular properties of the fluid in which the turbulence occurs. Since the equations of 
motion are nonlinear, each individual flow pattern has certain unique characteristics that are 
associated with its initial and boundary conditions. No general solution to the Navier-Stokes 
equations is known; consequently, no general solutions to problems in turbulent flow are 
available.  Since every flow is different, it follows that every turbulent flow is different, even 
though all turbulent flows have many characteristics in common. Students of turbulence, of 
course, disregard the uniqueness of any particular turbulent flow and concentrate on the 
discovery and formulation of laws that describe entire classes or families of turbulent flows. 

2. Turbulence 

To begin with a question what is turbulence? The Reynolds number of a flow gives a 
measure of the relative importance of inertia forces and viscous forces. In experiments on 
fluid systems it is observed that at values below the so-called critical Reynolds number Recri, 
the flow is smooth and adjacent layers of fluid slide past each other in an orderly fashion. If 
the applied boundary conditions do not change with time the flow is steady. This regime is 
called laminar regime. At values of the Reynolds number above Recri, a complicated series of 
events takes place which eventually leads to a radical change of the flow character, in the 
final state the flow behavior is random and chaotic. The motion becomes intrinsically 
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unsteady even with constant imposed boundary conditions. The velocity and all other flow 
properties vary in a random and chaotic way. This regime is called turbulent flow.  
Turbulence is the state of fluid processing a non regular or irregular motion such that 
velocity at any point may vary both in magnitude and direction with time. Turbulent 
motion is also called as serious motion and is accompanied by the formulation of eddies and 
the rapid interchange of momentum in the fluid. The physical phenomenon of the 
irregularity or disorderliness is not simply the Turbulence. We do not have a clear-cut or 
final definition of Turbulence. It can also be stated as the irregular flow of fluid in which 
various quantities show a random variation with time and space. It is insufficient to define 
turbulent flow as irregular or chaotic only in time alone or in space alone. 
According to von Karman, Turbulence can be generated by fluid flow past solid surfaces or 
by the flow of layers of fluids at different velocities past or over one another. Turbulence can 
be distinguished as wall Turbulence and free Turbulence. Wall Turbulence is the Turbulence 

generated by the viscous effects due to the presence of a solid wall. Free Turbulence is 
generated by the flow of layers of fluids at different velocities.  Why we should study the 
theory of Turbulence is the another question we must answer. There are many problems of 
engineering importance such as boundary layer, heat transfer, friction and diffusion of 
fluids which cannot be estimated correctly without the consideration of Turbulence. 
The Figure 1, which depicts a cross-sectional view of a turbulent boundary layer on a flat 
plate, shows eddies whose length scale is comparable to that of the flow boundaries as well 
as eddies of intermediate and small size. Particles of fluid which are initially separated by a 
long distance can be brought close together by the eddying motions in turbulent flows. As a 
consequence, heat, mass and momentum are very effectively exchanged.  
 

 

Fig. 1. Turbulent Boundary layer and Viscous Sublayer 

For example, a streak of dye which is introduced at a point in a turbulent flow will rapidly 
break up and be dispersed right across the flow. Such effective mixing gives rise to high 
values of diffusion coefficients for mass, momentum and heat. The largest turbulent eddies 
interact with and extract energy from the mean flow by a process called vortex stretching. 
The presence of mean velocity gradients in sheared flows distorts the rotational turbulent 
eddies. Suitably aligned eddies are stretched because one end is forced to move faster than 
the other. 
In the fluid flow, if the stress and velocity at a point fluctuate in a random fashion with time. 
Turbulence sets up greater shear stresses throughout the fluid and causes more 
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irreversibility or losses. Also the losses vary about 1.7 to 2 power of the velocity in laminar 
flow, they vary as the first power of the velocity. Turbulent flow occurs when the boundary 
and initial conditions that are characteristic of the flow led to the spontaneous growth of 
hydrodynamic instabilities which eventually decay to yield a random statistically 
fluctuating fluid motion. Now we shall also see that why there is turbulence. The first 
reason may be the occurrence of strong shear regions in the flow, the presence of wakes or 
boundary layers; it may be because of separated flow regions or because of Buoyancy flow. 
Turbulence is characterized by high levels of momentum, heat and mass transport due to 
turbulent diffusivity. Due to the energy is not supplied continuously in the high shear regions. 
At slightly higher Reynolds numbers the turbulence primarily gets initiated by the formation 
of two dimensional vertices and eventually breaks down to a fully three dimensional turbulent 
flow. If observed figuratively the laminar flow at very low Reynolds number say Re<5, the 
stream lines are shown in the figure 2; the seams separated and small vortex are shown in the 
figure 3, though the flow is separated the normal flow parameters would be the same and the 
stream lines are seen to be more organized and ordered. 
 

                                     

Fig. 2. Re < 5 Laminar attached Steady                                                              

 

Fig. 3.  5 < Re < 40 Laminar Separated Steady 

In Figure 4 it is clearly visible that the periodic and laminar separated flow stream lines are 
getting spread over the spatial scale and over the time period. In the similar way if the flow 
conditions are further changed to even higher Reynolds number a turbulent wake gets 
created and the same is shown in the figure 5. The fluid motion becomes turbulent and more 
chaotic at slightly higher Reynolds number; it is illustrated in the figure 6. 
 

 

Fig. 4.  40 < Re < 200 Laminar Separated Periodic  

 

Fig. 5. 200 < Re < 350K Turbulent Wake Periodic 
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Fig. 6. 350K < Re Turbulent Separation Chaotic 

Reynolds was the first person to study the Turbulence experimentally. He used dye 
experiment to investigate the transition from laminar to turbulent flow. He observed and 
concluded with his experimental results that transition from laminar to turbulent flow in 
pipes is occurring at nearly same Reynolds number. He established critical Reynolds 
number at which laminar regime breaks down to Turbulence for a particular flow 
conditions. The transition occurs as a result of external disturbances. It is proposed 
experimentally that there is a definite limit below which all the initial disturbances in the 
flow will be damped out, and laminar flow becomes stable. The time and space dependent 
disturbance are analyzed by scientists after Reynolds and in the two dimensional flow plate 
problems, it is observed that the flow is considered to be stable if the disturbance decay with 
time. It is very essential to study and understand the nature of Turbulence. 
A typical point velocity measurement might exhibit the form shown in Figure below in Fig 7 
 

 

Fig. 7. Point velocities in turbulent flow 

The random nature of a turbulent flow precludes computations based on a complete 
description of the motion of all the fluid particles. Instead the velocity in Figure 1.7 can be 
decomposed into a steady mean value U with a fluctuating component u'(t) superimposed 
on it: U (t) = U + U'(t). In general, it is most attractive to characterize a turbulent flow by the 
mean values of flow properties (U, V, W, P etc.) and the statistical properties of their 
fluctuations. Even in flows where the mean velocities and pressures vary in only one or two 
space dimensions, turbulent fluctuations always have a three-dimensional spatial character. 
Furthermore, visualizations of turbulent flows reveal rotational flow structures, so-called 
turbulent eddies, with a wide range of length scales. 

2.1 Characteristics of the turbulent flow 

Highly unsteady: A plot of velocity as a function of time would appear random to an observer 
unfamiliar with these flows. 
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Irregularity: It is another characteristic of Turbulence which makes the deterministic 
approach to Turbulence problems impossible. One should relay on statistical approach. 
Diffusivity: If the flow pattern is random but does not exhibit spreading of velocity 
fluctuations through the surrounding fluid then it is not turbulent. The mixing is 
accomplished by diffusion. This process is also named as turbulent diffusion. The diffusivity 
of turbulence the single most important feature as far as applications are concerned. 
Three dimensional: Turbulence is three dimensional and rotational.  
Dissipative: The turbulent lows are always dissipative. The viscous shear stresses perform 
deformation work which increases the internal energy of the fluid at the expense of kinetic 
energy of turbulence. 
Higher Reynolds number: Turbulence in the fluid flow always occurs at high Reynolds 
numbers. The instabilities are related to the interaction of viscous terms and non linear 
inertia terms in the equations of fluid motion. 

2.2 Transition from laminar to turbulent flow  

The initial cause of the transition to turbulence can be explained by considering the stability 
of laminar flows to small disturbances. A sizeable body of theoretical work is devoted to the 
analysis of the inception of transition: hydrodynamic instability. In many relevant instances 
the transition to turbulence is associated with sheared flows. Linear hydrodynamic stability 
theory seeks to identify conditions which give rise to the amplification of disturbances. Of 
particular interest in an engineering context is the prediction of the values of the Reynolds 
numbers at which disturbances are amplified and at which transition to fully turbulent flow 
takes place. Fig 8 is shown to illustrate the phenomenon. The subject matter is fairly 
complex but its confirmation has led to a series of experiments which reveal an insight into 
the physical processes causing the transition from laminar to turbulent flow. Most of our 
knowledge stems from work on two-dimensional incompressible flows. All such flows are 
sensitive to two- dimensional disturbances with a relatively long wavelength, several times 
the transverse distance over which velocity changes take place. 
 

 

Fig. 8. Transition from Laminar to Turbulent flow 

The point where instability first occurs is always upstream of the point of transition to fully 
turbulent flow. The distance between the points of instability where the Reynolds number 
equals critical Reynolds and the point of transition depends on the degree of amplification 
of the unstable disturbances. The point of instability and the onset of the transition process 
can be predicted with the linear theory of hydrodynamic instability. There is, however, no 
comprehensive theory regarding the path leading from initial instability to fully turbulent 
flows. Below we describe the main, experimentally observed, characteristics of three simple 
flows: jets, flat plate boundary layers and pipe flows. 
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3. General governing equations of fluid flow 

The unsteady Navier stokes equations are considered as the governing equations of 
turbulent flows. These unsteady Navier stokes equations are not easy to solve sometimes 
next to impossible. The basic Navier-Stokes equations are presented here, as they are the 
basic equations of fluid flow it becomes essential to the reader to know the equations so that 
the modifications can easily be understood. 

 
( ) ( ) ( )u v w

t x y z

ρ ρ ρρ ∂ ∂ ∂∂
+ + + =

∂ ∂ ∂ ∂
 (1) 

   

(2)

 
 

The N-S equations are presented as under in the most common form of their practice  

 

 

   

(3)

 

In the form of tensor notation the Navier-Stokes equations is given in the equation [4] 
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Equation of Energy 
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If turbulence is entirely irregular and chaotic, it would be inaccessible to any kind of 
mathematical treatment; instead the irregularity of the turbulence can be described by the 
laws of probability to a great extent. Through the physics of the turbulence is problem 
specific, almost all of the situations of the turbulent fluid motion can be mathematically 
modeled. 
Generally the irregular flow would decay if there are no external sources of energy for the 
continuous generating of turbulence. 
The smallest length scale in the study of turbulence is still several orders of magnitude 
larger than the molecular mean free path. Therefore the continuum approximation is still 
valid in the study of turbulence. A point here to mention is Navier stokes equations do 
represent the turbulence without any approximation. 
To solve numerically or analytically the full Navier stokes equations we face little difficulty. 
One such difficulty is computing. For example N-S equation is fineness of spatial and 
temporal resolution required to represent the smallest length and scales of velocity and 
pressure fluctuations. Therefore obviously the modern powerful supercomputers also may 
sometimes fail. 
Also when we generally attach a physical problem to solve numerically, there will be 
eventually round off errors in the methods. Now when we go for finer and finer meshes or 
grid points the round off errors will accumulate and thereby destroy the accuracy of the 
solution. However this drawback can be overcome by highly accurate numerical schemes. 
Numerical methods for the turbulent flows may be classified as empirical correlations, 
integral equation, averaging equations. This approach is also known as one point closure 
which leads to a set of partial differential equations called as Reynolds averaged Navier-
stokes (or RANS) equations two-point closure, the Fourier transform equations will be 
evolved. LES and DNS are the other very important methods. As mentioned above the 
computation of turbulence is with the determination of time averaged velocity, pressure and 
temperature profiles and effect of time dependent fluctuations on them. The wall shear 
stress, heat transfer rates and points of separation could be determined from the time 
averaged flow properties. 
Nevertheless it is quite clear that turbulence is characterized by random fluctuations, the 
statistical methods are studied extensively rather than deterministic methods. In this 
approach the time averaging of variables is carried out in order to separate the mean 
quantities from the fluctuations. As a result of this new unknown variable appears in the 
governing equations. 
Therefore additional equations are needed to close the system, this process is known as 
turbulence modeling. The turbulence modeling is also known as Reynolds averaged Navier-
stokes (or RANS) methods. This approach will help in modeling the large and small scales 
of turbulence so the requirements of DNS such as refined mesh can be ignored. Large eddy 
simulation which has become more popular in recent years is actually a compromise 
between DNS and RANS. 
Turbulent flows contain great deal of velocity. It is rotational and moreover three 
dimensional. Velocity dynamics plays an essential role in the description of turbulent flows. 
In fact the intensity of turbulence is increased by the mechanism known as vertex stretching, 
as such the vertex stretching is absent in two dimensional flows. 
The instantaneous field fluctuations rapidly in all three spatial dimensions because 
Turbulence is composed of high level fluctuating vertex. The velocity dynamics also plays 
an important role in the description of turbulent flows. Turbulent flows always exhibit high 
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levels of fluctuating vorticity. Turbulent motion is random and irregular, if has a broad 
range of length scales. It is next to impossible to obtain theoretical solutions by solving three 
dimensional, time dependent problems. Therefore we are forced to restrict ourselves to go 
on some averaged quantities; there are two types of averaging procedures.  
Conventional time averaging (Reynolds averaging) and Mass – weighed time averaging 
(Favre averaging). In most of the flow situations the instantaneous values do not satisfy 
Navier poisson law. There will be additional shear stress due to the turbulence in the fluid 
flow also to be considered 
There are many ways of averaging flow variables such as time averages, spatial averages 
and mass averages etc. 

Time averages 

Any variable f assumed to be the sum of its mean quantity f  and its fluctuating part f ′ 

f(x,t) = f (x,t)+ f ′(x,t) 

f is the time average of  f ′ 

 

 

Spatial Averages 

When the flow variable is uniform on the average such as in homogeneous turbulence, 

  

Mass Averages: 

 The mass average instead of time averages is preferred for compressible flows. 

F = f  + f “   

Where the mean quantity  f  is defined   

f f
f f

ρ ρ
ρ ρ

′
= = +    

 

Where as

                                                   

 f  is known as force fluctuation field. 
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Ensemble Averages: 

If N identical experiments are carried out f(x, t) = fn (x, t) we may determine the average 

 

4. Reynolds Averaged Navier-Stokes (RANS) equations  

As described above, turbulence models seek to solve a modified set of transport equations 
by introducing averaged and fluctuating components. RANS are time-averaged equations of 
motion for fluid flow. These equations can be used with approximations based on 
knowledge of the properties of flow turbulence to give fairly accurate averaged solutions to 
the Navier–Stokes equations.  
For example, Reynolds decomposition refers to separation of the flow variable (like velocity 
u) into the mean (time-averaged) component ( u ) and the fluctuating component (u′).  
Thus the average component is given as   

  
If f and g are two flow variables, viz  pressure (p), velocity (u),density (ρ)  and s is one of the 
independent variables, independent of space and time then, 

 ,  

,   and 
 
 

If we consider the incompressible N-S equations now and substitute the average values in 
the equation then we will be obtaining the new form of equation which can conveniently 
capture the  turbulence to certain flow characteristics’ and boundary conditions. 

   

(6)

 

where 
  
is the mean rate of strain tensor 

4.1 Effect of turbulence on time-averaged Navier-Stokes equations  
The critical difference amid visualizations of laminar and turbulent flows is the appearance 
of eddying motions of a wide range of length scales in turbulent flows. We would need 
computing meshes of 109 up to 1012 points to be able to describe processes at all length 
scales. For instance the direct simulation of a turbulent pipe flow at a Reynolds number of 
500000 requires 10 million times faster super computer than CRAY, the fastest 
supercomputer now in the world.  
As the computing power is increasing enormously it may now be possible to track the 
dynamics of eddies in very simple flows at transitional Reynolds number. The computing 
requirements for the direct solution of the time dependent Navier-Stokes equations of fully 
turbulent flows at high Reynolds numbers are truly phenomenal and must await major 
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developments in computer hardware, in the meantime, engineers need to work on 
computational procedures which can supply adequate information about the turbulent flow 
processes, but which can avoid the need to predict the effects of each and every eddy in the 
flow. We examine the effects of the appearance of turbulent fluctuations on the mean flow 
properties. 

4.2 Reynolds equations  
First we define the mean ƥ of a flow property φ as follows 

 
In theory we should take the limit of time interval ∆t approaching infinity, but ∆t is large 
enough to hold the largest eddies if it exceeds the time scales of the slowest variations of the 
property ƥ.The general equations of the fluid flow with all kinds of considerations are 
represented by the Navier stokes equations along with the continuity equation. 

The time average of the fluctuations Γ ′ is given as   

 
The following rules govern the time averaging of the fluctuating properties used to derive 
the governing equations of the turbulent fluid flow. 

,  
,
   

, 

,   ,   and   

The root mean square of the fluctuations is given by the equation  
The kinetic energy associated with the turbulence is  

 
To demonstrate the influence of the turbulent fluctuations on the mean flow, we have to 
consider the instantaneous continuity and N-S equations. 

  

(7) 
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The flow variables u and p are to be replaced by their sum of the mean and fluctuating 
components. 

 

Continuity equation  is   

The time averages of the individual terms in the equation are as under 

  

Substitution of the average values in the basic derived equation would yield the following 
momentum conservation equations, the momentum in x- y- and z- directions. 

  

(8)

 

  

(9)

 

   

(10)

 

In time-dependent flows the mean of a property at time t is taken to be the average of the 
instantaneous values of the property over a large number of repeated identical experiments. 
The flow property cp is time dependent and can be thought of as the sum of a steady mean 
components and a time-varying fluctuating components with zero mean value; hence p(t) = 
p + p'(t).  
The non zero turbulent stresses usually large compared to the viscous stresses of turbulent 
flow are also need to be incorporated into the Navier Stokes equations, they are called as the 
Reynolds equations as shown below in the Euqations [11-13] 

  

(11)

 

  

(12) 
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[13]

 

4.3 Modeling flow near the wall  

Experiments and mathematical analysis have shown that the near-wall region can be 
subdivided into two layers. In the innermost layer, the so-called viscous sub layer, as shown 
in the figure 1 (indicated in blue)the flow is almost laminar-like, only the viscosity plays a 
dominant role in fluid flow. Further away from the wall, in the logarithmic layer, turbulence 
dominates the mixing process. Finally, there is a region between the viscous sublayer and 
the logarithmic layer called the buffer layer, where the effects of molecular viscosity and 
turbulence are of equal importance. Near a no-slip wall, there are strong gradients in the 
dependent variables. In addition, viscous effects on the transport processes are large. The 
representation of these processes within a numerical simulation raises the many problems. 
How to account for viscous effects at the wall and how to resolve the rapid variation of flow 
variables which occurs within the boundary layer region is the important question to be 
answered. 
Assuming that the logarithmic profile reasonably approximates the velocity distribution 
near the wall, it provides a means to numerically compute the fluid shear stress as a 
function of the velocity at a given distance from the wall. This is known as a ‘wall function' 
and the logarithmic nature gives rise to the well known ‘log law of the wall.' Two 
approaches are commonly used to model the flow in the near-wall region: 
The wall function method uses empirical formulas that impose suitable conditions near to 
the wall without resolving the boundary layer, thus saving computational resources. The 
major advantages of the wall function approach is that the high gradient shear layers near 
walls can be modeled with relatively coarse meshes, yielding substantial savings in CPU 
time and storage. It also avoids the need to account for viscous effects in the turbulence 
model.  
When looking at time scales much larger than the time scales of turbulent fluctuations, 
turbulent flow could be said to exhibit average characteristics, with an additional time-
varying, fluctuating component. For example, a velocity component may be divided into an 
average component, and a time varying component.  
In general, turbulence models seek to modify the original unsteady Navier-Stokes equations 
by the introduction of averaged and fluctuating quantities to produce the Reynolds 
Averaged Navier-Stokes (RANS) equations. These equations represent the mean flow 
quantities only, while modeling turbulence effects without a need for the resolution of the 
turbulent fluctuations. All scales of the turbulence field are being modeled. Turbulence 
models based on the RANS equations are known as Statistical Turbulence Models due to the 
statistical averaging procedure employed to obtain the equations.  
Simulation of the RANS equations greatly reduces the computational effort compared to a 
Direct Numerical Simulation and is generally adopted for practical engineering calculations. 
However, the averaging procedure introduces additional unknown terms containing 
products of the fluctuating quantities, which act like additional stresses in the fluid. These 
terms, called ‘turbulent' or ‘Reynolds' stresses, are difficult to determine directly and so 
become further unknowns.  
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The Reynolds stresses need to be modeled by additional equations of known quantities in 
order to achieve “closure.” Closure implies that there is a sufficient number of equations for 
all the unknowns, including the Reynolds-Stress tensor resulting from the averaging 
procedure. The equations used to close the system define the type of turbulence model.  

5. Turbulance governing equations 

As it has been mentioned earlier the nature of turbulence can well be analyzed 
comprehensively with Navier-stokes equations, averaged over space and time. 

5.1 Closure problem  

The need for turbulence modeling the instantaneous continuity and Navier-Stokes equations 

form a closed set of four equations with four unknowns’ u, v, w and p. In the introduction to 

this section it was demonstrated that these equations could not be solved directly in the 

foreseeable future. Engineers are content to focus their attention on certain mean quantities. 

However, in performing the time-averaging operation on the momentum equations we 

throw away all details concerning the state of the flow contained in the instantaneous 

fluctuations. As a result we obtain six additional unknowns, the Reynolds stresses, in the 

time averaged momentum equations. Similarly, time average scalar transport equations 

show extra terms. The complexity of turbulence usually precludes simple formulae for the 

extra stresses and turbulent scalar transport terms. It is the main task of turbulence 

modeling to develop computational procedures of sufficient accuracy and generality for 

engineers to predict the Reynolds stresses and the scalar transport terms. 

6. Turbulence models  

A turbulence model is a computational procedure to close the system of flow equations 
derived above so that a more or less wide variety of flow problems can be calculated 
adopting the numerical methods. In the majority of engineering problems it is not necessary 
to resolve the details of the turbulent fluctuations but instead, only the effects of the 
turbulence on the mean flow are usually sought.  
The following are one equation models generally implemented; out of the mentioned three 
spalart-Allmaras model is used in most of the cases.  

• Prandtl's one-equation model 

• Baldwin-Barth model 

• Spalart-Allmaras model  
The Spalart-Allmaras model was designed specifically for aerospace applications involving 

wall-bounded flows and has been shown to give good results for boundary layers subjected 

to adverse pressure gradients. It is also gaining popularity for turbo machinery and internal 

combustion engines also. Its suitability to all kinds of complex engineering flows is still 

uncertain; it is also true that Spalart-Allmaras model is effectively a low-Reynolds-number 

model. 

In the two equations category there are two most important and predominant models 
known as k-epsilon, k-omega models. In the k-epsilon model again there are three kinds. 
However the basic equation is only the k-epsilon, the other two are the later corrections or 
improvements in the basic model. 
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6.1 K-epsilon models 

• Standard k-epsilon model 

• Realisable k-epsilon model 

• RNG k-epsilon model 
Launder and Spalding’s the simplest and comprehensive of turbulence modeling are two-
equation models in which the solution of two separate transport equations allows the 
turbulent velocity and length scales to be independently determined. 

6.2 Standard k-ε model 

The turbulence kinetic energy, k is obtained from the following equation where as 

 

rate of dissipation, ε can be obtained from the equation below. 

 

The term in the above equation 
 
represents the generation of turbulence 

kinetic energy due to the mean velocity gradients. 

 
is the generation of turbulence kinetic energy due to buoyancy and   

 Represents the contribution of the fluctuating dilatation in compressible turbulence to 

the overall dissipation rate 

6.3 Realisable k- ε model 

 

 
 

Where 
 
 

The realizable k- ε model contains a new formulation for the turbulent viscosity. A new 

transport equation for the dissipation rate, ε, has been derived from an exact equation for 

the transport of the mean-square vorticity fluctuation 
In these equations, Gk represents the generation of turbulence kinetic energy due to the 
mean velocity gradients, and Gb is the generation of turbulence kinetic energy due to 
buoyancy. 

 represents the contribution of the fluctuating dilatation in compressible turbulence  

to the overall dissipation rate. And some constants viz C2 C1ε and also the source terms Sk 

and Sε 
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6.4 RNG k-ε model 

The RNG k-ε model was derived using a statistical technique called renormalization group 
theory. It is similar in form to the standard k-ε model, however includes some refinements 

 

 

The RNG model has an additional term in its ε equation that significantly improves the 
accuracy for rapidly edgy flows. The effect of spin on turbulence is included in the RNG 
model, enhancing accuracy for swirling flows. The RNG theory provides an analytical 
formula for turbulent Prandtl numbers, while the standard k- ε model uses user-specified, 
constant values. while the standard k- ε model is a high-Reynolds-number model, the theory 
provides an analytically-derived differential method for effective viscosity that accounts for 
low-Reynolds-number effects. 

6.5 K-ω  models 

• Wilcox's k-omega model 

• Wilcox's modified k-omega model 

• SST k-omega model 

6.5.1 Wilcox's k-omega model 

The K-omega model is one of the most common turbulence models. It is a two equation 
model that means, it includes two extra transport equations to represent the turbulent 
properties of the flow. This allows a two equation model to account for history effects like 
convection and diffusion of turbulent energy. 
Kinematic eddy viscosity 

 

Turbulence Kinetic Energy 

 

Specific Dissipation Rate 

 

The constants are mentioned as under 
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6.5.2 Wilcox's modified k-omega model 

Kinematic eddy viscosity 

 
Turbulence Kinetic Energy 

 

Specific Dissipation Rate 

 

The constants are mentioned as under 
 

     

     

6.6 Standard and SST k- ω models theory  

The standard and shear-stress transport k- ω is another important model developed in the 
recent times. The models have similar forms, with transport equations for k and ω. The 
major ways in which the SST model differs from the standard model are as follows:  
Gradual change from the standard k- ω model in the inner region of the boundary layer to a 
high-Reynolds-number version of the k- ω model in the outer part of the boundary layer  
Modified turbulent viscosity formulation to account for the transport effects of the principal 
turbulent shear stress. The transport equations, methods of calculating turbulent viscosity, 
and methods of calculating model constants and other terms are presented separately for 
each model. 

6.7 v
2
-f models 

The v2- f model is akin to the standard k-ε model; besides all other considerations it 
incorporates near-wall turbulence anisotropy and non-local pressure-strain effects. A 
limitation of the v2- f model is that it fails to solve Eulerian multiphase problems. The v2- f 
model is a general low-Reynolds-number turbulence model that is suitable to model 
turbulence near solid walls, and therefore does not need to make use of wall functions.  

6.7.1 Reynolds stress model (RSM) 

The Reynolds stress model is the most sophisticated turbulence model. Abandoning the 
isotropic eddy-viscosity hypothesis, the RSM closes the Reynolds-averaged Navier-Stokes 
equations by solving transport equations for the Reynolds stresses, together with an 
equation for the dissipation rate. This means that five additional transport equations are 
required in two dimensional flows and seven additional transport equations must be solved 
in three dimensional fluid flow equations. This is clearly discussed in the following pages. 
In view of the fact that the Reynolds stress model accounts for the effects of streamline swirl, 
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curvature, rotation, and rapid changes in strain rate in a more exact manner than one-
equation and two-equation models, one can say that it has greater potential to give accurate 

predictions for complex flows     
 

 is known as the transport of the Reynolds stresses 

 
 

The first part of the above equation local time derivative and the second term is convection 
term; the right side of the equation is turbulent and molecular diffusion and buoyancy and 
stress terms. 

6.7.2 Large eddy simulation 

As it is noted above turbulent flows contain a wide range of length and time scales; the 
range of eddy sizes that might be found in flow is shown in the figures below. The large 
scale motions are generally much more energetic than the small ones. Their size strength 
makes them by far the most effective transporters of the conserved properties. The small 
scales are usually much weaker and provide little of these properties. A simulation which 
can treat the large eddies than the small one only makes the sense. Hence the name the large 
eddy simulation. Large eddy simulations are three dimensional, time dependent and 
expensive. 
LES models are based on the numerical resolution of the large turbulence scales and the 
modeling of the small scales. LES is not yet a widely used industrial approach, due to the 
large cost of the required unsteady simulations. The most appropriate area will be free shear 
flows, where the large scales are of the order of the solution domain. For boundary layer 
flows, the resolution requirements are much higher, as the near-wall turbulent length scales 
become much smaller.LES simulations do not easily lend themselves to the application of 
grid refinement studies both in the time and the space domain. The main reason is that the 
turbulence model adjusts itself to the resolution of the grid. Two simulations on different 
grids are therefore not comparable by asymptotic expansion, as they are based on different 
levels of the eddy viscosity and therefore on a different resolution of the turbulent scales.  
However, LES is a very expensive method and systematic grid and time step studies are 
prohibitive even for a pre-specified filter. It is one of the disturbing facts that LES does not 
lend itself naturally to quality assurance using classical methods. This property of the LES 
also indicates that (non-linear) multigrid methods of convergence acceleration are not 
suitable in this application. 
The governing equations employed for LES are obtained by filtering the time-dependent 
Navier-Stokes equations in either Fourier (wave-number) space or configuration (physical) 
space. The filtering process effectively filters out the eddies whose scales are smaller than 
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the filter width or grid spacing used in the computations. The resulting equations thus 
govern the dynamics of large eddies. 

A filtered variable is defined by  
 
 

When the Navier stokes equations with constant density and incompressible flow are 
filtered, the following set of equations which are similar to the RANS equations. 

 

 

 

The continuity equation is linear and does not change due to filtering. 

 

6.8 Example 
Wall mounted cube as an example of the LES; the flow over a cube mounted on one wall of 
a channel. The problem is solved using the mathematical modeling and the Reynolds 
number is based on the maximum velocity at the inflow. The inflow is fully developed 
channel flow and taken as a separate simulation, the outlet condition is the convective 
condition as given above. No-slip conditions all wall surfaces. The mesh is generated in the 
preprocessor and the same is exported to the solver. The time advancement method is of 
fractional step type. The convective terms are treated solved by Runge-Kutta second order 
method in time. The pressure is obtained by solving poisson equation. 
The stream lines of the time averaged flow in the region close to the wall is observed.  The 
simulation post processed results and plots are presented. The stream line of the time-
averaged flow in the region is depicting the great deal of information about the flow. The  
 

 
Fig. 9. Stream Lines from the top view 
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Figure 9 is showing the stream lines and it is clearly visible that the flow is not separated at 
the incoming and if it is closely observed that there is a secondary separation and 
reattachment in the flow just afterwards. There are two areas of swirling flow which are the 
foot prints of the vortex. Almost all the features including the separation zone and also 
horseshoe vortex.  
It is significant to note down that the instantaneous flow looks very different than the time 
averaged flow.; the arch vortex does not exit in and instantaneous since; there are vortices in 
the flow but they are almost always asymmetric  as shown in the figure figure 10. Indeed, 
the near-symmetry of figure 10 is an indication that the averaging time is long enough. 
Performance of such a simulation has more practical importance and experimental support 
to such mathematical modeling would help to understand the real time problems. 
 

 

Fig. 10. Stream lines in the region close to the cube to trace the large eddies 

7. Direct Numerical Simulation (DNS) 

A direct numerical simulation (DNS) is a simulation of fluid flow in which the Navier-
Stokes equations are numerically solved without any turbulence model. This means that the 
whole range of spatial and temporal scales of the turbulence must be resolved. Closure is 
not a problem with the so-called direct numerical simulation in which we numerically 
produce the instantaneous motions in a computer using the exact equations governing the 
fluid.  Since even when we now perform a DNS simulation of a really simple flow, we are 
already overwhelmed by the amount of data and its apparently random behavior. This is 
because without some kind of theory, we have no criteria for selecting from it in a single 
lifetime what is important.  
DNS using high-performance computers is an economical and mathematically appealing 
tool for study of fluid flows with simple boundaries which become turbulent. DNS is used 
to compute fully nonlinear solutions of the Navier-Stokes equations which capture 
important phenomena in the process of transition, as well as turbulence itself. DNS can be  
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Fig. 11. Vector plots and the stream lines over the cube 

used to compute a specific fluid flow state. It can also be used to compute the transient 
evolution that occurs between one state and another. DNS is mathematical, and therefore, 
can be used to create simplified situations that are not possible in an experimental facility, 
and can be used to isolate specific phenomena in the transition process. 
All the spatial scales of the turbulence must be resolved in the computational mesh, from the 
smallest dissipative scales known as Kolmogorov scales, up to the integral scale L, and the 
kinetic energy.   
Kolmogorov scale, η, is given by    

 

where ν is the kinematic viscosity and ε is the rate of kinetic energy dissipation.  
,   so that the integral scale is contained within the computational domain, and also 

 ,   so that the Kolmogorov scale can be resolved 
Since  

 

where u' is the root mean square of the velocity, the previous relations imply that a three-
dimensional DNS requires a number of mesh points N3 satisfying 
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where Re is the turbulent Reynolds number:   

  

The memory storage requirement in a DNS grows very fast with the Reynolds number. In 
addition, given the very large memory necessary, the integration of the solution in time 
must be done by an explicit method. This means that in order to be accurate, the integration 
must be done with a time step, Ʀt, small enough such that a fluid particle moves only a 
fraction of the mesh spacing h in each step. That is, 

 

C is here the Courant number 
The total time interval simulated is generally proportional to the turbulence time scale τ 
given by 

. 

Combining these relations, and the fact that h must be of the order of η, the number of time-
integration steps must be proportional to L /η. By other hand, from the definitions for Re, η 
and L given above, it follows that 

  
and consequently, the number of time steps grows also as a power law of the Reynolds 
number. 
The contributions of DNS to turbulence research in the last decade have been impressive and 
the future seems bright. The greatest advantage of DNS is the stringent control it provides over 
the flow being studied. It is expected that as flow geometries become more complex, the 
numerical methods used in DNS will evolve. However, the significantly higher numerical 
fidelity required by DNS will have to be kept in mind. It is expected that use of non-
conventional methodologies (e.g. multigrid) will lead to DNS solutions at an affordable cost, 
and that development of nonlinear methods of analysis are likely to prove very productive. 

8. The Detached Eddy Simulation model (DES)  

In an attempt to improve the predictive capabilities of turbulence models in highly 
separated regions, Spalart proposed a hybrid approach, which combines features of classical 
RANS formulations with elements of Large Eddy Simulations (LES) methods. The concept 
has been termed Detached Eddy Simulation (DES) and is based on the idea of covering the 
boundary layer by a RANS model and switching the model to a LES mode in detached 
regions. Ideally, DES would predict the separation line from the underlying RANS model, 
but capture the unsteady dynamics of the separated shear layer by resolution of the 
developing turbulent structures. Compared to classical LES methods, DES saves orders of 
magnitude of computing power for high Reynolds number flows. Though this is due to the 
moderate costs of the RANS model in the boundary layer region, DES still offers some of the 
advantages of an LES method in separated regions.  
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9. Final remarks  

This chapter provides a first glimpse of the role of turbulence in defining the wide-ranging 
features of the flow and of the practice of turbulence modeling. Turbulence is a 
phenomenon of great complexity and has puzzled engineers for over a hundred years. Its 
appearance causes radical changes to the flow which can range from the favorable to the 
detrimental. The fluctuations associated with turbulence give rise to the extra Reynolds 
stresses on the mean flow. What makes turbulence so difficult to attempt mathematically is 
the wide range of length and time scales of motion even in flows with very simple boundary 
conditions. It should therefore be considered as truly significant that the two most widely 
applied models, the mixing length and  k-ε  models, succeed in expressing the main features 
of many turbulent flows by means of one length scale and one time scale defining variable. 
The standard k-ε model still comes highly recommended for general purpose CFD 
computations. Although many experts argue that the RSM is the only feasible way forward 
towards a truly general purpose standard turbulence model, the recent advances in the area 
of non-linear k-e ε models are very likely to re- revitalize research on two-equation models.  
Large eddy simulation (LES) models require great computing resources and are used as 
general purpose tools. Nevertheless, in simple flows LES computations can give values of 
turbulence properties that cannot be measured in the laboratory owing to the absence of 
suitable experimental techniques. Therefore LES models will increasingly be used to guide 
the development of classical models through comparative studies. Although the resulting 
mathematical expressions of turbulence models may be quite complicated it should never be 
forgotten that they all contain adjustable. 
DNS data is extensively used to evaluate LES results which are an order of magnitude faster 
to obtain. The availability of this detailed flow information has certainly improved our 
understanding of physical processes in turbulent flows which thus emphasizes the 
importance of DNS in present scientific research. Due to the very good correlation between 
the DNS results and the experimental data, DNS has become synonymous with the term 
“Numerical Experiment”. CFD calculations of the turbulence should never be accepted 
without the validation with the high quality experiments. 

www.intechopen.com



Computational Fluid Dynamics

Edited by Hyoung Woo Oh

ISBN 978-953-7619-59-6

Hard cover, 420 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book is intended to serve as a reference text for advanced scientists and research engineers to solve a

variety of fluid flow problems using computational fluid dynamics (CFD). Each chapter arises from a collection

of research papers and discussions contributed by the practiced experts in the field of fluid mechanics. This

material has encompassed a wide range of CFD applications concerning computational scheme, turbulence

modeling and its simulation, multiphase flow modeling, unsteady-flow computation, and industrial applications

of CFD.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Srinivasa Rao P. (2010). Modeling of Turbulent Flows and Boundary Layer, Computational Fluid Dynamics,

Hyoung Woo Oh (Ed.), ISBN: 978-953-7619-59-6, InTech, Available from:

http://www.intechopen.com/books/computational-fluid-dynamics/modeling-of-turbulent-flows-and-boundary-

layer



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


