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1. Introduction 

In this chapter, we introduce the notion of simple context-free decision processes, which 
are an extension of episodic finite-state Markov decision processes (MDPs). Intuitively, a 
simple context-free decision process can be thought of as an episodic finite-state MDP with a 
stack. In fact, many reinforcement learning methods can be applied to the class of simple 
context-free decision processes with natural modification on their equations. 
On the other hand, in grammatical inference area, some non-regular subclasses of simple 
grammars, such as very simple grammars and right-unique simple grammars, have been 
found to be efficiently identifiable in the limit from positive data. Especially, the class of 
right-unique simple decision processes, which are simple context-free processes based on 
right-unique simple grammars, is a superset of the class of episodic finite-state MDPs. 
Because episodic states histories are regarded as positive data, one might expect that those 
positive results in grammatical inference area could be applied to reinforcement learning 
directly. 
However, one should note that grammars generating the same language can generate 
different probabilistic languages. While it is enough to find a process representing the target 
language in the scheme of identification in the limit, in reinforcement learning, one has to 
find a process representing the target probabilistic language. 
Therefore, we need to modify the results in grammatical inference area for applying them to 
reinforcement learning. Actually, a grammar can be more general than another in the sense 
that it generates all the probabilistic languages generated by the other. Hence, finding a 
most general grammar gives a solution to this problem. This chapter however shows that 
both classes of simple grammars and right-unique simple grammars do not admit most 
general grammars. 
Besides, we show that there is an intermediate class between right-unique simple grammars 
and simple grammars that admits an algorithm computing a most general grammar from 
any two grammars whose languages coincide.  
We present an algorithm that learns the optimal actions under right-unique simple context-
free processes, by concatenating the algorithm learning right-unique simple grammars from 
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positive data, the one computing a most general grammar and the modified update 
equations of some usual reinforcement learning methods. 

2. Notation and definitions  

Before we give the definition of simple context-free MDPs, we write some standard notation 
and definitions and introduce subclasses of simple grammars and probabilistic grammars.  
 A context-free grammar (CFG) is a quadruple denoted by <V, Σ, R, S>, where V is a finite 
set of nonterminal symbols, Σ is a finite set of terminal symbols, R⊂V×(V∪ Σ)* is a finite set 
of production rules, and S∈V is the start symbol. Let G=<V, Σ, R, S> be a CFG. We write 
XAZ

G⇒ XYZ if there is a rule A→Y. When G is clearly identified, we write simply ⇒  

instead of 
G⇒ .  *⇒  denotes the reflective and transitive closure of ⇒ . G is said to be 

reduced if and only if, for all A in V, there are some x,y,z in Σ* such that  S *⇒ xAz *⇒ xyz.  

L(G, X) denotes a language derived from X, i.e., }|*{ * xXx G⇒Σ∈ . L(G)=L(G,S) is called the 

language of G. Let ε denote the empty sequence. If x is a sequence, let |x| denote the length 
of x. Let |A| for a set A denote the cardinality of A, and |G| denote∑ ∈→

+
RXA

XA |||| .  

In order to be easy to read, terminal symbols and nonterminal symbols are denoted by 
a,b,c,… and A,B,C,… respectively, and finite sequence of terminal symbols and nonterminal 
symbols are denoted by …,x,y,z and ,┚,┛,… respectively. 
 CFGs G=<V, Σ, R, S> and H=<V’, Σ, R’, S’> are equivalent modulo renaming of nonterminal 
symbols when there is a bijection φ:V→V’ such that A→X is in R if and only if φ(A)→φ*(X) 
is in R’, and φ(S)=S’. φ* is a homomorphism (V∪ Σ)* →(V∪ Σ)* defined recursively: φ*(ε)= ε, 
φ*(aX)=aφ*(X) and φ*(AX)= φ(A)φ*(X). 
Definition 1. Let G=<V, Σ, R, S> be a CFG. G is called a simple grammar (SG) if and only if 

• G is in Greibach normal form, that is, for each rule of G is written as αaA→ . 

• RaA ∈→ α  and RaA ∈→ β  imply βα = . 

The subclasses of SGs which will appear in this chapter are defined below. 
Definition 2. Let G=<V, Σ, R, S> be an SG. G is called a right-unique simple grammar 

(RSG) if and only if 

• RaA ∈→ α  and RaB ∈→ β  imply βα = . 

Definition 3. Let G=<V, Σ, R, S> be an SG. G is called a very simple grammar (VSG) if and 
only if 

• RaA ∈→ α  and RaB ∈→ β  imply BA =  and βα = . 

From definitions, a VSG is an RSG, and an RSG is an SG. 
Let G=<V, Σ, R, S> be an SG. A probability assignment P on G is a map from R to [0,1] such 
that ∑ ∈

=
)(

1)(
ARr

rP  for all A in V, where }{)( RXAAR ∈→= . A probabilistic simple 

grammar (PSG) is a pair of G and P, where P is probability assignment on an SG G. Let G(P) 
be a PSG. All of sequences of production rules that are used in the left-most derivation of 
S *

G⇒ x, where )(GLx∈ , is called the left Szilard language of G. When G is an SG, every x in 

L(G) has a unique sentence in the left Szilard language of it. Let us denote that sentence by 
r(G,x,1), …, r(G,x,|x|). Then, the probabilistic language of G(P), 

]1,0[*)(:)](|Pr[ →Σ⋅ PowPG  is defined as ]),(|Pr[ SPGx , where 
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r(G,X,x,1),…,r(G,X,x,|x|) are the sequence of rules used in the derivation X *

G⇒ x. G(P) is 

called consistent if and only if 1)](|Pr[
)(

=∑ ∈ GLx
PGx . In order that )](|Pr[ PG⋅  is regarded as 

a probability on Σ*, G(P) is required to be consistent. A sufficient condition of consistency is 
known (Wetherell, C. S., 1980). Let M(G(P)) be a (|V|,|V|) matrix whose element ))(( PGmij  

represents the expectation of the number of the occurrences of the nonterminal symbol 

jA derivable in one step from 
iA . G(P) is consistent if 1)))((( <PGMρ , where )(Mρ  is the 

spectral radius of M. 

3. An extension of finite-state Markov decision processes 

3.1 A representation of episodic finite-state MDPs with grammatical formalism 

In this section, first, we describe the notion of the simple context-free Markov decision 
processes, by using a simple example of an episodic finite-state MDP. After that, the 
definition of simple context-free Markov decision process will be given. 
Fig.1 is an episodic finite-state MDP, which contains 5 states, {a, b, c, d, e}. ‘S’ indicates the 
initial state, and double circles indicate end states ({a, e}). The actions the robot can take are 
‘L’ and ‘R’. Reward given to the robot is -1 for every step, and if the robot gets in the end 
state ‘e’, 1 is given. In this case, it is obvious that, if the robot takes ‘R’ action for every state, 
the best policy is acquired. 
 

 
Fig. 1. An episodic finite-state MDP 

A possible history of states is a sequence of states representing the transition of the robot 
from the initial state to an end state, such as {cba, cde, cbdba, … }. Let us call the set of 
possible histories the language generated by the finite-sate MDP in Fig. 1. While this 
language is a regular language, some regular languages cannot be generated by any finite-
state MDPs. For example a singleton {aae} cannot be the language of any MDP, because each 
letter identifies one state. The fact that aae is a possible history implies that the robot may 

translate from the state a to a. Thus, ean  is also a possible history for any n > 0.  

Therefore, the possible histories can be also described as a language for some regular 
grammar G, and its language class is not required to include the class of regular languages.  
The class of simple grammars is one of the subclasses of CFGs such that all languages 
generated by finite-state MDPs are generated by them. For example, a CFG whose rules are 
{S→cC, C→bB, B→a, B→cC, C→dD, D→e, D→cC} generates the language of the MDP in 
Fig.1. The derivation of ‘cbcde’ is written as S⇒ cC⇒ cbB⇒ cbcC⇒ cbcdD⇒ cbcde. That CFG is 

a b c d e

S

R R R

LL L
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a simple grammar, and a regular grammar, if nonterminal symbols are regarded as states 
(Fig. 2).  

 
Fig. 2. Expressing the MDP in fig.1 by a regular grammar or simple grammar 

 A probabilistic CFG is defined by assigning a non-negative real number to every rule, 
where 1)(

)(
=∑ ∈ ARr

rP  and }{)( RXAAR ∈→= . In a finite-state MDP, if a policy is decided, 

the probabilities of histories (the measure on the language) are determined. On the MDP in 
Fig. 1, let us suppose that the policy is chosen as the probability of choice of ‘R’ or ‘L’ is 
assigned to 0.5 for every state. In that case, the probability of a sentence ‘w’ in the language 

is ||2 w− . The pair of a language and a measure on it is called a probabilistic language. When a 
policy which is taken by a robot is changed, the probabilistic language of MDP changes 
correspondingly. 
Every context-free grammar generates various probabilistic languages by assigning various 
probabilities to each rule of it. The set of all probabilistic languages generated from a CFG G 
by assigning a probability to each rule of it is called the probabilistic generality of G. The 
probabilistic generality of G is a subset of ]}1,0[)({ →GL . For instance, suppose that G is a 

CFG whose rules are {S→aS, S→b}. The probabilistic generality of it is written as follows: 

{ }]1,0[),1()(|]1,0[}*{: ∈−=→ qqqbaPbaP nn . 

It is clear that the fact that grammars A and B generate the same language does not imply its 
probabilistic generalities of them are the same. Suppose that H is a CFG that has rules 
{S→aA, S→b, A→aA, A→b}. Obviously, L(G) = L(H). But the generality of H is  

{ }]1,0[),1()(,1)(|]1,0[}*{: ∈−=−=→ qrqrbaaPqbPbaP nn . 

So generalities of them are different from each other.  

3.2 Simple context-free Markov decision processes 

Simple context-free MDP is formally defined as follows 
Definition 4. Let G be an simple grammar. G(U,P,C) =<V,Σ,R,S,U,P,C> is a simple context-

free decision process if and only if U, P and C are the following set and functions. 

• U is a finite set of actions. 

• P : R×U → [0,1] is a probabilistic assignment.  For all (A,u) in V×U, 1),(
)(

=∑ ∈ ARr
urP  

• C : Σ → (-∞,∞) is a reward function. 
In the following, when G is in a subclass of SGs, we call the simple context-free decision 
process G(U,P,C) [the name of the subclass]-DP. 
Corresponding to a given SG-DP, a sequence of discrete random variables X(1), Y(1), X(2), 
Y(2), … is given as follows. X(1) =S, the domain of X(i) is Σ*V* and the domain of Y(i) is U. 

 B C D  
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R R RR
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Clearly, X and Y are an infinite-state MDP. Every episodic finite-state MDP is equivalent to 
some SG-DP as we have discussed in the beginning of this section. In fact, an episodic finite-
state MDP whose states are 

knaa +,,1 L and end states are 
knn aa ++ ,,1 L  for some n >0 and k 

>=0,  can be represented by the form of SG-DP <V,Σ,R,S,U,P,C>: 

}1,|{}1,|{

},,...,{

  },),...,({

1

1

knjnVAaAnjVAAaAR

aa

ASAV

jjj

kn

n

+≤≤+∈→∪≤≤∈→=
=Σ

==

+

 

)( jji AaAP →  equals to the transition probability from i to j, and )( jni aAP +→  equals to the 

transition probability from i to n+j, where n+j is an end state. U is the same set of actions as 
the MDP, and C is also the same. 
Policies, value-function, optimal value function, etc. are introduced below in analogues to 
those of MDPs. Let G(U,P,C) = <V, Σ, R, S,U,P,C> be an SG-DP. 
Definition 5. A policy of G(U,P,C) is a map UV → . 

One of the main purposes of reinforcement learning is to determine a policy μ so as to 
maximise the expectation of the total reward from S. 
Definition 6. A value function of G(U,P,C) under a policy μ, ),(: ∞−∞→VJμ , is defined as 

∑ ∑
∈ =

=
),(

||

1

)(]),(|Pr[)(
AGLx

x

i

iaCAPGxAJ  ,μμ
 

where 
||21 xaaax L=  and 

μP  is the probability assignment of G under μ, namely, 

for RaA ∈→ α , ))(,()( AaAPaAP μααμ →=→ . 

When 1)))((( <μρ PGM  for any policy μ , all value functions of G(U,P,C) are finite. 

Definition 7. The optimal value function of G(U,P,C) denoted as ),(:* ∞−∞→VJ  is defined 

as 

)(sup)(* AJAJ μπμ∈= , 

where π  is the set of all policies. 

There exists some policy 
*μ  such that )()( **

AJAJ =μ
. 

Definition 8. 
*μ  is called an optimal policy. 

Definition 9. The optimal action-value function ),(:* ∞−∞→×UVQ  is defined as 

. ∑ ∑
∈→ =

⎟
⎠

⎞
⎜
⎝

⎛
+→=

)( 1

*1*

1

)()(),(),(
ARBaBA

k

i

ik

k

BJaCuBaBAPuAQ
L

L  
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Definitions 5 - 9 are a natural extension of the usual definitions on reinforcement learning 
for finite-state MDPs, whose discounting factor equals 1. Most of well known reinforcement 
learning methods, such as Q-learning, TD(λ) can be applied to SG-DPs corresponding to the 
above definitions. In the following theorem, an extended Q-learning for SG-DPs is 
introduced and its convergence to the optimal action-value is established. A proof is in 
(Shibata et al., 2006). 
Theorem 1. Assume that 1)))((( <μρ PGM  for any policy μ . A sequence of V×U×[0,1], 

L),,,(),,,( 222111 kuAkuA  is supposed to satisfy the following conditions for all (A,u) in V×U. 

.   and  ∞<∞= ∑∑
== ),(),(

2

),(),( uAuA

t

uAuA

t

tttt

kk
  

The sequence of random variables L,, 21 QQ  defined by the following iteration (the extended 

Q-Learning) converges to the optimal action-value function of G(U,P,C) as ∞→t  with 

probability 1. 

 ,⎟
⎠

⎞
⎜
⎝

⎛
++−= ∑

= ∈+

m

i

it
Uv

tttttttt vBQaCkuAQkuAQ
1

1 ),(max)(),()1(),(  

where the sequence 
mBBL1  is randomly chosen with probability ),( 1 tmt uBaBAP L→ . 

4. Identification in the limit of right-unique simple grammars from positive 
data 

4.1 Learning simple grammars 

A most rigid theoretical model for learning concepts would be identification in the limit 
proposed by Gold (1967). Because episodic states histories are regarded as positive data, one 
might expect that fruits of grammatical inference on identification in the limit from positive 
data could be directly applied to reinforcement learning. As simple context-free decision 
processes are a generalization of finite Markov decision processes, we should refer to results 
on grammatical inference of simple grammars. It is known that however simple languages 
are not identifiable in the limit from positive data, because every regular language with an 
endmarker is a simple language and the class of whole regular languages is not identifiable 
in the limit from positive data (Gold 1967). 
 On the other hand, Yokomori (2003, 2007) has shown that very simple grammars, which 
form a small subset of simple grammars, are polynomial-time identifiable in the limit from 
positive data. A very simple grammar is a simple grammar such that each terminal symbol 
has exactly one production rule in which it occurs. Therefore, the grammar has exactly the 
same number of production rules as terminal symbols. Decision processes constructed on 
very simple grammars are, however, too restricted and they are no longer able to cover 
finite Markov decision processes. 
 Thus we need another richer subclass of simple grammars that should give an extension of 
finite Markov decision processes and at the same time it should be efficiently identifiable in 
the limit from positive data. Here we introduce a new class of grammars, called right-
unique simple grammars, which is located between simple grammars and very simple 
grammars. This class still defines a small proper subclass of simple languages, but actually it 
satisfies the two desired properties mentioned above. 
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 In this section, we show the efficient learnability of right-unique simple grammars. 

4.2 Identification in the limit from positive data 

First we let the reader recall the notion of identification in the limit from positive data 
established by Gold (1967). A positive presentation of a language L* is an infinite sequence 
of strings where all and only elements of L* appear. Each string appearing in a positive 
presentation is called a positive example of L*. A learning algorithm  is an algorithm 
which takes a positive presentation w1,w2,… as input, and outputs some infinite sequence of 
grammars G1,G2,…, i.e.,  infinitely repeats the cycle where  receives wi and outputs Gi for 
i = 1, 2,…. A learning algorithm  converges to G on a presentation w1,w2,… if for all but 
finitely many i, Gi = G holds.  identifies a class  of languages in the limit from positive 
data if for every positive presentation of every L* ,  converges to a grammar G 
generating the exact language L*. 
 Usually learning algorithms are supposed to output a grammar consistent with the given 
positive examples, i.e., the conjectured grammar generates all the examples. Moreover, they 
do not change the conjecture unless the current conjecture is inconsistent with the newly 
given example. Our learning algorithm, which will be presented in Sec. 3.4, also has this 
standard property. 

4.3 Right-unique simple grammars 

Our learning target here is right-unique simple languages defined by right-unique simple 

grammars. A simple grammar  is called a right-unique simple grammar 

(RSG) if whenever both  and  are rules of the grammar with  and 

,  holds. We note that G is a very simple grammar if moreover we have A = 

B in addition to . 
 Let us see an example of an RSG. The grammar consisting of the following rules is an RSG: 

 

where S,T,U are nonterminal symbols and  are terminal symbols. The 
generated language is a set of formulae of first-order logic in Polish notation. 

 The definition of RSGs allows us to define the function  for each RSG G, called the shape 

of G, that assigns an integer to each terminal symbol as 

 

This function is homomorphically extended so that  for any 

 (  for the empty string ). It is easy to see that whenever  with 

 and , we have . Moreover we have  

for any proper prefix x' of x, because  entails . Particularly for 

, we have  and  for any proper prefix w' of w. In this 

way, the function  strongly characterizes the derivations and the language of G. In 

general, we let us call any function  from  to  a shape if it holds that  and 

 (homomorphism) for all  and . 
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 We also say that a shape  is compatible with a language L if  and  for 

all  and any proper prefix w' of w. Consequently,  is always compatible with . 
 Here we note that any language L admits a finite number of compatible shapes. This is 

because, if  is compatible with L and , then 

, 

because x is a proper prefix of xay and  for any . Therefore, a language L 

admits at most  compatible shapes, where . 
 To simplify our discussion, here we introduce a special form of RSGs, called canonical 

form. Every RSG can be transformed into canonical form with preserving the language and 

the shape. The set of nonterminal symbols of an RSG G in canonical form of shape  is 
exactly 

 

and every rule has the form 

 

for some . For instance, an RSG G consisting of the rules 

 

is converted into G' in canonical form with the rules 

  (1) 

Here the start symbol S of G is divided into S0 and [a,0] in G’ and A is divided into [a,1] and 
[b,0]. Therefore, it is allowed to consider only RSGs in canonical form. Actually our learning 
algorithm for RSGs computes its conjecture in canonical form. 

4.4 Learning algorithm 

By definition, each shape has a finite number of RSGs in canonical form. Together with the 
fact that any language admits a finite number of compatible shapes, we see that there is a 
finite number of RSLs consistent with the given positive examples. This property is known 
as finite thickness. Angluin (1980) has shown that every class of languages with finite 
thickness is identifiable in the limit from positive data. Thus RSGs are identifiable in the 
limit from positive data. 
 Our learning algorithm outputs an RSG that generates a minimal language among all the 
RSLs containing the given positive examples. This strategy ensures that the algorithm finally 
converges to a grammar representing the target language. If the current conjecture G does 

not generate the target language L*, we never have , because of the minimality of 

the conjecture. Thus there is , which will appear in the positive presentation 
of L*. Then the algorithm eventually abandons the conjecture G and the times changing the 
conjecture is finite by the finite thickness of the class of RSLs. Finally the conjecture 
converges to a grammar generating the target language. 
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 To enable us to analyze the efficiency of the learning task, we present a concrete learning 
algorithm for RSGs. The learning method for RSGs is basically same as Yokomori's (2003, 
2007) algorithm for very simple grammars. The first step of our algorithm for learning RSGs 
is to find shapes compatible with the given positive examples. Then the algorithm computes 
consistent RSGs in canonical form whose shapes are those found at the first step. At last a 
minimal (with respect to its language) grammar among those candidate RSGs is picked up. 
Fig. 3 represents this learning strategy. 

 

Fig. 3. Flow of our learning algorithm. 

To enumerate all the compatible shapes for a given set L of positive examples, it is enough to 

check the compatibility of shapes  satisfying that  with 

. Deciding the compatibility of a shape with a finite language is 
trivially done in linear time. Therefore, the enumeration of compatible shapes is done in  

 time simply by the brute-force search where . This upper 
bound is polynomial if we fix . It would be natural to ask whether a more efficient 
algorithm that finds a compatible shape in polynomial time in | | is possible. Concerning 
this question, it is known that deciding whether or not a finite language admits a compatible 
shape is NP-complete if we regard | | as a variable. 
 Once we obtain a compatible shape, one can straightforwardly construct the minimum RSG 
in canonical form of that shape that is consistent with the given positive examples. For a 

given set L of examples and a shape  compatible with L, the algorithm picks up the least 
rules from the set 

 

so that the resultant grammar generates all the elements of L. For instance, when two 

positive examples aabccc, bc are given, the only compatible shape  is such that (a) = 1, (b) = 

0, (c) = . To derive those two strings, exactly the rules in (1) are needed. Thus, the output 

of the learning algorithm is G'. This procedure can be done in almost linear time in  

where  is the sum of the lengths of all the positive examples. 
 In general, multiple compatible shapes would be computed. In that case, we will compute 
grammars as many as the compatible shapes and have to choose one among those as the 
conjecture. The criterion is to choose a minimal grammar with respect to the language. That 
is, we have to solve the inclusion problem of RSGs. This procedure would be rather purely 
an issue of formal language theory and thus we relegate this subroutine to (Yoshinaka 2006), 
where it is shown that inclusion of two RSGs computed as output candidates is decidable in 
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polynomial time in . Let us write the upper bound of the running time of this 

subroutine as  for a polynomial p. In order to pick up a minimal RSG among m 

output candidates, we execute this subroutine  times. Recall that we have  
where  is the length of a longest positive example. Therefore, our algorithm updates its 

conjecture in  steps. 
 Let us see an example. Suppose that the first positive example is abbc. There are two 

compatible shapes  and : 

 

 

The minimum consistent RSGs G1 and G2 constructed on  and , respectively, have the 
following production rules: 

 

 

We have . Therefore our algorithm outputs 
G2. 

5. Probabilistic generality of subclasses of simple grammars 

5.1 Probabilistic generalities and unifiablity 

Definition 10. The Probabilistic generality of an SG G is defined as  

{ }. on  assignment yprobabilit a is GPPGG |)](|Pr[)( ⋅=Γ  

An SG H is more general than G if and only if )()( HG Γ⊂Γ . 

The following lemma establishes requirements for )()( HG Γ⊂Γ . 

Lemma 1. Let G = <V,Σ,R,S > and H = <V',Σ,R',S'> be reduced SGs. )()( HG Γ⊂Γ  if and only 

if L(G) = L(H) and there is some map 
22': ≥≥ →VVψ  that satisfies the following condition, 

where { }2|)(|2 ≥∈=≥ ARVAV . For all A in 
2'≥V  and all x in Σ* , αxAS H

*'⇒  implies 

βψ )(* AxS G⇒ . 

Suppose that C is a subclass of SGs. In the following, we will discuss whether C has a more 
general grammar than arbitrary two grammars that generate the same language. 
Definition 11. Let C and D be subclasses of SGs. C is unifiable within D if and only if, for 
all G, H in C such that L(G) = L(H), there is I in D such that )()()( IHG Γ⊂Γ∪Γ . 

The main result of this section is construction of an SG G* that is more general than a finite 
number of given RSGs whose languages are equivalent. However, neither the class of SGs 
nor the class of RSGs is unifiable within itself, as we see in what follows. The proofs for all of 
them use Lem. 1. In the following, we say that C is unifiable when C is unifiable within C 
itself. 
Theorem 2. The class of SGs is not unifiable. 
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A proof of Theorem 2 is written in (Shibata et al., 2006). The class of RSGs is also not 
unifiable. This fact is showed by considering the finite language L= (a|b)(c|d)(e|f) = 
{ace,acf,ade,adf,bce,bcf,bde,bdf}. On the other hand, the class of VSGs is unifiable. For any 
VSGs G and H, L(G)=L(H) implies )()( HG Γ=Γ . Suppose that αxAS G

*⇒  and βyBS G

*⇒ . 

A=B if and only if 'αα xaxA G⇒  and 'ββ yayB G⇒  from the definition of a VSG. If H is a 

VSG such that L(G)=L(H), '* αα xaxAS G ⇒⇒  if and only if '' * γγ xaxCS H ⇒⇒ . Thus, there 

is a bijection ': VV →ψ , and αxAS G

*⇒  if and only if γψ )(' * AxS H⇒ . From Lemma 1, 

)()( HG Γ=Γ . 

5.2 A unifiable subclass of simple grammars 

In this subsection, we will introduce unifiable simple grammars. The class of USGs is 
unifiable and is a superclass of the class of RSGs. This implies that the class of RSGs is 
unifiable within the class of USGs. Because the proof of unifiability for the class of USGs is 
constructive, the algorithm that unifies a finite number of RSGs whose languages are equal 
is also given. 
Let G = <V,Σ,R,S > be an SG. Let { }RaAaAG ∈→Σ∈= ασ |)( . The relation between A and B 

given by )()( BA GG σσ =  is an equivalence relation, thus let A denote the equivalence class 

containing A. )}'()(|'{ AAVAA σσ =∈= . We also introduce the notation 

)}'()(,|'{ AAUAVAU σσ =∈∃∈=  and 
mm AAAA LL 11 = . 

 
Definition 12. An SG G is a unifiable simple grammar (USG) if and only if 

• BA = , RaA ∈→ α  and RaB ∈→ β  imply βα = . 

Neighbourhood pairs introduced below play the most important role in constructing the 
proof of the unifiability of the class of USGs. Before we define neighbourhood pairs, it is 
necessary that two new notions are introduced. 
Definition 13. For a subset U of V, { }xBAUBVAU *,|)up( ⇒∈∃∈=  is called the upstream of 

U. 
Definition 14. Let T and U be subsets of V. W(T,U) denotes (V-T | TU )*. 
The upstream of U is easy to compute from R. Using the above definitions, we define a 
neighbourhood pair as follows. 
Definition 15. Let <T,U> be a pair of subsets of V. <T,U> is called a neighbourhood pair if 
and only if the following conditions hold. 
1. φ=∩UT . 

2. For some A in V, AU = . 

3. For some B in V, )up(BT = . 

4. For all x, αxS *⇒  implies ),W( UT∈α . 

An intuitive meaning of a neighbourhood pair can be seen in the fourth condition of 

Definition 15. If a nonterminal symbol TA∈  appears in α  such that αxS *⇒ , some 

UB∈  is adjoining on the right side of A. Fig. 4 is an algorithm to find a neighbourhood 

pair. The computational cost required to find a neighbourhood pair from G is 
O(|G||V|). 
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Fig. 4. Finding a neighbourhood pair 

We explain only the abstract of the proof, which is constructing a unified USG from two 
arbitrary USGs. For the complete proof of it, refer to (Shibata et al., 2006). 
First, we find and eliminate all neighbourhood pairs from both USGs. While some 
neighbourhood pair is found, we eliminate it keeping the generality of the grammar. 
 

 
Fig. 5. Transformation of USGs 

In Fig. 5, Φ(G, <T,U>) denotes the USG obtained by eliminating a neighbourhood pair 
keeping the generality. Φ(G, <T,U>) is a USG obtained by eliminating useless nonterminal 
symbols and rules from a USG <V’,Σ,R’,S > where 

)()(' UTTVV ×∪−= , 

{ } { }UTBARaABaBATVARaAaAR ×∈∈→→∪−∈∈→→= ),|)(),(|)(' ( , , ααϕααϕ . 

The above map φ from V* to V’* is defined recursively as the following. 
 

• εεϕ =)( . 

• 
⎩
⎨
⎧ =∈

=
othewize.)(A

, and  if

βϕ
γβγϕ

βϕ
BTABA

A
)(),(

)(
 

Φ(G, <T,U>) is more general than G. 
 

USG transform(USG G) { 
while ( There exists an neighbourhood pair <T,U> in G ) { 

G = Φ(G, <T,U>) ; 
} 
return G; 

} 

NeighbourhoodPair find(USG G=<V,Σ,R,S >) { 
for(each VA∈  and }{SVB −∈ ){ 

)up(BT = ; 

AU = ; 

for (each RaB ∈→ α ) { 

if (( TB∈  and ),( UTWC∉α  for some UC∈ )  

or ( TB∉  and ),( UTW∉α )) { 

>< UT ,  is not a neighbourhood pair, so break this and continue the 1st loop; 

} 
} 
return >< UT , ; 

} 
return no_neighbourhood_pair ; 

} 

www.intechopen.com



An Extension of Finite-state Markov Decision Process 
and an Application of Grammatical Inference 

 

97 

 
Let G/σ denote a USG <V/σ,Σ,R/σ,S> , where 

}|{/ VAAV ∈=σ , 

}.|{/ RaAaAR ∈→→= αασ  

Definition 16. USGs G and H are σ-isomorphic if and only if G/σ and H/σ are equivalent 
modulo renaming of nonterminal symbols. 
When neither a USG G nor a USG H has neighbourhood pair, L(G) = L(H) implies that G is     
σ-isomorphic to H. If G and H are σ-isomorphic, it is easy to unify them. In fact, let G=< 
V,Σ,R,S > and H=< V’,Σ,R’,S’ > be σ-isomorphic. A USG defined as HG⊗  is obtained by 

eliminating useless nonterminal symbols and rules from a USG >⊗Σ⊗< )',(,',,' SSRRVV , 

where 
,)}()(|'),{(' BAVVBAVV σσ =×∈=⊗  

,and }'|),{(' RaBRaAaBARR ∈→∈→⊗→=⊗ βαβα  

).B,(A)B,(ABBAA mm11m1m1 LLL =⊗  

Thus we have the following theorem. 
Theorem 3. The class of USGs is unifiable. 
As a finite language admits a finite number of compatible shapes, any RSL has a finite 
number of compatible shapes. This entails that any RSL is generated by only a finite number 
of RSGs in canonical form. In fact, for any RSG G, we can compute all the RSGs in canonical 
form generating the same language. It is easy to see that if G is an RSG and H is the 
canonical form of G, i.e., L(G)=L(H), 

HG ## =  and H is in canonical form, then H is more 

general than G. Since we have proven Theorem 3 in a constructive manner we obtain the 
following theorem. 
Theorem 4. For every RSG G, we can construct a USG G* which satisfies the following 
property.  For any RSG H such that L(H) = L(G), *)()( GH Γ⊂Γ .  

 Fig. 6 shows a unification algorithm of RSGs whose languages are equivalent. 
 

 
Fig. 6. Unification of USGs 

We finally describe only the result of the order of |G*|. The time complexity of the 
algorithm is mainly dominated by |G*|. |G*| is ))(( )amb(2 GGmO , where 

})()(|max{|)( GLHLHHGm ==  and RSGan  is   

and amb(G) is the number of the equivalence classes with respect to σ-isomorphism whose 
languages equal to L(G), that is, 

{ } .  and RSGan  is lsnonterminarenaming  modulo amb )()(|/)( GLHLHHG == σ  

USG unify(RSGs 
mGG ,,1 L ) { 

  Confirm that all languages of 
mGG ,,1 L  equal; 

return )()( 1 mGG transformtransform ⊗⊗L ; 

} 
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6. Implementation and experiments 

6.1 Implementation of the learning algorithm for RSGs and the extension of QL 

In the following, we assume that environments are RSG-DPs. The class of RSG-DPs is 
sufficiently large and includes the class of episodic finite-state MDPs, as we have described 
in Section 3. Those are the reasons why we assume that environments are RSG-DPs. For 
instance, let us consider other classes described in this chapter. The class of VSG-DPs does 
not include the class of episodic finite-state MDPs. If we assume the class of SG-DPs in stead 
of RSG-DPs as the class of environments, it is too large to learn, that is, the class of SGs is not 
learnable from positive data. The class of USGs is learnable theoretically, but efficient 
learning method is not known yet. 
Although sequences of observations can be identified as positive data of grammars and we 
have an efficient learning algorithm for RSGs, we cannot apply a technique of reinforcement 
learning with assuming that the environment is constructed on the grammar obtained by 
the learning algorithm in Section 4. As discussed in Section 5, it is possible that any RSG-DP 
based on the grammar output by the learning algorithm does not generate the same 
probabilistic language as the environment, though both define the same (nonprobabilistic) 
language. In this case, actually the RSG that bases the environment must be one candidate 
computed in the learning algorithm, though it is not chosen as the output by the 
nondeterministic choice. Here, we modify the learning algorithm in Section 4 so that it 
outputs all the RSGs generating the same language as the grammar output by the original 
algorithm. By applying the unification algorithm in Section 5 to obtained RSGs, we get a 
USG that is more general than the RSG that bases the environment. 
Combining the learning algorithm and the unification algorithm with an extended Q-
learning, we obtain the algorithm in Fig. 7. Let us call that algorithm RSG-QL. RSG-QL does 
not require any grammar which bases the environment to be given. Only the set of actions 
and the set of observations (= terminal symbols) are given. 
Fig. 7 shows update of the RSG-QL for one episode, or sentence. At first, a USG G, which 
intends to represent the environment, is set to an episodic finite-state MDP. This is just a 
tentative one, and when a USG is computed from the learning algorithm and the unification 
algorithm, it is substituted for G. If G cannot derive a prefix x given by the environment, the 
algorithm abandon updating Q until the episode ends. After the episode ends, it is added to 
the set of histories, and new USG is computed. 
There are two new external functions in Fig. 7. Those are the same things in the ordinary 
reinforcement learning. environ(x,u) returns an observation (= terminal symbol) when a 
prefix of the sequence of observations is x and the action that the learning robot takes is u. 
Suppose that the environment is identified with an RSG-DP H(U,P,C), then environ(x,u) 
randomly returns a with the probability ),( uaAP α→ , where βxAS H

*⇒ . environ(x,u) itself 

is not controlled by the learning algorithm directly. It is controlled by the selection of 
actions. 
The other function is strategy(Q,G,x). strategy(Q,G,x) is the function that decides which 
action the learning robot takes. It can be arbitrarily chosen within the condition of Theorem 
1. Actually, famous strategies such as eps-greedy and soft-max are often chosen (Sutton & 
Barto 1998). 
For an implementation of the function enumRSGs(positive_data), i.e., the learning algorithm 
of RSGs from positive data, we introduce the way to save computational cost (Yokomori 
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2003, 2007). Suppose that input positive data is 
tww ,,1 L , and terminal symbols which occurs 

in positive data at least once are 
naa ,,1 L .   Let 

tM  be a matrix whose element 
ijm  is the 

number of 
ja  in 

iw . As we have seen in Section 4, each compatible shape 

T))(#,),((# 1 naas L=  satisfies 1−=sM t
. This implies that the number of independent 

variables is dimker(
tM ) if other conditions to be compatible are ignored. In addition, any 

elements of s  is not less than -1. Thus the number of candidates of compatible shapes is 

( ))ker(dim
|)|(max tM

ii wO . 

)ker(dimlim tt M∞→
 is constant for any positive data of G, so we denote it as dim(G). If an 

upper bound of dim(G) is known, the algorithm can wait for enumeration of candidates 
until dimker(

tM ) becomes less than it. 

 

 
Fig. 7. RSG-QL for one episode 

Now let us see how our learning algorithm works through an example. Let G be an RSG 
whose rules are 
 

]2,][1,][0,[ aaaaS → , ]1,][0,[ bbbS → , ]0,[]}0,[],0,[],0,{[ cceba → ,  

dca →]}0,[],2,{[ , ]2,][1,][0,[]0,[ eeeec → , fe →]0,[ , 

ga →]1,[ , ]0,[]1,[ hhb → , ihea →]}0,[],1,[],2,{[ , 

je →]2,[ .  

G = >Σ< SRV ,,,  is a USG, initially, an episodic finite-state MDP. 

Q = a map from UV ×  to ),( ∞−∞ . 
RSG-QL () { 

ε=x ; 

),,( εQGu strategy= ; 

while ( ε≠= )),(( uxa environ ) { 

if ( βαα xaxAS G ⇒⇒* ){ 

 ; where  , m

m

i

i
Uv

BBvBQaCkuAQkuAQ L1
1

),(max)(),()1(),( =⎟
⎠

⎞
⎜
⎝

⎛
++−= ∑

= ∈
β  

} 

xax = ; 

),,( xQGu strategy= ; 

} 

{x}historyhistory ∪= ; 

if ( )(GLx∉ ){ 

minimals = enumRSGs (history); 
if(minimals != null) H = unifyRSGs(minimals); 

} 
} 
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Positive data from G is, for instance, {bcefijhi, bcecdijhi, bcdhi, acefijgi, bcdhi, acececefijijijgi, …}. 
Fig. 8 shows the transition of dimker(

tM ), the number of appeared terminal symbols || tΣ  

and the number of compatible shapes for t sentences from some positive data.  
We assumed that 5)ker(dim ≤G . When dimker(

tM ) is less than 5, candidates of possible 

shapes are enumerated.  

 
Fig. 8. dimker(

tM ) and the number of candidates for possible shapes  

After 100 sentences were input, the algorithm output the grammar H whose rules are 

]1,][0,[ aaaS → , ]1,][0,[ bbbS → , ]0,[]}0,[],0,[],0,{[ cceba → ,  

dca →]}0,[],2,{[ , ]2,][1,][0,[]0,[ eeeec → , fe →]0,[ , 

]0,[]1,[ gga → , ]0,[]1,[ hhb → , ihge →]}0,[],0,[],1,{[ , 

je →]2,[ .  

L(G)=L(H) although G and H have different shapes. While there are 15 candidates for 
possible shape, recall that all of them do not give the same minimal language. The 
ambiguity of G is usually less than it. In this case, the ambiguity of G is 4. 

6.2 An experiment for RSG-QL 

Finally, as an experiment for RSG-QL, we consider the problem of maximizing total reword 
in a maze (Fig. 9). 
A robot starts from the position st=(1,2) on the map of Fig. 9 and moves towards the goal 
gl=(9,2). The robot observes the position where it is. The robot can take four kinds of actions, 
left, right, up or down. The robot is given a reward -1 per single step. 

 
Fig. 9. The map of the maze. 
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The difference from ordinary maze problems is the way to give reward after the goal. The 
robot is allowed to occupy a location either f+=(5,6)  or  f-=(5,2) at most once. If the robot 
arrives at the goal, the robot is given two different kinds of reward that depend on its path. 
If the robot has passed through f+, it observes h+ with probability 0.9 and h- with 0.1. On 
the other hand, if the robot has passed through f-, it observes h+ with 0.1 and h- with 0.9. 
The reward corresponding to observation of h+ is 100, and of h- is 50. So, the best action of 
the robot is to pass through f+. 
Formally, the RSG G=<V,Σ,R,S> representing the environment is written as follows. 

{ }−+∪=Σ hhMAP , . 

{ } { }SaaaV ],0,[],0,[|]0,[ −+∪=/∈= ffgl MAP, . 

{ }
{ }
{ }
{ }
{ },]st[st  h-f-  hf-  h-f  hf   

glgl   

-ff-f--f   

ffff   

-ffgl  ,

0,]1,[,]1,[,]1,[,]1,[

|]0,[

|]1,][0,[]0,[

|]1,][0,[]0,[

|]0,[]0,[

,S

aa

aa

aa

,,bbabbaR

→→+→→++→+∪

→∪
→∪

++++→∪

+=/→=

>

>

>

>

 

where MAP = {(i,j)|(i,j) is a reachable position on the map in Fig. 9}, and ba >  if and only if 

the robot can move from a to b in one step. cba >>  denotes ba >  and cb > . For instance, 

)6,6()6,4( >> +f , +/ f>)6,6(  and anywheregl >/ . 

There is another H=<V’,Σ,R’,S> such that L(G) = L(H), where V’ and R’ are as follows. 

{ } { }SaaV ∪∈= MAP|]0,[' . 

{ }
{ }.]st[st   h-gl  hgl   0,]0,[,]0,[

|]0,[]0,['

,S

babbaR

→→+→∪
→= >  

Fig.10 shows the shapes of G and H for gl, f+ and f-. the RSG-DP based on G cannot 
identified with any finite-state MDP, while the one on H is identified with an episodic finite-
state MDP.  

 
Fig. 10. (Left) The shape of G  (Right) The shape of H 

G and H are all the RSGs in canonical form whose languages are equivalent to L(G). Thus 
both G and H, and only G and H are enumerated by the learning algorithm for RSGs from 
positive data.  
The USG G*=<V*,Σ,R*,S> which is the result of unifyRSG(G,H), i.e. the algorithm in Fig. 6, is 
as follows. 
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{ } { } { }SaaaaaV ,]0,[,]0,[,]0,[,]0,[|0,[,0,[|]0,[* −−−++−++∪∈−+∪∈= ffffEAST]]WEST . 

{ }
{ }
{ }
{ }
{ },]st[st  h-f-  hf-  h-f  hf     

-f--f  ff     

glf-gl-  fgl     

EAST b,--       

WEST  b,

0,]1,[,]1,[,]1,[,]1,[

]0,[)2,4(,]0,[)6,4(

|]1,[]0,[],1,[]0,[

|]0,[]0,[,]0,[]0,[

|]0,[]0,[*

,S

aaa

babbabba

babbaR

→→+→→++→+∪
→+++→∪

→+→+∪
∈→+→+∪

∈→=

>

>

>

 

where WEST denotes the left half of MAP, that is, { }4|),( ≤∈ iji MAP , and EAST denotes 

the right half of MAP, that is, { }6|),( ≥∈ iji MAP .  

 

Fig.11. (Left) Total reward and episode length of RSG-QL, (Right) Comparison of naive QL 
and RSG-QL  

 
Note that G* is not an RSG. Because the SG-DP based on G* is not an RSG-DP, it is not 
identified with any episodic finite-state MDP. 
The optimal length of episode of this problem is 16 when the robot passes f+, and thus the 
maximum total reward is 79. The left side of Fig. 11 shows a result of the experiment of the 
SG-QL algorithm in Fig. 7 on the above maze problem. The algorithm converges to one USG 
as the basis of the environment at approximately the 200th episode. The result demonstrates 
that the robot approaches the optimal path and obtains maximum total reward after the 
completion of the inference.  In the right side of Fig. 11, our method is compared to the 
naive Q-Learning method, in which the environment is assumed to be an episodic finite 
MDP (the same thing as H). The total reward obtained by the naive Q-Learning method is 
approximately 40, indicating that the robot is passing through f- and failing to maximize 
total reward.  

7. Conclusion 

In this chapter, we presented two new notions. One is an extension of episodic finite-state 
MDPs from the point of view of grammatical formalism. We can extend well-known 
methods of reinforcement learning and apply them to this extension easily. The other is the 
probabilistic generalities of grammars and unifiability of them. This notion plays an 
important role to apply the recent results of grammatical inference area. The difficulty with 
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applying them is the need of consideration for the probabilistic generality of grammars. The 
reason is that, if the languages of two grammars are equivalent, it is not necessary that the 
generalities of them are also equivalent. We presented the idea of unifiability and a method 
to unify grammars in some grammar class to overcome the difficulty. 
Episodic finite-state MDPs can be extended by using the class of SGs and its subclasses; 
VSG, RSG, USG and SG itself. Although the class of SG-DPs is enough large to contain all 
episodic finite-state MDPs, the class of SGs is neither learnable from positive data nor 
unifiable. The class of VSGs is efficiently learnable in the limit from positive data, but the 
class of VSG-DPs does not include the class of episodic finite-state MDPs. The class of USG-
DPs contains all episodic finite-state MDPs and the class of USGs is unifiable, but no 
efficient learning algorithm for it is known yet. In the four subclasses of simple grammars, 
the class of RSGs is the only class that satisfies efficient learnability and unifiablity and 
contains all episodic finite-state MDPs at the same time. The class of RSGs is not unifiable 
within itself, but it is unifiable within the class of USGs. 
Finally, we presented the method RSG-QL for RSG-DPs, combining the extended Q-learning 
with the learning algorithm and the unification algorithm. Using a maximize-reward 
problem in a simple maze, we demonstrated that RSG-QL learns the best answer, but the 
naive QL does not, when the environment is regarded as an RSG-DP. The advantage of 
RSG-QL is that it is applicable for the wider class of environment with requiring no prior 
knowledge except that the environment is regarded as an RSG-DP. On the other hand, RSG-
QL requires the environment to be precisely identified with some RSG-DP, otherwise the 
learning algorithm for RSGs from positive data does not work well. In future work, it is 
required to find algorithms that are stronger for errors. That might be established by using 
statistical learning methods for grammatical inferences. 
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