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1. Introduction 

Dense medium cyclones are designed to partition coal particles based on particle density 

with the cut density adjusted by adding a finely dispersed heavy medium to the feed and 

adjusting the feed medium concentration. In a typical DMC, illustrated in Figure 1, a 

mixture of medium and raw coal enters tangentially near the top of the cylindrical section, 

thus forming a strong swirling flow. The denser high ash particles move along the wall of  

 
 

 

                         (a)                                                                                (b) 

Fig. 1. (a) Detailed dimensional drawing of the 350 mm DSM dense medium cyclone used 
for simulations, (b) Grid generated in Gambit. 

Source: Computational Fluid Dynamics, Book edited by: Hyoung Woo OH,  
 ISBN 978-953-7619-59-6, pp. 420, January 2010, INTECH, Croatia, downloaded from SCIYO.COM
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the cyclone due to the centrifugal force, where the velocity is downward and is discharged 
through the underflow orifice or the spigot. The lighter low ash coal moves towards the 
longitudinal axis where a strong up flow exists and passes through the vortex finder to the 
overflow chamber. 
The presence of medium, coal particles, swirl and the fact that DMCs operate in the 

turbulent regime makes the flow behavior complex and studying the hydrodynamics of 

DMCs using Computational Fluid Dynamics (CFD) is a valuable aid to understanding their 

behaviour. 

Most of the CFD studies have been conducted for classifying hydrocyclones (Davidson, 
1994; Hsieh, 1988; Slack et al 2000; Narasimha et al 2005 and Brennan, 2006). CFD studies of 
DMCs are more limited (Zughbi et al, 1991, Suasnabar (2000) and Brennan et al, 2003, 
Narasimha et al (2006)). DMCs and Classifying cyclones are similar geometrically and the 
CFD approach is the same with both.  A key problem is the choice of turbulence model. The 
turbulence is too anisotropic to treat with a k-e model and this has led some researchers to 
use the differential Reynolds stress turbulence model. However some recent studies (Slack 
et al, 2000; Delagadillo and Rajamani, 2005; Brennan, 2006) have shown that the LES 
technique gives better predictions of the velocities in cyclones and seems to do so on 
computationally practical grids.  
In this paper, CFD studies of multiphase flow in 350mm and 100mm Dutch State Mine 
(DSM) dense medium cyclone are reported. The studies used FLUENT with 3d body fitted 
gird and used the mixture model to model medium segregation, with comparisons between 
Large Eddy Simulation (LES) and Differential Reynolds Stress Model (DRSM) turbulence 
models. Predictions are compared to measured concentrations by GRT (Gamma ray 
tomography) and overall simulated performance characteristics using Lagrangian particle 
tracking for particles were compared to experimental data.  

2. Model description 

2.1 Turbulence models 
The basic CFD approach was the same as that used by Brennan (2003). The simulations used 

Fluent with 3d body fitted grids and an accurate geometric model of the 350mm DSM 

pattern dense medium cyclone used by Subramanian (2002) in his GRT studies. The 

dimensions of the cyclone are shown in Figure 1a and a view of the grid used in the 

simulations is shown in Figure 1b. The equations of motion were solved using the unsteady 

solver and represent a variable density slurry mixture: 
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The RANS simulations were conducted using the Fluent implementation of the Launder et 

al (1975) DRSM model with the Launder linear pressure strain correlation and LES 
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simulations used the Fluent implementation of the Smagorinsky (1966) SGS model. In the 

DRSM simulations τt,ij in equation (2) denotes the Reynolds stresses, whilst in the LES 

simulations τt,ij denotes the sub grid scale stresses. τd,ij is the drift tensor and arises in 

equation (2) as part of the derivation of the Mixture model (Manninenn et al 1996). The drift 

tensor accounts for the transport of momentum as the result of segregation of the dispersed 

phases and is an exact term: 

 , , ,
1

n

d ij p p pm i pm j
p

u uτ α ρ
=

=∑   (3) 

All equations were discretized using the QUICK option except that Bounded central 

differencing was used for momentum with the LES. PRESTO was used for Pressure and 

SIMPLE was used for the pressure velocity coupling. The equations were solved with the 

unsteady solver with a time step which was typically 5.0x10-4s for both the DRSM 

simulations and LES simulations. The LES used the Spectral Synthesiser option to 

approximate the feed turbulence.  

2.2 Multiphase modeling – mixture model with lift forces 
The medium was treated using the Mixture model (Manninnen et al 1996), which solves the 

equations of motion for the slurry mixture and solves transport equations for the volume 

fraction for any additional phases p, which are assumed to be dispersed throughout a 

continuous fluid (water) phase c: 
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upm,i is the drift velocity of the p relative to the mixture m. This is related to the slip velocity 
upc,i, which is the velocity of the p relative to the continuous water phase c by the 
formulation: 
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Phase segregation is accounted for by the slip velocity which in Manninen et al’s (1996) 

treatise is calculated algebraically by an equilibrium force balance and is implemented in 

Fluent in a simplified form. In this work Fluent has been used with the granular options and 

the Fluent formulation for the slip velocity has been modified where (i) a shear dependent 

lift force based on Saffman’s (1965) expression and (ii) the gradient of granular pressure (as 

calculated by the granular options) have been added as additional forces. Adding  

the gradient of granular pressure as an additional force effectively models Bagnold 

dispersive forces (Bagnold 1954) and is an enhancement over our earlier work (Narasimha et 

al, 2006).   
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Equation (6) has been implemented in Fluent as a custom slip velocity calculation using a 
user defined function. frep has been modelled with the Schiller Naumann (1935) drag law 
but with an additional correction for hindered settling based on the Richardson and Zaki 
(1954) correlation: 

 ( )0.687 4.651 0.15Rerep p pf α −= +   (7) 

The lift coefficient has been calculated as 
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fc corrects the lift coefficient using the correlation proposed by Mei (1992).  

2.3 Medium rheology 
The mixture viscosity in the region of the cyclone occupied by water and medium has been 
calculated using the granular options where the Gidaspow et al (1992) granular viscosity 
model was used.  This viscosity model is similar to the Ishii and Mishima (1984) viscosity 
model used in earlier work (Narasimha et al 2006) in that it forces the mixture viscosity to 
become infinite when the total volume fraction of the medium approaches 0.62 which is 
approximately the packing density and has the effect of limiting the total medium 
concentration to less than this value. However the Gidaspow et al model (1992) also makes 
the viscosity shear dependant. 

2.4 Medium with size distribution 
The mixture model was set up with 8 phase transport equations, where 7 of the equations 
were for medium which was magnetite with a particle density of 4950 kg.m-3 and 7 particle 

sizes which were; 2.4, 7.4, 15.4, 23.8, 32.2, 54.1 and 82.2 μm. The seventh phase was air, 
however the slip velocity calculation was disabled for the air phase thus effectively treating 
the air with the VOF model (Hirt & Nichols 1981). The volume fraction of each modeled size 
of medium in the feed boundary condition was set so that the cumulative size distribution 
matched the cumulative size distribution of the medium used by Subramanian (2002) and 
the total feed medium concentration matched Subramanian’s (2002) experimental feed 
medium concentrations.   

2.5 Coal particle tracking model 
In principle the mixture model can be used to model the coal particles as well as medium 
but the computational resources available for this work limited simulations using the 
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mixture model to around 9 phases, and it was impractical to model coal with more than two 
sizes or densities simultaneously with 6 medium sizes. Thus the Fluent discrete particle 
model (DPM) was used where particles of a known size and density were introduced at the 
feed port using a surface injection and the particle trajectory was integrated through the 
flow field of a multiphase simulation using medium. This approach is the same as that used 
by Suasnabar (2000). 
Fluent’s DPM model calculates the trajectory of each coal particle d by integrating the force 
balance on the particle, which is given by equation (10):  

 ( ),
, ,

d i d m
d m i d i i
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k u u g
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  (9)         

 kd  is the fluid particle exchange coefficient: 
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The presence of medium and the effects of medium segregation are incorporated in the 
DPM simulations because the DPM drag calculation employs the local mixture density and 
local mixture viscosity which are both functions of the local medium concentration. This 
intrinsically assumes that the influence of the medium on coal partitioning is a primarily 
continuum effect. i.e., the coal particles encounter (or “see”) only a dense, high viscosity 
liquid during their trajectory. Further the DPM simulations intrinsically assume that the coal 
particles only encounter the mixture and not other coal particles and thus assume low coal 
particle loadings. 
To minimize computation time the DPM simulations used the flow field predicted by the 
LES at a particular time. This is somewhat unrealistic and assumes one way coupling 
between the coal particles and the mixture. 

3. Results 

3.1 Velocity predictions 
The predicted velocity field inside the DSM geometry is similar to velocities predicted in 
DMCs by Suasnabar (2000). Predicted flow velocities in a 100mm DSM body were compared 
with experimental data (Fanglu and Wenzhen (1987)) and shown in Fig 2(a) and 2(b). 
Predicted velocity profiles are in agreement with the experimental data of Fanglu and 
Wenzhen (1987), measured by laser doppler anemometry.  

3.2 Air core predictions 
Figure 3 shows a comparison between the air core radius predicted from LES and DRSM 
simulations and the air core measured by Subramanian (2002) by GRT in a 350mm DSM body. 
In particular Figure 3 shows that the air core position is predicted more accurately by the 
LES and that the radius predicted by the RSM is smaller than experimental measurements in 
the apex region. This is consistent with velocity predictions because a lower prediction of 
the tangential velocity (as predicted by the DRSM) should lead to a thicker slurry/water 
region for the same slurry/water feed flow rate and therefore a thinner air core. This lends 
some cautious credibility to the LES velocity predictions. 
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                                        (a)                 (b) 

Fig. 2. Comparison of predicted (a) tangential velocity field, (b) axial velocity field with 
experimental data (Fanglu and Wenzhen (1987)) 
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Fig. 3. Comparison between predicted and measured air core positions 
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3.3 Turbulence analysis of two phase flow in DSM body 
Using the LES turbulence model, an analysis was made of the two phase (air-water) 
turbulence in a 350 mm DSM body. Figure 4 shows that in the DSM design, a very high 
turbulent kinetic energy occurs near the tip of vortex finer. As expected, the sudden 
transition from the cylindrical body to the conical section is a clear source of turbulent 
fluctuations down the cyclone body. These fluctuations propagate a very high turbulent 
kinetic energy near the bottom of the apex zone. 

 

Fig. 4. Predicted turbulent kinetic energy contours in 350 mm DSM body  

3.4 Prediction of medium segregation using medium feed size distribution, lift forces 
and viscosity corrections 
Figure 5 shows the density profiles predicted by the CFD at steady flow for a feed RD of 
1.465 and a feed head of 9Dc (equivalent to a volumetric flow rate of 0.0105 m3.s-1) together 
with an experimentally measured density profile for the same feed conditions from 
Subramanian (2002) . Figure 5a shows the density profile using the modelling approach 
reported in Brennan (2003) and Brennan et al (2003) which is the basic mixture model with 

DRSM turbulence, Schiller Naumann drag relationship and a single medium size of 30μm, 
Figure 5b shows the density profile for the latest work which is from am LES using the 
mixture-granular model, medium with a feed size distribution, Schiller Naumann drag 
relationship with hindered settling, Lift and Bagnold forces and the Gidaspow et al (1992) 
granular viscosity law.  
Figure 6 is a graphical comparison of the same data shown in Figure 5 at an elevation of 0.27 
m and 0.67 m below the top of the cyclone body. 0.27m is the beginning of the apex and 
0.67m is the lowest point at which Subramanian (2002) collected data. The predicted 
overflow and underflow medium densities are listed in Table 1. 
The simulations from earlier work (Brennan 2003, Brennan et al 2003) with the basic mixture 
model, DRSM, single particle size, no lift and viscosity corrections display excessive 
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           (a) DRSM-Brennan (2003)         (b) LES latest work   (c) GRT data- Subramanian (2002) 

Fig. 5. Comparison between predicted slurry densities (a) DRSM-Mixture from Brennan 
(2003) (b) LES-Mixture latest work (see text left) (c) Experimental - Subramanian, 2002 for 
feed RD of 1.465, Feed head = 9Dc (Qf = 0.0105 m-3.s-1); in elevation. 

medium segregation although some of the characteristics of the distribution of medium are 

captured even though the predictions are inaccurate. At both 0.27m and 0.67m the medium 

concentration is excessive in the centre of the slurry region, and increases to a very large 

concentration at the wall at 0.67m.  

The LES with the mixture model enhancements is much more realistic. The improved 

accuracy however can be attributed to all of the enhancements. The medium used in 

Subramanian’s (2002) GRT studies contained a significant distribution of sizes between 4 

and 40 μm and one would expect that the smaller size would not segregate to the same 

degree as the larger size. Hence modeling the medium size distribution is necessary.  

Finally the LES model is an enhancement over the DRSM turbulence model. This is partly 

because it is believed that it predicts the tangential velocities more accurately but also 

because LES resolves the larger scale turbulent fluctuations which generate turbulent 

mixing of the medium and this mixing is resolved because the instantaneous velocities are 

passed to the slip velocity calculation. 

 

Turbulence 
model 

Overflow, 
kg.m-3 

Underflow, 
kg.m-3 

Recovery to 
underflow 

DRSM 1194 2232 0.256 

LES 1339 1978 0.175 

Experimental 1375 2076 0.137 
 

Table 1. Predicted Flow densities and recovery to underflow - (a) DRSM-Mixture from 
Brennan (2003) (b) LES-Mixture latest work, (c) Experimental from Subramanian (2002)  
(feed RD of 1.465, Feed head = 9Dc , Qf = 0.0105 m-3.s-1) 
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Fig. 6. Comparison between density contours predicted (LES and RSM models) by CFD and 
those measured by gamma ray tomography (a) at 0.27m, (b) 0.67m from roof of cyclone 
(Subramanian, 2002) for feed RD of 1.465. 
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3.5 Prediction of Magnetite segregation at different feed slurry densities 
Medium segregation was studied with superfine magnetite at three feed solids 

concentrations (6.12, 7.5 and 11.62 % by volume), corresponding to medium densities of 

1245, 1300 and 1465 kg m-3. Comparison of density contours between the measured densities 

of Subramanian (2002) and the medium densities predicted using the modified CFD multi-

phase with LES turbulence modified mixture model are shown in Figure 7. The quantitative 

density comparisons are made in Table 2. The overflow and the underflow densities are 

predicted well by the LES multi-phase model. Table 2 also shows predictions from the 

Wood (1990) and Dungilson (1999) models which are empirical models based on a 

compendium of experimental data for the DSM geometry and these models are close to the 

experimental values.    
 

Case 
 Dunglison 

DMC model 
Wood 

DMC model
Experimental 

values 
CFD 

predictions 

Feed density,  kg.m-3 1237 1237 1240 1237 

Under flow density, kg.m-3 1844 1725 1834 1710 

Over flow density, kg.m-3 1130 1114 1151 1144 M001 

Ru, (under flow volumetric 
fraction) 

0.15 0.143 0.1304 0.157 

Feed density kg.m-3 1300 1300 1299 1300 

Under flow density, kg.m-3 1930 1769 1889 1867 

Over flow density, kg.m-3 1188 1182 1203 1189 M002 

Ru, (under flow volumetric 
fraction) 

0.151 0.143 0.143 0.162 

Feed density, kg.m-3 1467 1467 1467 1467 

Under flow density, kg.m-3 2073 1868 2076 1976 

Over flow density, kg.m-3 1351 1366 1375 1339 M003 

Ru (under flow volumetric 
fraction) 

0.154 0.142 0.137 0.175 

Table 2. Comparison of flow densities predicted by CFD (LES-Mixture model) with 
experimental densities and densities predicted by empirical models. Feed head = 9Dc 

From Figure 7, it is observed that an increase in the medium feed concentration increases the 

density gradient across the radius of cyclone from the air core to the wall of the cyclone. 

Also the axial medium segregation increases; hence an increase in density differential is 

expected (see the Figure 8). This effect can be interrelated with changes of medium viscosity 

in the DMC (He & Laskowski, 1994; Wood, 1990). It is expected that an increase in the feed 

solids concentration increases the medium viscosity. This increase in slurry viscosity at 

higher feed medium densities increases the drag on solid particles, which has the effect of 

reducing the particle terminal velocity, giving the particles less time to settle. This results an 

increased flow resistance of solid particles and further accumulation of solids near the wall 

and also at the bottom of the cyclone. 
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(a) RD@1.245 GRT data (left side) and CFD data (right side 

 
(b) RD@1.3 GRT data (left side) and CFD data (right side) 

 
(c) RD@1.465 GRT data (left side) and CFD data (right side) 

Fig. 7. Comparison between measured medium density contours (left side) by Subramanian 
(2002) and predicted medium density contours (right side) by CFD model at different feed 
medium relative densities (a) RD@1.245, (b) RD@1.3, and (c) RD@1.465 respectively.   
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Fig. 8. Predicted density differential at various feed relative densities for superfine 
magnetite in DSM body  

3.6 Effect of feed size distribution on medium segregation 
The medium properties were modified by changing the particle size distribution. Effect of 
medium size distribution was investigated. Simulated sizes are given Table 3; the results are 
shown in Figure 9 and Table 4. 

It was observed that reducing 63.2d of medium reduces the segregation and density 

differential. Results are consistent with expected behaviour. 
 
 

Magnetite 
sample 63.2( )d mμ  

(Rosin-Rammler-Bennett 

constant) m 

Fine 30.5 3.2 

Superfine 20 1.6 

ultrafine 17 1.45 

 

Table 3. Particle size distribution of the tested magnetite samples 

 

Magnetite rho_u rho_o diff 

Fine 2218 1267 951 

Superfine 1987 1339 648 

ultrafine 1949 1326 623 

 

Table 4. Predicted density differential for a feed RD@1.465, at feed head = 9 Dc, 
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                                             (a) Fine,                      (b) Superfine,                   (c) ultra fine 

Fig. 9. Contours of medium density for (a) fine, (b) superfine and (c) ultrafine quality in DMC 

3.7 Prediction of partition curve-pivot phenomena 
Coal particles are typically in the range of 1100 and 1800 kg.m-3 in density and between 0.5 
and 8 mm in size. DPM simulations were conducted where particles in this size range were 
injected at the feed and tracked. Each DPM simulation was repeated 5 times and 1050 
particles were injected per simulation. The outlet stream to which each particle deported 
was noted and the information used to construct partition curves as function of particle 
density for given particle sizes. Figure 10 shows the partition curves so generated using a 
multiphase simulation with a feed RD of 1.2 and a feed head of 9Dc. 
As shown in figure 10, for the first time, the pivot phenomenon, in which partition curves 
for different sizes of coal pass through a common pivot point, has been successfully 
modelled using CFD. The predicted pivot parameters deviate slightly from the experimental 
data. The underflow split ratio and feed RD should be 14% and 1.236 from experimental 
observations whereas the CFD pivot point represents about 12 % underflow flow ratio and 
pivot point relative density of 1.215. 
This comprehensive CFD model of dense medium cyclone is able to predict the performance 
of the DSM body reasonably well when compared to float-sink data of -2 +0.5 mm sized coal 
fraction  (Hornsby and Wood 2000) (shown in figure 11). In particular, for the given set of 
design and operating condition, the predicted Ep value is about 0.075, where as float and 
sink data represents about 0.0625. The predicted Ep values are close to the experimental 
values although cut-point predictions deviate slightly. It is believed that the cut-point 
deviations are due to the interaction between coal particle-particles, which drive the extra 
resistance forces for the particle separation. 
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Fig. 10. Predicted size-by-size partition curves in a 350mm DSM cyclone 

4. Conclusion 

A large eddy simulation (LES) coupled with the Mxture Model has been applied to the 
study of medium segregation in a dense medium cyclone. The Mixture model was modified 
with corrections for wall lift forces, hindered settling, slurry rheology and particle 
interactions.  Predicted velocity profiles are in agreement with the experimental data of 
Fanglu and Wenzhen (1987), measured by laser doppler anemometry. The multi-phase 
mixture model was modified with corrections for wall lift forces, hindered settling, and 
slurry rheology. Predicted density profiles are close to gamma ray tomography data 
(Subramanian (2002)) showing a density drop near the wall. At higher feed densities the 
agreement between the empirical correlations of Dungilson (1998), Wood (1990) and the 
CFD are reasonably good, but the overflow density from CFD is lower than the empirical 
model predictions and experimental values. The effect of size distribution of the magnetite 
has been fully studied. As expected, the ultra-fine magnetite sizes are distributed uniformly 
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Fig. 11. Comparison of CFD prediction with float-sink data (Hornsby and Wood (2000), feed 
density RD =1.3 at 9Dc inlet head) in 350mm DSM. 

throughout the cyclone. Once correct medium segregation was predicted, the performance 
characteristics of the DMC on coal were modelled using Lagrangian particle tracking for 
particles ranging in size from 0.5 to 8 mm. The predicted Ep values are very close to the 
experimental values although a slight deviation in the cut-point predictions was observed. 
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NOMENCLATURE 

Greek symbols 

α volume fraction 

ρ density kg.m-3 
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εijk permutation tensor 

τij stress tensor kg.m-1.s-2 

ωij rotation or vorticity vector 

μ viscosity kg.m-1.s-1 

Other symbols 
Cd drag coefficient 
Clp lift coefficient 
d particle or phase diameter - m 
Dc cyclone diameter – m 
Ep cyclone efficiency parameter 
frep drag correction 
Flpi lift force on particle - N 
gi gravity - m.s-2 
kd fluid particle exchange coefficient 
Pg  Granular pressure - pa 
Re Reynolds number 
t time - s 
xi co-ordinate i-  m 
ui velocity - m.s-1 

Subscripts 
c continuous phase 
d discrete (coal) phase 
m mixture 
p particulate (medium) phase 
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