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Chapter

Toll-Like Receptors and Natural 
Killer Cells
Carmen Maldonado-Bernal and David Sánchez-Herrera

Abstract

Natural killer (NK) cells represent a heterogeneous subpopulation of lym-
phocytes of the innate immune system with a powerful antitumor activity, a 
function given by a complex collection of receptors. They act synergistically 
to recognize, regulate, or amplify the response according to the microenviron-
ment, thus highlighting Toll-like receptors (TLRs), a type of receptors that 
allows sensing evolutionarily molecules conserved of pathogens known as 
pathogen-associated molecular patterns (PAMPs) and/or damage-associated 
molecular patterns (DAMPs). Those TLRs are essential to start the immune 
response. There is little information about the different subpopulations that 
form NK cells as well as their expression profile of innate immune response 
receptors in hematological cancers.

Keywords: Toll-like receptors, natural killer cells, innate immunity,  
pathogen-associated molecular patterns, damage-associated molecular  
patterns

1. Introduction

Natural killer (NK) cells represent a highly specialized subpopulation of 
lymphocytes that are part of the innate immune system, whose functions vary 
according to the microenvironment. NK cells are involved in the early defense 
against foreign cells or own cells subjected to some stress (bacterial infection, viral 
or tumor transformation) through the recruitment of neutrophils, macrophages, 
dendritic cells, or B/T lymphocytes. They induce an effective adaptive response; 
regulate, directly or indirectly, the activity of antigen-presenting cells (APCs); and 
activate T lymphocytes through the natural cytotoxic activity that characterizes 
them or through the production of cytokines and chemokines that generate an 
inflammatory environment [1, 2].

NK cells play an important role in the surveillance and suppression of tumor 
cells; despite the significant advances that have been reached in the last decades, it 
is still unknown if there is a direct relationship among the population dynamics, 
functionality, and the phenotype of these cells. Its role in the establishment and 
development of malignant hematological disorders such as acute lymphoblastic 
leukemia (ALL), a disease characterized by the uncontrolled proliferation of B or T 
lymphoid precursors, is still unknown.
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2. Overview of natural killer cells and toll-like receptors

2.1 NK cells

NK cells, although they are larger and present granules in their cytoplasm, 
morphologically are indistinguishable from the other lymphocytes. According to 
different authors, they comprise from 5 to 15% [3], 20% [2, 4], or even 25% [5] of 
total peripheral blood mononuclear cells and are derived from a CD34+ hematopoi-
etic progenitor, as are dendritic cells (DC) and B and T lymphocytes [6].

NK cells are phenotypically defined by the expression of CD56 (neural cell 
adhesion molecule (NCAM) and CD16a (also known as Fcγ-RIIIA), but not CD3 
and CD19, which are molecules of T and B lymphocytes, respectively [7, 8]. For a 
long time, they were considered as the only population of non-B or T lymphocytes. 
It is currently accepted that NK cells are within a subgroup of the so-called innate 
lymphoid cells (ILCs), whose subpopulations are differentiated according to the 
immunophenotype, the profile of cytokines they produce, and the transcription 
factors they possess [9, 10].

The NK cells were classified in group 1 of the ILCs (ILC1) due to their ability 
to produce INF-γ, but not cytokines such as IL-4, IL-5, IL-9, IL-13, IL-17, or IL-22, 
characteristic of the ILC2 and ILC3 groups, respectively [9, 11, 12]. Even within the 
same subgroup, they differ by having cytotoxic capacity and selectively expressing 
the eomesodermin (EOMES) transcription factor of other ILC non-NK that also 
produce INF-γ [13].

NK cells maintain a pro-inflammatory environment through the release of 
cytokines and recruit cells of the immune system to combat infectious agents 
through the release of chemokines [14] and regulate the activity of dendritic cells or 
activated lymphocytes [1]; they are in charge of antitumor surveillance and toler-
ance to healthy own cells, which conditions the rejection of transplants [15] among 
other functions.

In recent years, it has been reported that in addition to NK cytotoxic or regula-
tory NK cells, there are memory NK cells [16, 17] and NK cooperators, which 
secrete Th1-type cytokines (NK1) and Th2 (NK2) [18]. Even, NK cells are similar to 
antigen-presenting cells [19, 20], although this is in controversy.

2.2  Population diversification of NK cells and their role in the immune 
response

According to what was compiled by Huntington et al., NK cell precursors 
(NKPs) originate mainly in the bone marrow from hematopoietic precursor 
cells (HSCs), although they can also do so in organs such as the thymus from 
early lymphoid progenitor (ELP). These NKPs can mature into competent NK 
cells in the bone marrow or other organs, such as the liver, spleen, thymus, and 
lymphoid nodules, to finally enter to the circulation [21]. They migrate to other 
sites such as the lung, liver, mucous membranes and skin, uterus, pancreas, 
joints, and central nervous system (CNS), where they can exhibit unique char-
acteristics ranging from the increase or decrease of the expression of activation 
receptors or effector cytotoxic molecules to the modulation of resident immune 
cells (Figure 1) [22].

According to the expression of CD56 (NCAM), NK cells can be divided into two 
subpopulations: NKDim and NKBright. However, according to the relative expression 
of the CD56 and CD16 (FcγRIIIa) markers, their functionality, and their distribu-
tion in peripheral blood or lymphoid organs, it is possible to differentiate five 
subpopulations of mature NK cells (Figure 2).
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The NKBright populations, also known as NK regulators, comprise about 
10% of total peripheral blood NK cells. From these, about 50–70% have a 
[CD56High CD16Neg] phenotype and 30–50% a [CD56High/CD16Low] phenotype 

Figure 1. 
Origin and distribution of NK cells in humans. The precursors of NK cell precursor (NKP) can originate from 
hematopoietic progenitor cells (HSC) in the bone marrow or from early lymphoid progenitor (ELP). NK cells 
mature mainly in the bone marrow, although the immature NKP and NK (iNK) can recirculate among the 
liver, spleen, and lymphoid nodes as alternative maturation sites. Mature NK cells (mNK) that leave the bone 
marrow reach different organs through blood circulation where they reside and modify their phenotypic and 
functional characteristics.

Figure 2. 
Subpopulations of NK cells in peripheral blood based on the relative expression of CD56 and CD16. 
(1) CD56Bright CD16Neg, recognized for its immunoregulatory activity, represents between 50 and 70% 
of the CD56Bright population; (2) CD56Bright CD16Dim represent between 30 and 50% of the CD56Bright 
population; (3) CD56Dim CD16Neg; (4) CD56Dim CD16Bright is recognized for its cytotoxic activity; and (5) 
CD56Neg CD16Bright whose function is still unknown. Modified from [23].
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[23]; they are mainly characterized by their poor cytotoxic capacity and their 
high capacity to secrete several types of post-activation cytokines, mainly 
INF-γ but also TNF-β, IL-5, IL-10, and IL-13 [7, 8] and constitutively some 
chemokines such as MIP-1α, MIP-1β, and RANTES [24]. They also have the 
ability to proliferate in culture when exposed to low doses of IL-2 (picomoles) 
compared to the cytotoxic NK cells, which does not show an evident prolifera-
tion under the same conditions [25]. The NKBright cells [CD56High CD16Neg] are 
assigned an exclusively regulatory function, since their cytotoxic activity is 
poor and their genetic profile is directed mainly to the production of cytokines 
and not to the cytotoxic activity, in comparison with the NKDim, whereas the 
NKBright subpopulation [CD56High CD16Low] is considered more as a transition 
phenotype [26]; because despite having the same characteristics of the previ-
ous phenotype, it has a lower rate of cell division when stimulated with IL-2 
and does not change its activity even with ligands for c-KIT [27]. It exhibits 
cytotoxic activity [28], and it has also been seen that it represents the high-
est percentage of NK cells in circulation in bone marrow transplants, until 
its normalization around the fourth month [29, 30]. NKBright cells are usually 
not found in peripheral blood, bone marrow, and spleen as they are mainly 
distributed in secondary lymphoid nodules (parafollicular zone of T cells) [31] 
and tonsils [32].

On the other hand, the NKDim population represents around 90% of peripheral 
blood NK cells; they have a phenotype [CD56Low CD16Neg] whose main function 
has not been well established [23] and a main phenotype [CD56Low CD16High] that 
exhibits potent cytotoxic activity. Although they are generally poor producers of 
cytokines [7, 8, 33], they tend to predominate in the spleen, peripheral blood, and 
bone marrow [32, 34].

It is important to clarify that the behavior of each subpopulation, in terms of 
post-activation secretion of cytokines and chemokines, will depend largely on the 
stimuli they receive either by recognizing target cells (tumor or transformed) or 
responding to exogenous cytokines.

Compared with NKDim cells, NKBright cells produce more TNF-α and INF-γ after 
activation with PMA/ionomycin [35] or exogenous cytokines such as IL-12, IL-15, 
or IL-18, alone or in combination [8].

On the contrary, when it comes to a response to the recognition of target cells, 
NKDim cells significantly increase their production of cytokines and chemokines 
compared to NKBright, such as MCP-1 (CCL2), IL-8 (CXCL8), IP-10 (CXCL10), 
soluble IL-2Rα (CD25), GM-CSF, and IL-5 and low levels of IL-1β, IL-6, IL-7, IL-10, 
IL-12p40, IFN-α, and MIG (CXCL9). In addition, it increases the production of 
chemokines such as MIP-1α (CCL3), MIP-1β (CCL4), and RANTES (CCL5) that 
produce constitutively [24].

The cytotoxic activity exhibited by NK cells does not require prior sensitization 
to kill their target cells, since it is not dependent on the presentation of a specific 
antigen as in the case of CD8+ T cells [7, 36] and can be mediated through membra-
nolitic and/or apoptotic mechanisms (Figure 3).

The membranolitic mechanisms include the production of perforins, enzymes 
that when integrated into the cell membrane form a pore that allows water to enter 
and cause osmotic lysis [37]. In the past, it was believed that both NKBright and 
NKDim cells had similar levels of perforins [38]; however, more recent studies by 
flow cytometry indicate that NKDim cells have at least 10 times more perforins than 
NKBright ones [35].

Regarding apoptotic mechanisms, these can induce the death of the target 
cell through complex mechanisms that involve both death-inducing proteins and 
specific ligand-receptor interactions through one of the following routes:
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2.3 Granzyme pathway

Granzymes are proteins capable of activating the apoptosis program [39] follow-
ing two mechanisms. The first does not depend on the activity of caspase proteins 
and is mediated mainly by granzyme A, and this fraction is single-stranded DNA 
(ssDNA) and interferes in the repair of genetic material without producing cell lysis 
[40, 41], while the second promotes the activity of caspase proteins and is mediated 
mainly by granzyme B [42].

The NK cell presents granzymes A, B, K, and M; NKDim cells present a high 
expression of granzymes A and B, whereas NKBright cells mainly express granzyme 
K [35, 43]. There are reports that NK cells express almost exclusively granzyme 
M; this enzyme is capable of mediating cell death independent of the activation of 
caspase proteins and in the presence of perforins, without fractionating DNA or 
producing changes in mitochondria [44].

In mice, deficient in granzymes A/B and/or perforins, it has been seen that there 
is uncontrolled growth of solid tumors, which suggests that these enzymes play an 
important role in the immunosurveillance of tumor cells mediated by NK cells [45].

2.4  NK cell ligand binding pathway to the cell death receptors expressed  
by the target cell

They include Fas ligands [FasL (CD95L)-Fas (CD95)] and/or the ligand that 
induces apoptosis related to tumor necrosis factor α (TRAIL) [46, 47].

2.5 Antibody-dependent cellular cytotoxicity (ADCC)

NK cells express FcγRIIC/CD32c [48] and FcγRIIIA/CD16a [34]. These recep-
tors interact with opsonized target cells, through the Fc regions of the antibodies, 
which combined with cellular antigens that cause the death of the target cell 
[49]. To through of mechanisms that involve the release of cytotoxic granules 

Figure 3. 
Recognition and elimination of abnormal cells by NK cells. NK cells possess the ability to discriminate normal 
cells of tumor or transformed cells by detecting alterations at the HLA-I level; the target cells are eliminated by 
membranolitic and/or apoptotic mechanisms.
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(perforin-granzyme), or by stimulation of apoptosis through of TNF-related 
apoptosis-inducing ligand (TRAIL) and/or by release of pro-inflammatory 
cytokines that promote the activity of other cells [50].

NKDim cells with [CD56Low CD16High] phenotype direct this mechanism in 
comparison with NKBright cells. Although it has been seen that the subpopulation 
with [CD56High CD16Low] phenotype exhibits low cytotoxic activity [51], NKDim 
cells [CD56Low CD16Neg] show a higher antitumor activity against cell lines (natural 
cytotoxicity) than other subpopulations [52]. This is supported by other studies 
where it is reported that NKDim cells [CD56Low CD16High] lose the expression of 
CD16 and increase the expression of CD107a (a degranulation marker), through a 
disintegrin and a metalloprotease-17 (ADAM-17), to become [CD56Low CD16Neg] 
with high cytotoxic capacity [53].

The role of the [CD56Neg CD16High] subpopulation is still not clearly defined. It is 
known that it is found in a low frequency in healthy individuals. It does not express 
surface molecules of other lymphoid lineages and that in chronic viral diseases, 
such as the human immunodeficiency virus (HIV). It presents changes in the 
level of expression of their activity receptors, characterized by the increase in the 
expression of inhibitory receptors and the decrease of natural cytotoxicity receptors 
(NCRs), together with other effector molecules that are hardly observed in healthy 
people [54–56].

It is considered that the [CD56Neg CD16High] subpopulation is dysfunctional in 
terms of its lytic and antiviral activity, although it retains the ability to produce 
pro-inflammatory chemokines [54–56].

Zulu et al. demonstrated that the HIV induces the expansion of the negative 
CD56 population of NK cells through the upregulation of NKG2C receptors and the 
negative regulation of Siglec-7, NKG2A, and CD57 receptors [57].

2.6 Receptors of the NK cells

NK cells have signals through a wide variety of receptors that allow them to 
respond to different types of stimuli and grant great flexibility when exercising 
their effector and/or cytotoxic function.

The function of the NK cell is given by a complex collection of receptors that act 
in a synergistic way to recognize, regulate, or amplify the response according to the 
microenvironment. Thus highlighting the pattern recognition receptors (PRRs), 
such as Toll-like receptors or natural cytotoxicity receptors, and inhibitory killing 
receptors (iNKRs), such as receptors that are activated during early response to 
pathogens, cells transformed by virus or tumor cells [58].

PRRs are a family of innate immune response receptors that recognize 
evolutionarily conserved microbial products whose activation favors the pro-
duction of pro-inflammatory cytokines. Within the PRR group, the TLRs are the 
most studied, although they are not the only ones; there are also the NOD-like 
receptors (NLRs) and the retinoid acid-inducible gene I (RIG-I)-like receptors 
(RLRs) [59].

NK cells express innate immune response receptors, such as NOD2, NLRP3, 
TLR3, TLR7, and TLR9, and promote the production of inflammatory cytokines 
and chemokines that are capable of amplifying the immune response [60]. The 
modulation of these cells through their innate immune response receptors, mainly 
via TLR, has gained interest and represents a promising therapeutic alternative 
against conditions such as cancer. Since there have been studies for a long time that 
support the possibility of its use, it has been observed that when ODNs (ligands of 
TLR9) are intraperitoneally administered in lymphoma murine models, an effective 
elimination of tumor cells occurs in 80% of cases [61].



7

Toll-Like Receptors and Natural Killer Cells
DOI: http://dx.doi.org/10.5772/intechopen.86393

2.7 Toll-like receptors and their role in NK cells

Toll-like receptors are among the most important group of pattern recognition 
receptors, since they orchestrate a wide variety of activities related to the immune 
response.

These receptors recognize a wide variety of molecules evolutionarily conserved, 
associated with microorganisms, such as lipopolysaccharides, lipoproteins, mycolic 
acids, non-methylated DNA, and double-stranded RNA, generically known as 
pathogen-associated molecular patterns [62–64]. TLRs also recognize endogenous 
molecules called damage-associated molecular patterns, which originate from 
damaged cells [65] or are products of altered metabolism of transformed cells in 
conditions such as cancer [66, 67] and autoimmune diseases [67–70] or associated 
with chronic inflammation [71, 72]. They play an important role in the evolution of 
these conditions.

2.8 Overview of the toll-like receptors

Structurally, TLRs are type I integral glycoproteins that present an extracellular 
domain with leucine-rich repeats (LRRs) that are responsible for binding and dis-
criminating ligands (PAMPs or DAMPS) present in the cellular microenvironment. 
They have a transmembrane domain and an intracellular Toll/interleukin (IL)-1 
receptor (TIR) domain that triggers the signaling cascade via MyD88/TRIF and is 
highly conserved among each subfamily of TLRs [73].

There are 13 TLRs described in mammals, and 10 are found at the protein level 
in humans and differ according to their cellular localization and to the different 
PAMPs/DAMPs to which they respond. TLR11 in humans is a pseudogene, so it is 
not expressed [74].

The TLRs that are found mainly in the cell membrane are TLRs 1, 2, 4, 5, and 6.  
They sense structural components of bacteria, fungi, helminthes, or protozoa, 
whereas TLRs that are mainly found in intracellular compartments, such as TLRs 3, 
7, 8, and 9, sense nucleic acids of viral and/or bacterial origin [73, 75] (Figure 4).

The stimulation of the TLRs is capable of initiating an immune response to vari-
ous stimuli on its own, as well as of controlling the adaptive response through the 
inflammatory process with  the production of pro-inflammatory cytokines (IL-1β, 
IL-6, TNF-α), chemokines (IL-8, MCP-1) [76]; defensins [77]; type I interferons 
[78]; co-stimulation and MHC molecules [79]. The union between the different 
types of immune responses through the TLRs takes as a classic example the den-
dritic cells. They inspect their environment through the TLRs [80]; and once they 
detect a ligand (bacterial product, viral or stress protein),  increase the expression 
of co-stimulatory molecules capable of stimulating T naive cells [81] and polarizes 
the adaptive immune response toward Th1 or Th2 profiles [82].

The cellular response through direct stimulation with TLR ligands will depend 
largely on the type of lineage in question. The information that is reported about 
activity and expression in NK cells is relatively new, and it is more associated with 
innate antibacterial or antiviral immune response [83], but not in cancer.

2.9 Expression of TLRs in NK cells

The expression profile of TLRs in NK cells was initially limited to the detection 
of mRNA. However, the results do not always reflect the expression of the protein 
since it is difficult to identify the receptors in the NK cell.

NK cells express most of the human TLRs reported to date, although the detec-
tion and level of mRNA expression of each receptor vary depending on the author. 
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There are authors who indicate that NK cells express high levels of TLR1, followed 
by TLR2, TLR3, TLR5, TLR6, and low levels of TLR4 [85, 86]. Other authors agree 
that TLR2 and TLR3 have greater expression, followed by TLR5 and TLR6; in those 
studies, TLR1 mRNA was not quantified [87–89]. On the other hand, TLR7 [85, 89, 
90] and TLR10 [83, 86] present levels so low that they are practically undetectable.

There is a controversy about whether or not NK cells express TLR8 [86, 87, 89] 
and TLR9 [86, 88], although some authors point out that the cells constitutively 
express mRNA of all TLRs [85, 91, 92].

NK cells have higher levels of TLR3 mRNA than any other peripheral blood 
mononuclear cell, such as monocytes, B and T lymphocytes, or plasmacytoid 
dendritic cells [85].

Through techniques such as flow cytometry, Western blot, and immunopre-
cipitation, it is possible to know that NK cells of healthy people have a defined TLR 
expression profile (Table 1) and the expression of receptors is independent of their 
activation state [58].

In addition, there are variations in the level of TLR expression within the same 
subpopulations of NK cells. It is accepted that both NKBright and NKDim exhibit a 
similar mRNA profile of TLRs, although it is not always reflected at the protein level 
and there is a great controversy regarding the distribution and presence of some of 
these receptors in both subpopulations, especially TLR2, TLR4, and TLR3.

TLR2 and TLR4 are mainly distributed on the cell surface, whereas TLR3 is 
generally found in intracellular vesicles [75]; however, it has been seen that in NK 
cells, TLR3 is expressed both within [93] and on the cell surface [94]. There are 
publications reporting that TLR2 and TLR4 exhibit a marked intracellular distribu-
tion [95], although other authors indicate otherwise [96, 97].

The relative amount of some TLRs may vary according to the phenotype (Dim 
or Bright), although expression levels appear to be higher in cells with regulatory 

Figure 4. 
Toll-like receptors and their ligands. TLRs are transmembrane proteins of a glycoprotein nature that possess the 
ability to sense highly conserved microorganism molecules known as pathogen-associated molecular patterns 
(PAMPs), such as flagellin, LPS, or genetic material (ssDNA, ssRNA, dsDNA, dsRNA). In humans, 10 of the 
13 TLRs present in mammals have been detected [84].
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phenotype [89], which suggests that the type of response could be conditioned 
to promote a cytotoxic or immunomodulatory response when using one ligand or 
another in TLR activation assays (Table 2).

It has been seen that NKBright cells express more TLR1, TLR2, and TLR6 than 
NKDim [97], although other studies report that less than 1% of total NK cells express 
these three receptors [98].

NKDim cells can express, under normal conditions, more TLR4 than NKBright cells 
[99] although other authors seem to find no differences in the expression in TLR2, 
TLR4 [95], and TLR9 [95, 100].

There is no information about whether there is differential expression of TLRs 3, 
5, 7, or 8, and the distribution pattern of TLR5 is not known. However, it is inferred 
that NK cells express it, since they respond to flagellin and there are several studies 
that demonstrate it [88, 101, 102]. To date there are no reports about the presence, 
distribution, or role of TLR10 in NK cells.

The therapeutic use of TLR ligands in the modulation of NK cells against cancer, 
especially in malignant hematological disorders such as leukemia, is an interest-
ing alternative for the treatment of this type of diseases, since there are reports 
that reveal their therapeutic use as potential antitumor agents and as adjuvants in 
vaccines and other therapeutic modalities [103]. It is currently the subject of an 
extensive review by several research groups [104, 105].

TLR mRNA1 Protein Detection method

Presence

1 Very high Yes Flow cytometry [97]
Western blot [97]

2 High/moderate Yes3 Direct activation of the TLR2-/MyD88-
dependent pathway [96]
Flow cytometry [95–97]
Western blot

3 High/moderate Yes Flow cytometry [93, 94]
Western blot [94]

4 Low Yes4 Flow cytometry [94, 95, 99]

5 High/moderate Yes5 S/R

6 High/moderate Yes Flow cytometry and Western blot [97]

7 Very low/undetectable Yes Flow cytometry [93, 94]
Western blot [94]

8 Low2 Yes Flow cytometry [94]
Western blot [90, 94]

9 Low2 Yes Flow cytometry [93, 95, 100]
Western blot [100]

10 Very low/undetectable N/R N/R

N/R, not reported.1The levels of relative expression are given according to what was reported by [85, 91] and refer to 
the comparison of expression among the 10 TLRs.
2There is a controversy whether or not they express mRNA of these TLRs, since some reports indicate that it was not 
possible to detect it.
3In previous studies, TLR2 could not be detected by flow cytometry or by immunoprecipitation.
4More recent studies indicate that it is expressed mainly as intracellular [95, 99].
5No reports were found indicating the presence of TLR5; however it is inferred that it is present as it responds specifically 
to flagellin [88, 101, 102], a molecule that it is only recognized through this receptor.

Table 1. 
Expression of TLRs in human natural killer cells.
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3. Conclusion

In this chapter, we included the overview of NK cells, their population diversifi-
cation and role in the immune response, and their expression and role of TLRs.
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TLR Cellular localization Population distribution

1 Extracellular [97] NKBright > NKDim [97]

2 Extracellular [96, 97] and intracellular [95] NKBright > NKDim [97]

3 Intracellular [93] and extracellular1 [94] N/R

4 Extracellular [94] and intracellular2 [95, 99] NKBright < NKDim [99]
NKBright = NKDim [95]

5 N/R N/R

6 Extracellular [97] NKBright > NKDim [97]

7 Intracellular [93, 94] N/R

8 Intracellular [94] N/R4

9 Mainly intracellular3 [93, 95, 100] NKBright = NKDim5 [95]

10 N/R N/R

N/R, not reported.1It was found that both, in cell lines (NKL, NK92, and YT) and in NK of peripheral blood, TLR3 
is expressed on the surface [94].
2Studies that are more recent indicate that it is mainly expressed as intracellular [95, 99].
3TLR9 expression exists in plasma membrane, but it is quite low compared to intracellular expression.
4There are no studies that determine whether there is differential expression, although it has been seen that NKBright 
cells are better activated with ssRNA40 than NKDim cells, suggesting that the latter have a lower expression of 
TLR8.
5In other studies, it seems that NKDim cells express more TLR9 than NKBright cells and its expression conditions the 
response to ligands of this TLR [100].

Table 2. 
Localization and differential distribution of TLRs in human natural killer cells.
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