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1. Introduction  

Reinforcement Learning (RL) remains an active research area for a long time (Kaelbling et 
al., 1996; Sutton & Barto, 1998) and is still one of the most rapidly developing machine 
learning methods in recent years (Barto & Mahadevan, 2003). Related algorithms and 
techniques have been used in different applications such as motion control, operations 
research, robotics and sequential decision process (He & Jagannathan, 2005; Kondo & Ito, 
2004; Morimoto & Doya, 2001; Chen et al., 2006b). However how to speed up learning has 
always been one of the key problems for the theoretical research and applications of RL 
methods (Sutton & Barto, 1998).  
Recently there comes up a new approach for solving this problem owning to the rapid 
development of quantum information and quantum computation (Preskill, 1998; Nielsen & 
Chuang, 2000). Some results have shown that quantum computation can efficiently speed 
up the solutions of some classical problems, and even can solve some difficult problems that 
classical algorithms can not solve. Two important quantum algorithms, Shor’s factoring 
algorithm (Shor, 1994; Ekert & Jozsa, 1996) and Grover’s searching algorithm (Grover, 1996; 
Grover, 1997), have been proposed in 1994 and 1996 respectively. Shor’s factoring algorithm 
can give an exponential speedup for factoring large integers into prime numbers and its 
experimental demonstration has been realized using nuclear magnetic resonance 
(Vandersypen et al., 2001). Grover’s searching algorithm can achieve a square speedup over 
classical algorithms in unsorted database searching and its experimental implementations 
have also been demonstrated using nuclear magnetic resonance (Chuang et al., 1998; Jones, 
1998a; Jones et al., 1998b) and quantum optics (Kwiat et al., 2000; Scully & Zubairy, 2001). 
Taking advantage of quantum computation, the algorithm integration inspired by quantum 
characteristics will not only improve the performance of existing algorithms on traditional 
computers, but also promote the development of related research areas such as quantum 
computer and machine learning. According to our recent research results (Dong et al., 
2005a; Dong et al., 2006a; Dong et al., 2006b; Chen et al., 2006a; Chen et al., 2006c; Chen & 
Dong, 2007; Dong et al., 2007a; Dong et al., 2007b), in this chapter the RL methods based on 
quantum theory are introduced following the developing roadmap from Superposition-
Inspired Reinforcement Learning (SIRL) to Quantum Reinforcement Learning (QRL).  
As for SIRL methods we concern mainly about the exploration policy. Inspired by the 
superposition principle of quantum state, in a RL system, a probabilistic exploration policy 
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is proposed to mimic the state collapse phenomenon according to quantum measurement 
postulate, which leads to a good balance between exploration and exploitation. In this way, 
the simulated experiments show that SIRL may accelerate the learning process and allow 
avoiding the locally optimal policies. 
When SIRL is extended to quantum mechanical systems, QRL theory is proposed naturally 
(Dong et al., 2005a, Dong et al., 2007b). In a QRL system, the state value can be represented 
with quantum state and be obtained by randomly observing the quantum state, which will 
lead to state collapse according to quantum measurement postulate. The occurrence 
probability of eigenvalue is determined by probability amplitude, which is updated 
according to rewards. So this approach represents the whole state-action space with the 
superposition of quantum state, which leads to real parallel computing and a good tradeoff 
between exploration and exploitation using probability as well.  
Besides the introduction of SIRL and QRL methods, in this chapter, the relationship between 
different theories and algorithms are briefly analyzed, and their applications are also 
introduced respectively. The organization of this chapter is as follows. Section 2 gives a brief 
introduction to the fundamentals of quantum computation, which include the superposition 
principle, parallel computation and quantum gates. In Section 3, the SIRL method is 
presented in a probabilistic version through mimicking the quantum behaviors. Section 4 
gives the introduction of QRL method based on quantum superposition and quantum 
parallelism. Related issues and future work are discussed as a conclusion in Section 5. 

2. Fundamentals of quantum computation 

2.1 State superposition and quantum parallel computation 

In quantum computation, information unit (also called as qubit) is represented with 
quantum state and a qubit is an arbitrary superposition state of two-state quantum system 
(Dirac’s representation) (Preskill, 1998): 

 〉+〉=〉 1|0|| βαψ  (1) 

where α  and β  are complex coefficients and satisfy 1|||| 22 =+ βα .  〉0| and 〉1|  are 

two orthogonal states (also called basis vectors of quantum state 〉ψ| ), and they 

correspond to logic states 0 and 1. 
2||α  represents the occurrence probability of 〉0|  when 

the qubit is measured, and 
2|| β is the probability of obtaining result 〉1| . The physical 

carrier of a qubit is any two-state quantum system such as two-level atom, spin-1/2 particle 
and polarized photon. The value of classical bit is either Boolean value 0 or value 1, but a 
qubit can be prepared in the coherent superposition state of 0 and 1, i.e. a qubit can 
simultaneously store 0 and 1, which is the main difference between classical computation 
and quantum computation. 
According to quantum computation theory, the quantum computing process can be looked 

upon as a unitary transformation U  from input qubits to output qubits. If one applies a 

transformation U to a superposition state, the transformation will act on all basis vectors of 

this superposition state and the output will be a new superposition state by superposing the 
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results of all basis vectors. So when one processes function f(x) by the method, the 

transformation U can simultaneously work out many different results for a certain input 

x . This is analogous with parallel process of classical computer and is called quantum 
parallelism. The powerful ability of quantum algorithm is just derived from the parallelism 
of quantum computation.  

Suppose the input qubit 〉z| lies in the superposition state: 

 )1|0(|
2

1
z| 〉〉+=〉   (2) 

The transformation zU describing computing process is defined as the following: 

 〉⊕→〉 )z(fy,z|yz,:|Uz  (3) 

where 〉yz,|  represents the input joint state and 〉⊕ )z(fy,z|  is the output joint state. 

Let 0y =  and we can easily obtain (Nielsen & Chuang, 2000):  

 ))1(f,1|)0(f,0(|
2

1
z|Uz 〉〉+=〉  (4) 

The result contains information about both )0(f  and )1(f , and we seem to evaluate )z(f  

for two values of z  simultaneously. 
Now consider an n-qubit cluster and it lies in the following superposition state: 
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where xC  is complex coefficients and 
2

x |C|  represents occurrence probability of 〉x|  

when state 〉ψ|  is measured. 〉x|  can take on 
n2  values, so the superposition state can be 

looked upon as the superposition state of all integers from 0 to 12n − . Since U  is a unitary 

transformation, computing function )x(f  can give (Preskill, 1998): 
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Based on the above analysis, it is easy to find that an n-qubit cluster can simultaneously 

process 
n2  states. However, this is different from the classical parallel computation, where 

multiple circuits built to compute )x(f  are executed simultaneously, since quantum 

parallel computation doesn’t necessarily make a tradeoff between computation time and 
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needed physical space. In fact, quantum parallelism employs a single circuit to evaluate the 
function for multiple values of x simultaneously by exploiting the quantum state 
superposition principle and provides an exponential-scale computation space in the n-qubit 
linear physical space. Therefore quantum computation can effectively increase the 
computing speed of some important classical functions. So it is possible to obtain significant 
result through fusing quantum computation into reinforcement learning theory.  

2.2 Quantum gates 

Analogous to classical computer, quantum computer accomplishes some quantum 
computation tasks through quantum gates. A quantum gate or quantum logic gate is a basic 
quantum circuit operating on a small number of qubits. They can be represented by unitary 
matrices. Here we will introduce several simple quantum gates including quantum NOT 
gate, Hadamard gate, phase gate and quantum CNOT gate. The detailed description of 
quantum gates can refer to (Nielsen & Chuang, 2000). 

A quantum NOT gate maps 〉→〉 1|0| and 〉→〉 0|1|  respectively and that can be 

described by the following matrix: 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

01

10
UNOT   (7) 

When a quantum NOT gate is applied on a single qubit with state 〉+〉=〉 1|0|| βαψ , 

then the output will become 〉+〉=〉 0|1|| βαψ . The symbol for the NOT gate is drawn 

in Fig.1 (a).  
The Hadamard gate is one of the most useful quantum gates and can be represented as:  

 ⎥
⎦

⎤
⎢
⎣

⎡
=

1-1

11

2

1
H   (8) 

Through the Hadamard gate, a qubit in the state 〉0|  is transformed into a superposition 

state in the two states, i.e. 
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Another important gate is phase gate which can be expressed as 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

i0

01
Up   (10) 

pU  generates a relative phase  π  between the two basis states of the input state, i.e. 

 〉+〉=〉 1|i0||Up βαψ   (11) 
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The CNOT gate acts on two qubits simultaneously and can be represented by the following 
matrix: 

 

⎥
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⎥
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UCNOT   (12) 

The symbol for the CNOT gate is shown as in Fig.1 (b).  If the first control qubit is equal to 

〉1| , then CNOT gate flips the target (second) qubit. Otherwise the target remains 

unaffected. This can be described as follows: 
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CNOT

  (13) 

Just like AND and NOT form a universal set for classical boolen  circuits, the CNOT gate 
combined with one qubit rotation gate can implement any kind of quantum calculation. 

(a)

(b)  

Fig. 1. Symbols for NOT and CNOT gate 

3. Superposition-inspired reinforcement learning 

Similar the standard RL, SIRL is also a RL method that is designed for the traditional 
computer, instead of a quantum algorithm. However, it borrows the ideas from quantum 
characteristics and provides an alternative exploration strategy, i.e., action selection method. 
In this section, the SIRL will be presented after a brief introduction of the standard RL 
theory and the existing exploration strategies. 

3.1 Reinforcement learning and exploration strategy 

Standard framework of RL is based on discrete-time, finite Markov decision processes 

(MDPs) (Sutton & Barto, 1998). RL algorithms assume that state  S  and action )s( n
A  can be 

divided into discrete values. At a certain step, the agent observes the state of the 



Reinforcement Learning: Theory and Applications 

 

64 

environment (inside and outside of the agent)  ts ,  and then choose an action ta . After 

executing the action, the agent receives a reward 1tr + , which reflects how good that action is 

(in a short-term sense).  
The goal of reinforcement learning is to learn a mapping from states to actions, that is to say, 

the agent is to learn a policy ]1,0[: )( →∪× ∈ iSi ASπ , so that expected sum of 

discounted reward of each state will be maximized: 
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where )1,0[∈γ  is discounted factor, ),( asπ  is the probability of selecting action a  

according to state s  under policy π , },|'Pr{ 1' aassssp ttt

a

ss ==== +  is probability 

for state transition and },|{ 1 aassrEr ttt

a

s === +  is expected one-step reward. Then 

we have the optimal state-value function 
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In dynamic programming, (15) is also called Bellman equation of 
*V . 

As for state-action pairs, there are similar value functions and Bellman equations, where 

),( asQπ
 stands for the value of taking action a  in state s  under policy π : 
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Let α  be the learning rate, the one-step update rule of Q-learning (a widely used 

reinforcement learning algorithm) (Watkins & Dayan, 1992) is: 

)',(max(),()1(),( 1'1 asQrasQasQ tattttt ++ ++−← γαα   (19) 



Superposition-Inspired Reinforcement Learning and Quantum Reinforcement Learning 
 

 

65 

Besides Q-learning, there are also many other RL algorithms such as temporal 
difference (TD), SARSA and multi-step version of these algorithms. For more detail, 
please refer to (Sutton & Barto, 1998). 
To approach the optimal policy effectively and efficiently, the RL algorithms always 
need a certain exploration strategy. One widely used exploration strategy is ε -

greedy ))1,0[( ∈ε , where the optimal action is selected with probability ε−1  and a 

random action is selected with probability ε . Sutton and Barto (Sutton & Barto, 1998) 

have compared the performance of RL for different ε , which shows that a nonzero ε  

is usually better than 0=ε  (i.e., blind greedy strategy). Moreover, the exploration 

probability ε  can be reduced over time, which moves the agent from exploration to 

exploitation. The ε -greedy method is simple and effective, but it has one drawback 

that when it explores it chooses equally among all actions. This means that it makes no 
difference to choose the worst action or the next-to-best action. Another problem is that 
it is difficult to choose a proper parameter ε  which can offer the optimal balancing 

between exploration and exploitation.  
Another kind of action selection methods are randomized strategies, such as Boltzmann 
exploration (i.e., Softmax method) (Sutton & Barto, 1998) and Simulated Annealing (SA) 
method (Guo et al., 2004). It uses a positive parameter τ  called the temperature and 

chooses action with the probability proportional to )/exp( ),( τasQ . Compared with ε -

greedy method, the greedy action is still given the highest selection probability, but all 
the others are ranked and weighted according to their value estimates. It can also move 
from exploration to exploitation by adjusting the "temperature" parameter τ . It is 

natural to sample actions according to this distribution, but it is very difficult to set and 
adjust a good parameter τ  and may converge unnecessarily slowly unless the 

parameter τ  is manually tuned with great care. It also has another potential 

shortcoming that it may works badly when the values of the actions are close and the 
best action can not be separated from the others. A third problem is that when the 
parameter τ  is reduced over time to acquire more exploitation, there is no effective 

mechanism to guarantee re-exploration when necessary.  
Therefore, the existing exploration strategies usually suffer from the difficulties to hold 
the good balancing between exploration and exploitation and to provide an easy 
method of parameter setting. Hence new ideas are necessary to explore more effective 
exploration strategies to achieve better performance. Inspired by the main 
characteristics of quantum computation, we present the SIRL algorithm with a 
probabilistic exploration policy.  

3.2 Superposition-inspired RL  

The exploration strategy for SIRL is inspired by the state superposition principle of a 
quantum system and collapse postulate, where a combined action form is adopted to 
provide a probabilistic mechanism for each state in the SIRL system. At state s , the 

action to be selected is represented as:  
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Where ∑
=

=
m

i

ic
1

1 , 10 ≤≤ ic , mi ,...2,1= . sa is the action to be selected at state s  and 

the action selection set is },...,,{ 21 maaa . Equation (20) is not for numerical computation 

and it just means that at the state s , the agent will choose the action ia  with the occurrence 

probability ic , which leads to a natural exploration strategy for SIRL. 

After the execution of action ia from state s , the corresponding probability ic  is updated 

according to the immediate reward r  and the estimated value of the next state )'(sV . 

 ))'(( sVrkcc ii ++←   (21) 

where k is the updating step and the probability distribution ),...,,( 21 mccc  is normalized 

after each updating process. The procedural algorithm of standard SIRL is shown as in Fig. 
2. 

Procedural SIRL: 

Initialize )(sV arbitrarily, π  to the policy to be evaluated 

π : ∑
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=+++==
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c
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12

2
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1 ...)(  

Repeat (for each episode): 
Initialize s  

Repeat (for each step of episode): 
a ←  action given by π  for s  

Take action a : observe reward, r , and next state,
's  

)]()'([)()( sVsVrsVsV −++← γα  

))'(( sVrkcc ii ++←  

'ss ←  

until s  is terminal 

until the learning process ends 

Fig. 2. A standard SIRL algorithm 

In the SIRL algorithm, the exploration policy is accomplished through a probability 
distribution over the action set. When the agent is going to choose an action at a certain 

state, the action ia  will be selected with probability ic , which is also updated along with 

the value funcion updating. Comparing the SIRL algorithm with basic RL algorithms, the 
main difference is that with the probabilistic exploration policy, the SIRL algorithm makes 
better tradeoff between exporation and exploitation without bothering to tune it by the 
designers. 
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3.3 Simulated experiments 

The performance of the SIRL algorithm is tested with two examples, which are a puzzle 
problem and a mobile robot navigation problem.  
 

1. The puzzle problem 

First, let’s consider a puzzle problem as shown in Fig. 3, which is in a )12~0(1313×  

gridworld environment. From any state the agent can perform one of four primary actions: 
up, down, left and right, and actions that would lead into a blocked cell are not executed. 
The task is to find an optimal policy which will let the agent move from S(11,1) to G(1,11)  
with minimized cost (number of moving steps).  
The experiment setting is as follows. Once the agent finds the goal state it receives a reward 
of 100 and then ends this episode. All steps are punished by a reward of -1. The discount 
factor γ  is set to 0.99 for all the algorithms that we have carried out in this example. In this 

experiment, we compare the proposed method with TD algorithm. For the action selection 
policy of TD algorithm, we use ε -greedy policy (ε  = 0.01). As for SIRL method, the action 

selecting policy uses the values of ic  to denote the probability of an action, which is defined 

as ∑
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1 ...)( . For the four cell-to-cell actions ic  is 

initialized uniformly.  
 

 

 
Fig. 3. A puzzle problem. The task is to move from start (S) to goal (G) with minimum 
number of steps 
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Fig. 4. Performance of SIRL (the left figure) compared with TD algorithm (the right figure) 

The experimental results of the SIRL method compared with TD method are plotted in Fig. 
4. It is obvious that at the beginning phase SIRL with this superposition-inspired exploration 
strategy learns extraordinarily fast, and then steadily converges to the optimal policy that 
costs 40 steps to the goal G. The results show that the SIRL method makes a good tradeoff 
between exploration and exploitation. 
 
2. Mobile robot navigation 
A simulation environment has also been set up with a larger grid-map of 400×600. And the 

configuration of main parameters is as follows: learning rate 5.0=α , discount factor 

9.0=γ . Fig. 5. shows the result in complex indoor environment, which verifies the 

effectiveness of robot learning using SIRL for navigation in large unknown environments. 

 

Fig. 5. Simulation result of robot navigation in indoor environment  
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4. Quantum reinforcement learning 

When the SIRL is applied to a real quantum system, for example, to run the algorithm on a 
quantum computer, the representation and the computation mode will be dramatically 
different, which will lead to quantum reinforcement learning (QRL). Then we can take the 
most advantages of this quantum algorithm, such as the speeding up due to quantum 
parallel computation. 

4.1 Representation 

One of the most fundamental principles of quantum mechanics is the state superposition 
principle. As we represent a QRL system with quantum concepts, similarly, we have the 
following definitions and propositions for QRL. 

Definition 1: (Eigenvalue of states or actions) States s  or actions a  in a RL system are 

denoted as corresponding orthogonal quantum states 〉ns|  (or 〉na| ) and are called the 

eigenvalue of states or actions in QRL. 

Then we get the set of eigenvalues of states: }s{|S n 〉=  and that of actions for state i : 

}a{|A n)i( 〉= . 

Corollary 1: Every possible state 〉s|  or action 〉a|  can be expanded in terms of an 

orthogonal complete set of functions, respectively. We have 
 
 

 ∑ 〉=〉
n

nn ss || β   (22) 

 ∑ 〉=〉
n

nn aa || β  (23) 

where nβ  is probability amplitude, which can be a complex number, 〉ns|  and 〉na|  are 

eigenvalues of states and actions, respectively. And the nβ  in equation (22) is not 

necessarily the same as the ones in equation (23), which just mean this corollary holds for 

both of 〉s|  and 〉a| . 
2|| nβ  means the probability of corresponding eigenvalues and 

satisfies 

 ∑ =
n

n 1|| 2β  (24) 

Proof: (sketch)  

(1) State space  }{| 〉s  in QRL system is a N -dimension Hilbert space, 

(2) States }{| 〉ns  in traditional RL system are the eigenvalue of states 〉s|   in QRL system, 

(Definition 1) 
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Then }{| 〉ns  are N  linear independent vectors for this N -dimension Hilbert space, 

according to the definition of Hilbert space, any possible state 〉s|  can be expanded in 

terms of the complete set of 〉ns| . And it is the same for action space }{| 〉a . 

So the states and actions in QRL are different from those in traditional RL.  
1. The sum of several states (or actions) does not have a definite meaning in traditional 

RL, but the sum of states (or actions) in QRL is still a possible state (or action) of the 
same quantum system, and it will simultaneously take on the superposition state of 
some eigenvalues.  

2. The measurement value of  〉s|  relates to its probability density. When 〉s|  takes on an 

eigenstate 〉is| , its value is exclusive. Otherwise, its value has the probability of 
2|| iβ  

to be one of the eigenstate 〉is| . 

Like what has been described in Section 2, quantum computation is built upon the concept 
of qubit. Now we consider the systems of multiple qubits and propose a formal 
representation of them for QRL system. 

Let sN  and aN  be the numbers of states and actions respectively, then choose numbers m 

and n, which are characterized by the following inequalities:  
 

 s

m

s NN 22 ≤≤ , a

n

a NN 22 ≤≤   (25) 

And use m and n qubits to represent eigenstate set S＝{s} and eigenaction set A＝{a} 

respectively: 
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Thus the states and actions of a QRL system may lie in superposition states:  
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where sC  and aC  can be complex numbers and satisfy 
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4.2 Action selection policy 

In QRL, the agent is also to learn a policy ]1,0[: )( →∪× ∈ iSi ASπ , which will maximize 

the expected sum of discounted reward of each state. That is to say, the mapping from states 

to actions is ASsf →= :)( π , and we have 
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where aC  is probability amplitude of action 〉a|  and satisfies (29). 

 

Definition 2: (Collapse) When a quantum state 〉=〉 ∑
n

nn ψβψ ||  is measured, it will be 

changed and collapse randomly into one 〉nψ|  of its eigenstates with corresponding 

probability 
2||| 〉〈 ψψ n : 

 
22*2 ||||)(||||| nnn βψψψψ =〉〉=〉〈   (31) 

Then when an action 〉)(| n

sa  is measured, we will get 〉a|  with the occurrence probability 

of 
2|| aC . In QRL algorithm, we will amplify the probability of “good” action according to 

corresponding rewards. It is obvious that the collapse action selection method is not a real 
action selection method theoretically. It is just a fundamental phenomenon when a quantum 
state is measured, which results in a good balancing between exploration and exploitation 
and a natural “action selection” without setting parameters. 
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4.3 Value function updating and reinforcement strategy 

In Corollary 1 we pointed out that every possible state of QRL 〉s|  can be expanded in 

terms of an orthogonal complete set of eigenstate 〉ns| : ∑ 〉=〉
n

nn ss || β . If we use an m-

qubit register, it will be 

}

∑
=

〉=〉

m

s

s

m sCs
1...11

000

)( ||
L

.  

According to quantum parallel computation theory, a certain unitary transformation U  

from input qubit to output qubit can be implemented. Suppose we have such a “quantum 

black box” which can simultaneously process these 
m2  states with the value updating rule 

 ))()'(()()( sVsVrsVsV −++← α   (32) 

where α  is learning rate, and r  is the immediate reward. It is like parallel value updating 

of traditional RL over all states, however, it provides an exponential-scale computation 
space in the m-qubit linear physical space and can speed up the solutions of related 
functions. 
The reinforcement strategy is accomplished by changing the probability amplitudes of the 
actions according to the updated value function. As we know that action selection is 

executed by measuring action 〉)(| n

sa  related to certain state 〉)(| ms , which will collapse to 

〉a|  with the occurrence probability of 
2|| aC . So it is no doubt that probability amplitude 

updating is the key of recording the “trial-and-error” experience and learning to be more 

intelligent. When an action 〉a|  is executed, it should be able to memorize whether it is 

“good” or “bad” by changing its probability amplitude aC . For more details, please refer to 

(Chen et al., 2006a; Dong et al., 2006b; Dong et al., 2007b). 

As action 〉)(| n

sa  is the superposition of n possible eigenactions, to find out 〉a|  and to 

change its probability amplitudes are usually interactional for a quantum system.  So we 

simply update the probability amplitude of 〉)(| n

sa  without searching 〉a| , which is 

inspired by Grover’s searching algorithm (Grover, 1996).  
The updating of probability amplitude is based on Grover iteration. First, prepare the 
equally weighted superposition of all eigenactions 
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  (33) 

This process can be done easily by applying the Hadamard transformation to each qubit of 

an initial state 〉= 0| a . We know that 〉a|  is an eigenaction and can get 
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n

naa
2

1
| )(

0 =〉〈  (34) 

Now assume the eigenaction to be reinforced is 〉ja| , and we can construct Grover 

iteration through combining two reflections 
ja

U  and )(
0
n

a
U  (Preskill, 1998; Nielsen & 

Chuang, 2000) 

 ||2 jja aaIU
j

〈〉−=   (35) 

 IaaU nn

a
n −〈〉= ||2 )(

0

)(

0)(
0

  (36) 

where I  is unitary matrix. 
ja

U  flips the sign of the action 〉ja| , but acts trivially on any 

action orthogonal to 〉ja| . This transformation has a simple geometrical interpretation. 

Acting on any vector in the 
n2 -dimensional Hilbert space, 

ja
U  reflects the vector about the 

hyperplane orthogonal to 〉ja| . On the other hand, )(
0
n

a
U  preserves 〉)(

0| na , but flips the 

sign of any vector orthogonal to 〉)(

0| na . Grover iteration is the unitary transformation 

 
j

n aaGrov UUU )(
0

=  (37) 

By repeatedly applying the transformation GrovU  on 〉)(

0| na , we can enhance the 

probability amplitude of the basis action 〉ja|  while suppressing the amplitude of all other 

actions. This can also be looked upon as a kind of rotation in two-dimensional space. 

Applying Grover iteration GrovU  for K  times on 〉)(

0| na  can be represented as 

 〉++〉+=〉 φθθ |))12cos((|))12sin((| )(

0 KaKaU j

nK

Grov  (38) 

where ∑
≠

〉
−

=〉
jaa

n
a|

12

1
|φ ,θ  satisfying 

n2/1sin =θ . Through repeating Grover 

iteration, we can reinforce the probability amplitude of corresponding action according to 
the reward value.  

Thus when an action 〉)(

0| na  is executed, the probability amplitude of 〉ja|  is updated by 

carrying out ))]'(([ sVrk +  (an integer) times of Grover iteration. k  is a parameter and 

the probability amplitudes will be normalized with ∑ =
a

aC 1|| 2
 after each updating. 
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4.4 Quantum reinforcement learning algorithm 

The procedural form of a standard QRL algorithm is described as Fig. 6 (Dong et al., 2007b). 
QRL is inspired by the superposition principle of quantum state and quantum parallel 
computation. The state value can be represented with quantum state and be obtained by 
randomly observing the simulated quantum state, which will lead to state collapse 
according to quantum measurement postulate. And the occurrence probability of 
eigenvalue is determined by probability amplitude, which is updated according to rewards. 
So this approach represents the whole state-action space with the superposition of quantum 
state and makes a good tradeoff between exploration and exploitation using probability. The 
merit of QRL is twofold. First, as for simulation algorithm on traditional computer it is an 
effective algorithm with novel representation and computation methods. Second, the 
representation and computation mode are consistent with quantum parallel computation 
system and can speed up learning in exponential scale with quantum computer or quantum 
logic gates. 
In this QRL algorithm we use temporal difference (TD) prediction for the state value 
updating, and TD algorithm has been proved to converge for absorbing Markov chain when 
the stepsize is nonnegative and digressive (Sutton & Barto, 1998; Watkins & Dayan, 1992). 
Since QRL is a stochastic iterative algorithm and Bertsekas and Tsitsiklis have verified the 
convergence of stochastic iterative algorithms (Bertsekas & Tsitsiklis, 1996), we give the 
convergence result about the QRL algorithm as Theorem 1. The proof and related 
discussions can be found in (Dong et al., 2006a; Chen et al., 2006c; Dong et al., 2007b): 
Theorem 1: For any Markov chain, quantum reinforcement learning algorithm converges at 

the optimal state value function 
*)(sV  with probability 1 under proper exploration policy 

when the following conditions hold (where kα  is stepsize and nonnegative): 
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k
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1

2lim α   (39) 

 

From the procedure of QRL in Fig. 6, we can see that the learning process of QRL is carried 
out through parallel computation, which also provides a mechanism of parallel updating. 
Sutton and Barto (Sutton & Barto, 1998) have pointed out that for the basic RL algorithms 
the parallel updating does not affect such performances of RL as learning speed and 
convergence in general. But we find that the parallel updating will speed up the learning 
process for the RL algorithms with a hierarchical setting (Sutton et al., 1999; Barto & 
Mahadevan, 2003; Chen et al., 2005), because the parallel updating rules give more chance to 
the updating of the upper level learning process and this experience for the agent can work 
as the “sub-goals” intrinsically that will speed up the lower learning process. 
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Fig. 6. The algorithm of a standard QRL (Dong et al., 2007b) 

4.5 Physical implementation 

Now let’s simply consider the physical realization of QRL and detailed discussion can be 
found in (Dong et al., 2006b). In QRL algorithm, the three main operations occur in 
preparing the equally weighted superposition state for calculating the times of Grover 
iteration, initializing the quantum system for representing states or actions, and carrying out 
a certain times of Grover iteration for updating probability amplitude according to reward 
value. In fact, we can initialize the quantum system by equally weighted superposition for 
representing states or actions. So the main operations required are preparing the equally 
weighted superposition state and carrying out Grover iteration. These can be implemented 
using the Hadamard transform and the conditional phase shift operation, both of which are 
relatively easy in quantum computation. 

Consider a quantum system described by n qubits, it has 
n2  possible states. To prepare an 

equally weighted superposition state, initially let each qubit lie in the state 〉0| , then we can 

perform the transformation H  on each qubit independently in sequence and thus change 
the state of the system. The state transition matrix representing this operation will be of 

dimension 
nn 22 ×  and it can be implemented by n shunt-wound Hadamard gates. This 

process can be represented into: 
 
 

Procedure QRL: 
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=

〉=〉
111

000

)( ||
L

Ls

s

m sCs , ∑
=

〉=〉=
111

000

)( ||)(
L

La

a

n

s aCasf  and )(sV  arbitrarily 

Repeat (for each episode) 
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1. Observe 〉= )(|)( n

sasf  and get 〉a| ; 

2. Take action 〉a| , observe next state 〉'| s , reward r , then 

(a) Update state value: ))()'(()()( sVsVrsVsV −++← γα  

(b) Update probability amplitudes:  

repeat  for ))]'(([ sVrk +  times 

〉=〉 )()( ||U )(
0

n

saa

n

sGrov aUUa n  

Until for all states ε≤Δ |)(| sV . 
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The other operation is the conditional phase shift operation which is an important element 
to carry out the Grover iteration. According to quantum information theory, this 
transformation may be efficiently implemented using phase gates on a quantum computer. 
The conditional phase shift operation does not change the probability of each state since the 
square of the absolute value of the amplitude in each state stays the same.  

4.6 Simulated experiments 

The presented QRL algorithm is also tested using two examples: Prisoner’s Diploma and the 
control of a five-qubit system. 
1. Prisoner’s Diploma 
The first example is derived from typical Prisoners’ Dilemma. In the Prisoners’ Dilemma, 
each of the two prisoners, prisoner I and prisoner II, must independently make the action 
selection to agree to give evidence against the other guy or to refuse to do so. The situation 
is as described in Table 1 with the entries giving the length of the prison sentence (years in 
prison) for each prisoner, in every possible situation. In this case, each of the prisoners is 
assumed to minimize his sentence. As we know, this play may lead to Nash equilibrium by 
giving the action selection (agree to give evidence, agree to give evidence) with the outcome of (3, 
3) years in prison. 
 

prisoner II 
Prisoner I 

Agree to give evidence Refuse to give evidence 

Agree (3, 3) (0, 5) 

Refuse (5, 0) (1, 1) 

Table 1. The Prisoners’ Dilemma  

Now, we assume that this Prisoners game can be played repeatedly. Each of them can 
choose to agree or refuse to give evidence against the other guy and the probabilities of the 
action selection (agree to give evidence, agree to give evidence) are initially equal. To find a better 
outcome, the two prisoners try to improve their action selection using learning. By applying 
the QRL method proposed in this chapter, we get the results as shown in Fig. 6 and Fig. 7 
(Chen et al., 2006a; Chen et al., 2006c). From the results, it is obvious that the two prisoners 
get smarter when they try to cooperate indeliberately and both of them select the action of 
“Refuse to give evidence” after about 40 episodes of play. Then they steadily get the outcome 
of (1, 1) instead of (3, 3) (Nash equilibrium).  
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Fig. 6. The outcome (years in prison) of the Prisoners problem for each prisoner   

 

Fig. 7. The whole outcome of the Prisoners problem (Sum of years in prison for both 
prisoners)  
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2. Control of a five-qubit system 
The second axample is about the control of a five-qubit system (Dong et al., 2006c). With the 
development of quantum information technology, quantum control theory has drawn the 
attention of many scientists (Chen et al., 2005). The objective of quantum control is to 
determine how to drive quantum systems from an initial given quantum state to a pre-
determined target quantum state with some given time. According to quantum mechanics, 

the state 〉)t(|ψ  of arbitary time t can be reached through an evolution on the initial state  

〉)0(|ψ . It can be expressed as  

 〉=〉 )0(|Û)t(| ψψ   (41) 

where  Û  is a unitary operator and satisfies: 

 IÛÛÛÛ == ++
  (42) 

where 
+Û  is the Hermitian conjugate operator of Û . So the control problem of quantum 

state can be converted into finding appropriate unitary operator Û . 

In this example, we consider the five-qubit system, it has 32 eigenstates. In practical 
quantum information technology, some state transitions can easily be completed through 
appropriate unitary transformations but the other ones are not easy to be accomplished. 
Assume we know its state transitions satisfy the following equations through some 
experiments: 

〉=〉 00000|Û00001| 00  ;   〉=〉 00001|Û00010| 01 ;   〉=〉 00010|Û00011| 02 ; 

〉=〉 00011|Û00100| 03 ;    〉=〉 00100|Û00101| 04 ;   〉=〉 00001|Û00111| 11 ; 

〉=〉 00010|Û01000| 12 ;    〉=〉 00100|Û01010| 14 ;   〉=〉 00101|Û01011| 15 ; 

〉=〉 00111|Û01000| 21 ;    〉=〉 01010|Û01011| 24 ;   〉=〉 00111|Û01101| 31 ; 

〉=〉 01010|Û10000| 34 ;    〉=〉 01011|Û10001| 35 ;    〉=〉 01100|Û01101| 40 ; 

〉=〉 10000|Û10001| 44 ;     〉=〉 01100|Û10010| 50 ;   〉=〉 10000|Û10110| 54 ; 

〉=〉 10001|Û10111| 55 ;     〉=〉 10100|Û10101| 62 ;     〉=〉 10101|Û10110| 63 ; 

〉=〉 10110|Û10111| 64 ;     〉=〉 10010|Û11000| 70 ;    〉=〉 10110|Û11100| 74 ; 

〉=〉 10111|Û11101| 75 ;      〉=〉 11001|Û11001| 80 ;     〉=〉 11100|Û11101| 84 ; 

〉=〉 11001|Û11111| 91  

In the above equations, Û  is reversible operator.  For example, we can easily get 
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 〉=〉 00001|Û00000| -1

00   (43) 

Assume the other transitions are impossible except the above transitions and corresponding 

inverse transitions. If the initial state and the target state are 〉11100|  and 〉11111|  

respectively, the following task is to find optimal control sequence through QRL. 
 

 

 

Fig. 8. The grid representation for the quantum control problem of a five-qubit system 

Therefor we first fill the eigenstates of five-qubit system in a grid room and they can be 
described as shown in Fig. 8. Every eigenstate is arranged in a corresponding grid and the 
hatched grid indicates that the corresponding state can not be attained. The two states with 
a common side are mutually reachable through one-step control and other states can not 
directly reach each other through one-step control. Now the task of the quantum learning 
system is to find an optimal control sequence which will let the five-qubit system transform 

from 〉11100|  to 〉11111| . Using the QRL method proposed previously, we get the 

results as shown in Fig. 9. And more experimental results are shown in Fig. 10 to 
demonstrate its performance with different learning rates. From the results, it is obvious that 
the control system can robustly find the optimal control sequence for the five-qubit system 
through learning and the optimal control sequences are shown in Fig. 11. We can easily 
obtain two optimal control sequences from Fig. 11: 
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-1
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-1

74=   (45) 

 

 

 

 

 

 

 

Fig. 9. The performance of QRL for optimal control sequence 
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Fig. 10. The performance of QRL with different learning rates 

 

 

Fig. 11. The control paths for the control of a five-qubit system 
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5. Conclusion 

According to the existing problems in RL area, such as low learning speed and tradeoff 
between exploration and exploitation, SIRL and QRL methods are introduced based on the 
theory of RL and quantum computation in this chapter, which follows the developing 
roadmap from the superposition-inspired methods to the RL methods in quantum systems. 
Just as simulated annealing algorithm comes from mimicking the physical annealing 
process, quantum characteristics also broaden our mind and provide alternative approaches 
to novel RL methods. 
In this chapter, SIRL method emphasizes the exploration policy and uses a probabilistic 
action selection method that is inspired by the state superposition principle and collapse 
postulate. The experiments, which include a puzzle problem and a mobile robot navigation 
problem, demanstrate the effectiveness of SIRL algorithm and show that it is superior to 
basic TD algorithm with ε -greedy policy. As for QRL, the state/action value is represented 

with quantum superposition state and the action selection is carried out by observing 
quantum state according to quantum collapse postulate, which means a QRL system is 
designed for the real quantum system although it can also be simulated on a traditional 
computer. The results of simulated experiments verified its feasibility and effectiveness with 
two examples: Prisoner’s Dilemma and the control of a five-qubit system. The contents 
presented in this chapter are mainly the basic ideas and methods related to the combination 
of RL theory and quantum computation. More theoretic research and applictions are to be 
investigated in the future.  
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