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Chapter

Metal Organic Frameworks-Based 
Optical Thin Films
Cheng-an Tao, Jianfang Wang and Rui Chen

Abstract

Metal-organic frameworks (MOFs) are organic-inorganic hybrid materials with 
ordered pore structures assembled by metal centers and organic ligands through 
coordination bonds, but conventionally they are mostly in powder form. In recent 
years, metal-organic framework films have received increasing attention due to 
their potential applications in nanotechnology and nanodevices. The intrinsic 
ultrahigh porosity of MOFs may lead to a low refractive index of MOF materials. 
In addition, over 70,000 types of MOFs exist, and their properties can be tuned 
through the adoption of different metal motifs, organic ligands, or crystal mor-
phologies. These characteristics make MOFs a potential new generation of optical 
thin film materials. In this chapter, the fabrication methods of MOF thin films, the 
optical properties of MOF optical thin films, and their application in optical sensors 
were described.

Keywords: metal-organic frameworks, thin film, fabrication method,  
optical property, refractive index, sensor, naked eye detection

1. Introduction

An optical film refers to a type of optical dielectric material that is attached to a 
surface of an optical device and is composed of a thin and uniform layered medium 
that propagates a light beam through an interface [1]. Commonly used optical films 
include: reflective films, antireflection films, polarizing films, interference filters, 
and beamsplitters [2]. Although there are many mature technologies and commer-
cial products, with the increasing requirements of modern optics and optoelectronic 
devices, the exploration of new optical films is still the focus of current research.

Metal-organic frameworks (MOFs) are a class of porous materials that have 
developed rapidly in the past 20 years [3, 4]. They are crystalline materials that are 
composed of inorganic metal ions or metal-oxo cluster nodes and organic bridging 
ligands through coordination bonds. Due to the diversity of metal ions and organic 
bridging ligands, and the diversity of coordination linkages, there are theoretically 
unlimited types of MOFs, and more than 70,000 species have been reported so far, 
which are still increasing. MOFs have many inherently excellent properties, such 
as rich and tunable pore structure (pore size, pore shape, and pore opening), large 
specific surface area, regulatable chemical microenvironment, and good thermal 
stability [5–7]. They also can show special luminescent properties, magnetic 
properties, electrical conductivity, catalytic properties, etc. by selecting a particu-
lar metal ion or ligand. These properties make MOFs materials of great potential 
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applications in many fields, such as gas adsorption and storage [8], separation [9], 
catalysis [10, 11], drug delivery and sustained release [12], medical imaging [12], 
luminescent materials, sensing [13–16], and so on.

In the field of optical films also, MOFs can be useful. Its almost infinite vari-
ety, tunable optical properties, and some of the inherently superior properties 
described above make it an excellent material for building optical films. However, 
MOFs are usually prepared in bulk or in powder form. Preparation of MOFs into 
a flat and uniform optical film is a prerequisite for their application. The optical 
properties of optical films are their core properties. How to effectively control their 
optical properties is a key issue in the study of MOF optical films. Therefore, in this 
chapter, firstly, five major methods for preparing MOF optical films—spin-coating, 
dip-coating, self-assembly, direct growth, and step-by-step liquid phase epitaxy 
(LPE) methods—were introduced, and a comparison of them was made under the 
consideration of the same MOF as the model. Then, the method of determination 
of refractive index of MOF films was described. The change of the linkers and 
post-modification of bridged ligands to control the optical properties of MOF 
optical films were discussed. At last, MOF thin films used as optical sensors were 
presented, including monolayer MOF thin films, MOF film-based 1DPC, and MOF 
film-combined optical fiber.

2. Fabrication methods of MOF thin films

At present, a series of methods have been developed to prepare MOF films  
[17, 18], but the flatness of most of the resulting films cannot meet the requirements 
of optical films. To date, there are mainly five typical methods to produce MOF 
optical films with high quality.

2.1 Spin-coating method

Spin coating is widely used in microfabrication of functional oxide layers on 
glass or single crystal substrates using sol-gel precursors, where it can be used to 
create uniform thin films with nanoscale thicknesses [19]. Hinterholzinger et al. 
[20] reported the fabrication of one-dimensional photonic crystals (1DPCs, also 
called Bragg stacks) based on zeolitic imidazolate framework (ZIF)-8 by spin 
coating for the first time. 1DPC was composed of multilayer of alternative ZIF-8 
layers and titanium dioxide layers. In 2013, Lotsch’s group [21] fabricated MOF thin 
films by spin-coating a MOF nanoparticle suspension onto a flat substrate. Two 
kinds of MOFs have been explored: one is copper trimesate (Cu3(BTC)2, also known 
as HKUST-1, HKUST = Hong Kong University of Science & Technology), which 
contains Cu (II)-paddlewheel-type nodes and trimesate struts, and the other one is 
the isoreticular metal-organic framework-3 (IRMOF-3, zinc amino-terephthalate).

Our group [16, 22–24] successfully applied this method to construct many 
other MOF thin films, such as iron (III) terephthalate MIL-88B (MIL = Materials 
of Institut Lavoisier), aluminum terephthalate MIL-53, MIL-101(Cr), and their 
analogs. We [16] reported the first example of flexible MOF optical thin film 
fabricated by spin coating (Figure 1). The flexible NH2-MIL-88B(Fe) was chosen 
as the model, and nanorods of NH2-MIL-88B(Fe) were prepared by hydrothermal 
method, and then MOF optical films prepared by spin-coating. The thickness of the 
film was nearly proportional to both suspension concentration and rotation cycles, 
and inversely proportional to the spin speed. And the rod-shaped MOFs tended 
to be aligned parallel to the substrate due to rotational shear forces. It provides the 
basis for subsequent application of properties.
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2.2 Dip-coating method

As a popular alternative to spin coating, dip-coating methods are frequently 
employed to produce thin films from sol-gel precursors for research purposes, 
where it is generally used for applying films onto flat or cylindrical substrates [25]. 
In 2009, Gérard Férey et al. [26] first synthesized a colloidal dispersion of MIL-89, 
and then prepared a MIL-89 optical film by a dip-coating method. The film with a 
surface roughness of approximately 3 nm is very uniform. Subsequently, the team 
used microwave method to obtain nanoscale MIL-101(Cr) [27], MIL-100(Cr) [28], 
and MIL-100(Fe) [28], and prepared optical films using them by a similar dip-
coating method. The MOF films are deposited from MOF nanoparticles naturally, 
and their surface roughness is about half of the size of MOF nanoparticles. The 
premise of this method is to obtain MOF nanoparticles with better dispersibility. 
MIL-100(Al) particles prepared by the same method cannot be used to fabricate 
optical thin films because of their large particle size (>500 nm) [28].

2.3 Self-assembly

Self-assembly is a process in which a disordered system of preexisting compo-
nents forms an organized structure or pattern as a consequence of specific, local 
interactions among the components themselves, without external direction. The 
building blocks of self-assembly are not only molecules, but span a wide range 
of nano- and mesoscopic structures. In 2014, Prof. Huo [15] proposed a method 
for self-assembly of MOF nanoparticles. First, the nanoparticles of UiO-66 
(UiO = University of Oslo) were prepared; then, their surface was modified with 
polyvinylpyrrolidone (PVP), and finally dispersed in mixture of water and ethanol 
(v:v = 1:1) to obtain a dispersion. A glass substrate was inserted into the water in a 
culture dish, and a small amount of the above dispersion was dropped on the sur-
face of the water. Then, the MOF nanoparticles were rapidly spread to the surface 
of the water, and a 2% sodium dodecyl sulfonate (SDS) solution was dropped to 
make the MOF dispersion closely arranged into a single layer film. The film was 
transferred out to obtain a monolayer MOF film on the glass substrate. The MOF 
multilayer films can be obtained by repeating the process.

2.4 Direct in situ growth

MOFs prepared by direct in situ growth usually produce thick and rough 
membranes or dispersive particles. Lu et al. [14] successfully constructed ZIF-8-
based optical thin films via a direct growth method that functioned as selective 
sensors for chemical vapors and gases. They immersed a glass substrate or silicon 
wafer in a newly prepared ZIF-8 growth solution (2-methylimidazole and Zn(NO3)2 
in methanol) at room temperature. After 30 min of growth, a uniform ZIF-8 film 
of about 50 nm was obtained. More importantly, this process can be repeated, and 

Figure 1. 
Photograph of a series of NH2-MIL-88B films deposited on silicon wafers with various concentrations  
( from left to right: 0.5, 1, 2, 3, 4, 5, and 6 wt%) by spin-coating method. Reproduced from Ref. [16] with 
permission from The Royal Society of Chemistry.
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the thickness of each subsequent growth was increased by about 100 nm, and the 
resulting film exhibited a very bright structural color. The color changes as the 
thickness increases, as shown in Figure 3. The method has the advantages of mild 
reaction conditions, fast growth rate, easy control of thickness, and easy removal of 
solvent in MOFs after reaction.

2.5 Step-by-step liquid phase epitaxy (LPE)

Step-by-step liquid phase epitaxy alternately deposits metal and organic ligand 
precursors on a functionalized surface, and the two are assembled by layer-by-layer 
growth to obtain a MOF film (also called surface-anchored MOF, SurMOF). The MOF 
prepared by this method has precisely controlled thickness and growth orientation, 
and the thickness can be regulated by the number of cycles of growth. In 2007, Wöll 
et al. [29] successfully used this method to prepare crystalline MOF films, such as 
two-component MOFs, HKUST-1, which alternately deposit copper acetate and BTC 
(BTC = trimesate) ligands on –COOH or –OH-modified gold substrate. The method 
is further used to prepare ternary layered MOFs composed of two organic ligands, 
such as [Cu(bdc)2(dabco)2] (bdc = 1,4-benzenedicarboxylic acid; dabco = 1,4-diaz-
abicyclo[2.2.2]octane) [30], [Zn2(+/−)(cam)2dabco](cam = (1R,3S)-(+)-camphoric 
acid) [31], Fe(pz)[Pt(CN)4](pz = pyrazine) [32, 33], DA-MOF(M(L)2(P)2)((M = Cu 
or Zn; L = naphthalene dicarboxylate or 2,3,5,6-tetrafluoroterephthalic acid); 
P = dabco) [34], and so on.

The orientation of SurMOF can be regulated by different functional groups on the 
surface. For example, modifying the carboxyl or hydroxyl groups on the surface of 
the substrate allows the growth direction of HKUST-1 to be [111] and [100], respec-
tively, under suitable conditions [29]. On the pyridyl- or carboxyl-modified surface, 
the growth direction of [Cu(bdc)2(dabco)2] is [100] and [001], respectively [30].

Unfortunately, it usually takes a long time to obtain a thicker film of MOFs due 
to the layer-by-layer growth mechanism. To overcome this shortcoming, researchers 
further combined this method with the spray method [35, 36], the spin-coating 
method [37], and the dip-coating method [38], and thereby developed a few 
improved methods for rapidly preparing the MOF films. Wöll et al. [36] alternately 
sprayed a solution of Cu2(CH3COO)4·H2O and BTC on a substrate modified with 
a coordinating group by a high-pressure carrier gas to obtain a HKUST-1 film. The 
thickness of the cyclic growth can reach 10 nm, and the growth rate of the method 
is increased by two orders of magnitude compared with the original method. 
In 2016, Eddaoudi group [37] combined the LPE method with the spin-coating 
method to achieve the growth of MOF films by spin-coating the metal salt solution 
and the organic ligand solution on the substrate, respectively. Cu2(bdc)2•xH2O, 
Zn2(bdc)2•xH2O, HKUST-1, and ZIF-8 films were successively prepared on the sur-
face of substrates such as gold and alumina, which is more effective than traditional 
LPE methods. MOF films with thicknesses ranging from nm to μm are available. 
However, compared with the conventional LPE, the roughness of the obtained MOF 
film is remarkably increased. Particularly, the MOF films having too much growth 
cycle or growing on a porous substrate are difficult to use as optical films.

In 2014, Benes team [38] at the University of Twente developed a step-by-step 
dip-coating method that yielded thicker, dense MOFs in a single cycle. They dipped 
the silicon wafer vertically into the ZnCl2 solution for 30 min, and then pulled it 
out at a certain rate (0.1–4 mm/s). After washing, it was immersed in the 2-methy-
limidazole solution for 30 min, then pulled out again, and then washed again. 
ZIF-8 film can be obtained by drying naturally in a culture dish, wherein the rate of 
each pulling is controlled to be the same, wherein the thickness of the film can be 
controlled by the pulling speed. The thickness of the ZIF-8 film is about 100 nm at 
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a pulling rate of 1 mm/s. If the rate is too large or too small, the film thickness will 
increase. This method has not been extensively studied and has not been reported 
for the suitability of other types of MOFs.

2.6 Comparison

The above-mentioned five methods have shown success in preparation of MOF 
thin films, but there is still lack of systematic research on the performance and poten-
tial application of the MOF films from the aspects of optical films. Moreover, for the 
same MOF system, there is a lack of detailed comparison on these preparation meth-
ods. Recently, our group [39] chose UiO-66 as a model to prepare UiO-66 thin films by 
the above-mentioned five methods, respectively (Figure 2). The resultant thin films 
were denoted as OTF-SP, OTF-DP, OTF-SA, OTF-DG, and OTF-LPE, respectively. 
The qualities of the films were quantitatively analyzed using surface roughness. The 
arithmetic average roughness, Ra, is the arithmetic average value of filtered roughness 
profile and the root mean squared roughness. The OTF-SP film has the best flatness, 
while the OTF-DG has the worst roughness (Ra = 40.3 nm). The roughness of MOF 
thin films made of octahedral UiO-66 nanocrystals is generally higher than that of 
spherical MOF nanoparticles-based thin films [23, 24, 27]. For the dip-coated films, 
the more the depositions, the larger the roughness due to accumulation. For the 
self-assembled films, the trend is just the opposite. Their roughness decreases with the 
increase of depositions, thanks to the interleaved filling of following nanocrystals.

3. Optical properties of MOF optical thin films

At present, the research on optical properties of MOF optical films is still rela-
tively preliminary, mainly focusing on the determination of their optical constants, 
especially the refractive index, and the regulation of optical constants.

3.1 Determination of optical constants

Refractive index is one of the important properties and parameters of optical 
films (such as antireflective coatings, high reflectivity coatings, polarizing films, 

Figure 2. 
(A) Crystal structure of UiO-66, consisting of Zr-O metal centers connected by terephthalate linkers. Zr, cyan; 
C, gray; O, red; H, omitted. (B–F) Illustration of five fabrication methods of MOF optical thin film: (B) spin 
coating, (C) dip coating, (D) self-assembly, (E) direct in situ growth, (F) LPE method [39].
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long/short wave filters, etc.). The main method for determining the optical constant 
of an optical film of MOFs is an ellipsometry method. Férey et al. [26] reported 
the optical film of MIL-89 prepared by the dip-coating method and determined its 
refractive index at 700 nm. Since MIL-89 is a flexible MOF, its refractive index is 
larger after absorption of water vapor. The change was reduced to 1.45. They used 
an ellipsometer to monitor the change in refractive index with the water vapor pres-
sure. They also measured the refractive indices of MIL-101(Cr) [27], MIL-100(Cr) 
[28], and the MIL-100(Fe) [28] optical films at 700 nm, which are 1.18, 1.17, and 
1.43, respectively. The optical film prepared by the spin-coating method inevitably 
has interparticle pores, so the determined values of the refractive index are the 
effective refractive indices of the MOF optical films, not the intrinsic refractive 
indices of the MOF materials themselves. Ranft et al. [40] also measured the refrac-
tive index of the HKUST-1 optical films prepared by spin coating using ellipsom-
etry, and found it was only 1.20, while Redel et al. [41] studied the refractive index 
of HKUST-1 optical film prepared by LPE method, and found it was 1.39 at 750 nm, 
which was much larger than that of the spin-coated HKUST-1 film, and close to the 
intrinsic refractive indices of HKUST-1, benefiting from the compactness of the 
optical film prepared by LPE method.

The calculation of the interference fringes on the upper and lower surfaces of 
the optical film is another method to determine refractive index of an optical film. 
Lu et al. [14] determined the refractive index of the ZIF-8 film prepared by the 
direct growth method using this method. The value is 1.39, which is quite different 
from the value of 1.20 obtained by Ranft et al. [40], mainly because the ZIF-8 film 
prepared by Ranft et al. is composed of ZIF-8 nanoparticles, while for the dense 
ZIF-8 film reported by Lu et al. prepared by direct in situ growth, the value (1.39) 
of refractive index is closer to the that of the ZIF-8 bulk material [14].

Redel et al. [41] prepared two copper-carboxylic acid MOF Cu-BDC films on Si 
substrate by LPE method. The refractive index of the film was directly measured by 
spectroscopic ellipsometry, and the refractive index of a series of MOF films with 
the same Cu-BDC topology but different lengths of organic ligands was predicted. 
This study also showed the advantages of MOFs in optical applications: compared 
to the optical properties of traditional inorganic materials, MOF can be used as an 
optical film active material to adjust the optical properties by changing the compo-
sition or structure of the MOF.

For the UiO-66 films prepared by different methods, in general, their refrac-
tive index has this order: OTF-SP < OTF-DP < OTF-SA < OTF-LPE. The refrac-
tive index of OTF-LPE has the highest value, which can be considered as the 
intrinsic refractive index of UiO-66 due to the compactness and integrity of the 
film. The nanocrystal-based films can achieve a refractive index lower than 1.23, 
which is important for application as antireflection films. Such a low refractive 
index benefits from the cracks and voids between the UiO-66 nanocrystals. 
Assuming the intrinsic refractive index of UiO-66 was 1.512, the index of air is 
1, the void percent in the film was estimated according to the effective medium 
theory [7, 23, 42]. The voids of OTF-SP, OTF-DP, and OTF-SA films are about 25, 
30, and 23%, respectively.

3.2 Tuning of optical constants

The optical constants of MOF optical films can be regulated in various ways, 
such as changing the metal ion species, ligand type, crystal type, adsorbing guest 
molecules, and changing metal ions or ligands by post-modification. But many 
strategies have not been realized. The way of adsorbing guest molecules is more 
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used in sensing. Here, the manners of changing linkers and post-modification of 
ligands are introduced to tune the optical constants of optical films.

3.2.1 Tuning through changing of the linkers

Our group [23] reported the regulation of the optical properties of MOF optical 
films by changing linkers with different functional groups. Five different ligands 
were selected and synthesized with chromium ions to obtain five MOFs of the same 
MIL-101 configuration, which were respectively recorded as MIL-101(Cr), NH2-
MIL-101(Cr), NO2-MIL-101(Cr), OH-MIL-101(Cr), and (NO2)2-MIL-101(Cr), and 
the corresponding optical film was produced by spin coating. The refractive index 
and extinction coefficient of the MOF optical film changed with the change of link-
ers. The average refractive indices of MIL-101(Cr), NH2-MIL-101(Cr), OH-MIL-
101(Cr), and (NO2)2-MIL-101(Cr) optical films were 1.306, 1.268, 1.223, and 1.250, 
respectively. NO2-MIL-101(Cr) has the lowest refractive index of only 1.208, which 
is lower than 1.22, making it have great potential in the preparation and application 
of antireflection coatings [43, 44].

The effect of ligand on the refractive index of MOF materials was further 
studied by eliminating the effect of porosity of the optical films. The order of 
the intrinsic refractive indices of MOFs is: (NO2)2-MIL-101(Cr) > NO2-MIL-
101(Cr) > NH2-MIL-101(Cr) > OH-MIL-101(Cr) > MIL-101(Cr). The intrinsic 
refractive index of the MOF material in the same topology increases with the 
increase of the atomic density of the ligands.

The change of the extinction coefficient k is related to the electron-absorbing 
and electron-donating states of the ligands. It was found that the substitution of the 
electron-donating group was good at increasing the value of k, and the electron-
withdrawing group would decrease k value.

3.2.2 Tuning through post-modification

Post-modification of ligands is also an effective means to change the optical con-
stants of MOF optical films benefiting from abundant organic chemical reactions. 
Our group [24] reported the first example of successful regulation of optical films 
by post-modification of NH2-MIL-53(Al) (see Figure 3). Propionaldehyde, valer-
aldehyde, and heptaldehyde with different carbon chain lengths were chosen as the 
modifier. After modification with propionaldehyde and valeraldehyde, the neff of 
the MOF optical films became larger as the carbon chain length increased, and the 
refractive index increased from 1.292 to 1.371 (propionaldehyde modification) and 
1.424 (valeraldehyde modification). After heptaldehyde modification, the refrac-
tive index changed only slightly, from 1.292 to 1.299 (Figure 3F). This is because 
propionaldehyde and valeraldehyde have small molecular size and can effectively 
modify MOF, while heptaldehyde has a larger molecular size (10.7 Å) and finds it 
difficult to enter into the pores of MOF (8.5 Å), so the grafting rate is not high.

In addition, the extinction coefficient (k) is the imaginary part of the complex 
refractive index and is another important parameter of the optical film. After 
post-modification, the extinction coefficient of the MOF optical film also changed 
significantly. This is due to the change in the electronic structure inside the MOFs 
after post-modification [41]. The stop band width of MOFs after modification 
decreased from 2.74 to 2.71 eV (propionaldehyde modification) and 2.68 eV (valer-
aldehyde modification), which is consistent with the change in k. After grafting, the 
optical properties of the material itself are tuned both due to changing the internal 
electronic structure of NH2-MIL-53 (Al) and occupying its internal pore structure.
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4. The application of MOF films in optical sensors

The application of MOF optical films in optical sensing is also essentially using 
the changes in optical properties, typically changes in the reflectance spectra 
(or colors) caused by the stimulation of target molecules.

4.1 Monolayer MOF thin films

Lu and Hupp [14] constructed a ZIF-8 monolayer film-based Fabry-Pérot device, 
which can serve as a selective sensor for chemical vapors and gases. The red shift of 
the reflection spectrum was observed within 1 min due to adsorption of propane. 
The sensor can distinguish n-hexane and cyclohexane due to their different sizes. 
It can also detect the ethanol from water/ethanol system with a limit as low as 
0.3 vol%, corresponding to an ethanol vapor concentration of ca. 100 ppm.

Compared with the rigid pore structure of ZIF-8, the flexible pore structure of 
MOFs can change more significantly after adsorbing water or organic vapors. Our 
group [16] chose flexible NH2-MIL-88B as a model MOF to fabricate a Fabry-Pérot 
device with a vivid color by spin-coating method. The NH2-MIL-88B photonic film 
displayed high chemical selectivity, for example, acetone induced 380-nm redshifts, 
while water only led to a redshift of about 50 nm, and the color would change 
accordingly after absorbing the water or organic vapors (Figure 4), which can be 
observed by the naked eye. Depending on the nature of the organic solvent and 
their interaction with NH2-MIL-88B, the selective breathing behavior of NH2-MIL-
88B promotes the excellent selectivity of the optical films.

4.2 MOF thin film-based one-dimensional photonic crystals

A one-dimensional photonic crystal (1DPC), also called Bragg stack, is a peri-
odic nanostructure with a refractive index distribution along one direction [45].  

Figure 3. 
(A) Scheme of tuning the optical properties through post-modification. Photographs of MOF optical thin film 
without modification (B), modified with propionaldehyde (C), pentanal (D), and heptanal (E). (F) The 
effective refractive index (n) of MOF optical thin films [24].
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Hinterholzinger et al. [20] presented the fabrication of 1DPC based on ZIF-8 and 
mesoporous titanium dioxide (TiO2) for the first time. ZIF-8 is intended to impart 
molecular selectivity, and mesoporous TiO2 is used to ensure high refractive index 
contrast and to guarantee molecular diffusion within the 1DPC. The 1DPC is sensi-
tive and selective toward a series of chemically similar solvent vapors due to differ-
ent sorption behavior of the photonic material to the solvent vapors.

In the consideration of replacing the rigid MOF with a flexible MOF, we [22] 
also prepared a 1DPC by alternately spin-coating NH2-MIL-88B and TiO2, wherein 
the TiO2 layer functioned as a high-refractive index contrast. The optical properties 
(color, refractive index, etc.) of the 1DPCs can be adjusted by varying the number of 
depositions, and the thickness of the film. Benefiting from the flexible pore structure 
of NH2-MIL-88B, the 1DPCs exhibited a highly selective response to different organic 
vapors, including dimethyl formamide, isopropanol, methanol, acetone, and ethanol 

Figure 4. 
Photographs of the NH2-MIL-88B optical film upon exposure to various organic vapors. Reproduced from 
Ref. [16] with permission from The Royal Society of Chemistry.

Figure 5. 
(A) Reflection spectra, (B) shift of the photonic stop band, (C) chromaticity coordinates, and (D) typical 
images of the NH2-MIL-88B/TiO2 1DPCs upon exposure to various organic vapors. Reproduced from Ref. [22] 
with permission from The Royal Society of Chemistry.
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(Figure 5A–C). Typically, the color of the 1DPCs in air and saturated vapors of water 
and EtOH were different, which can be observed by naked eye (Figure 5D). The 
1DPC also can detect ethanol from 0 to 43.8 vol% in a water-ethanol mixture.

Liu et al. [46] described the fabrication of 1DPC by alternate deposition of 
HKUST-1 and indium tin oxide (ITO) layers by LPE method and sputtering 
method, among which HKUST-1 was used as low-refractive index layer, and ITO as 
high-refractive index layer. The 1DPC had a red shift response of only 38 nm for the 
adsorption of toluene because of the change in refractive index brought about by 
the adsorbing guest molecules.

4.3 MOF thin film on fiber surfaces

MOF thin films can be deposited not only on the flat surface but also on the 
nonplanar optical components, which further expands their use as optical sensors. 
Kim et al. [47] recently reported ZIF-8 films grown on linear fiber surfaces to create 
optical gas sensors, which are more sensitive to the target gases than Fabry-Pérot 
devices or 1DPCs based on normal incident light. The resultant sensors showed high 
sensitivity and selectivity to CO2 gas relative to other small gases such as H2, N2, O2, 
and CO. They also exhibited rapid (<tens of seconds) response time and excellent 
reversibility, which may be ascribed to the physisorption of gases into a nanoporous 
MOF. A refractive index-based sensing mechanism for the MOF-integrated optical 
fiber platform was proposed.

5. Conclusions

There are five major methods for preparing MOF optical films with high-quality 
spin coating, dip coating, self-assembly, direct growth, and LPE. Under the consid-
eration of the same MOF (UiO-66) as the model, the MOF film prepared by spin 
coating has the best flatness, while the one prepared by direct growth is the worst 
one. The research on optical properties of MOF optical films is still in its early stage, 
mainly focusing on the determination and regulation of optical constants. The 
change of the linkers and post-modification of bridged ligands to control the optical 
properties of optical films have been realized. The application of MOF thin films in 
optical sensors can induce label-free optical sensors with variable colors exposed to 
various organic vapors. MOF films not only on the flat surface but also on the non-
planar surface (for instance fiber surface) can be served as optical sensors. They 
can have great selectivity due to different interactions between the target molecules 
with MOFs. In the future, the quality of optical films will be further improved, and 
a wide range of chemical modification methods will be applied to control the prop-
erties of optical films, which will further meet the needs of specific optical devices. 
MOF optical films are expected to become the next generation of optical materials.
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