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Chapter

Investigation of Fuzzy Inductive
Modeling Method in Forecasting
Problems
Yu. Zaychenko and Helen Zaychenko

Abstract

This paper is devoted to the investigation and application of fuzzy inductive
modeling method group method of data handling (GMDH) in problems of fore-
casting in the financial sphere. GMDH method belongs to self-organizing methods
and allows to discover internal hidden laws in the appropriate object area. The
advantage of GMDH algorithms is the possibility of constructing optimal models. In
the generalization of GMDH in case of uncertainty, new method fuzzy GMDH is
described which enables to construct fuzzy models almost automatically. The algo-
rithms of fuzzy GMDH for different membership functions are considered. The
extensions of fuzzy GMDH for different partial descriptions—orthogonal polyno-
mials of Chebyshev and trigonometric polynomials of Fourier—are considered. The
problem of adaptation of fuzzy models obtained by FGMDH is considered, and the
corresponding adaptation algorithm is described. The experimental investigations
of the suggested FGMDH in the problem of forecasting macroeconomic indicators
of Ukraine are carried out, and comparison with classic GMDH and neural network
BP is performed.

Keywords: fuzzy GMDH, orthogonal partial descriptions, model adaptation,
forecasting

1. Introduction

One of the most important problems in the sphere of economy and finance is the
problem of forecasting economic and financial processes. The distinguishing prop-
erties of these processes are the following:

1. The form of functional dependence is unknown, and only model class is
determined.

2. Short data samples.

3. Time series xi tð Þ in general case is nonstationary.

In this case the application of traditional methods of statistical analysis (e.g.,
regression analysis) is impossible, and it’s necessary to apply methods based on
computational intelligence (CI). To this class belongs group method of data
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handling (GMDH) developed by Ivakhnenko [1, 2] and extended by his colleagues.
GMDH method belongs to self-organizing methods and allows to discover hidden
laws in the appropriate object area. The advantage of GMDH algorithms is the
capability of constructing optimal models.

But classic GMDH has the following shortcomings:

1. GMDH utilizes least squared method (LSM) for finding the model
coefficients, but matrix of linear equations may be close to degenerate, and
the corresponding solution may appear non-stable. Therefore, the special
methods for its regularization should be used.

2. GMDH doesn’t work in the case of qualitative or fuzzy input data.

Therefore in the last 10 years, the new variant of GMDH—fuzzy GMDH—was
developed and extended which may work with fuzzy input data and is free of
classical GMDH drawbacks [3–5].

Fuzzy GMDH is also based on the same principles as classical GMDH but con-
struct fuzzy models.

The main goals of this paper are to investigate different modifications of
FGMDH, analyze their properties, and investigate its efficiency as compared with
classical GMDH in forecasting problems.

2. Problem formulation

A set of initial data is given inclusive of input variables X 1ð Þ;X 2ð Þ;…;X Nð Þf g
and output variables Y 1ð Þ;Y 2ð Þ;…;Y Nð Þf g, where X ¼ x1; x2;…; xn½ � is -n-tuple
vector, N is a number of observations, and input data may be incomplete or fuzzy,
in particular given in interval form. The task is to construct an adequate fuzzy
forecasting model Y ¼ F x1; x2;…; xnð Þ, and besides, the obtained model should have
the minimal complexity.

2.1 Principal ideas of GMDH: fuzzy model construction

As it well known, the drawbacks of GMDH are the following [3, 4]:

• GMDH utilizes LSM for finding the model coefficients, but matrix of linear
equations may be close to degenerate, and the corresponding solution may
appear non-stable and very volatile. Therefore, the special regularization
methods should be applied.

• After application of GMDH point-wise estimations is obtained, but in many
cases, it’s desirable to find interval value for coefficient estimates.

• GMDH doesn’t work in the case of incomplete, qualitative, or fuzzy input data.

Therefore, in the last 10 years, the new variant of GMDH—fuzzy GMDH—was
developed and improved which may work with fuzzy and qualitative input data and
is free of classical GMDH drawbacks [3].

As it is well known, GMDH method is based on the following principles [1–3]:

2
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1. The principle of multiplicity of models

2. The principle of external complement which means that the whole sample
should be divided into two parts—training subsample and test subsample

3. The principle of self-organization

4. The principle of freedom of choice

Fuzzy GMDH is also based on these principles but construct fuzzy models. Let’s
consider its main ideas.

In works [3–5], the linear interval regression model was considered:

Y ¼ A0Z0 þ A1Z1 þ…þ AnZn (1)

where Ai is a fuzzy number of triangular form described by a pair of parameters
Ai ¼ αi; cið Þ, where αi is interval center, ci is its width, and ci ≥0, Zi is the input
variables.

Then Y is a fuzzy number, parameters of which are determined as follows:
The interval center

αy ¼ ∑αizi ¼ αT � z (2)

The interval width

cy ¼ ∑ci � ∣zi∣ ¼ cT∣z∣ (3)

For example, for the partial description (PD) of the kind

f xi; xj
� �

¼ A0 þ A1xi þ A2xj þ A3xixj þ A4x
2
i þ A5x

2
j (4)

it’s necessary to substitute in the general model (1)
z0 ¼ 1 z1 ¼ xi z2 ¼ xj z3 ¼ xixj z4 ¼ x2i z5 ¼ x2j .

Let the training sample be z1; z2;…; zMf g, y1; y2;…; yM
� �

. Then for the model (1)

to be adequate, it’s necessary to find such parameters αi; cið Þ i ¼ 1, n, which satisfy
the following inequalities:

αTzk � cT � zkj j≤ yk
αTzk þ cT � zkj j≥ yk

, k ¼ 1,M

(

(5)

Let’s formulate the basic requirements for the linear interval model of a kind (4).
It’s necessary to find such values of the parameters αi; cið Þ of fuzzy coefficients

for which:

1. Real values of the observed outputs yk should drop in the estimated interval
for Yk.

2. The total width of the estimated interval for all sample points should be
minimal.

3

Investigation of Fuzzy Inductive Modeling Method in Forecasting Problems
DOI: http://dx.doi.org/10.5772/intechopen.86348



These requirements lead to the following linear programming (LP) problem [3, 4]:

minðC0 �Mþ C1∑
M

k¼1

xkij j þ C2∑
M

k¼1

xkj
�

�

�

�þ C3∑
M

k¼1

xkixkj
�

�

�

�þ

þC4∑
M

k¼1

x2ki
�

�

�

�þ C5∑
M

k¼1

x2kj

�

�

�

�

�

�

(6)

under constraints

a0 þ a1xki þ a2xkj þ a3xkixkj þ a4x
2
ki þ a5x

2
kj � ðC0 þ C1 xkij j þ C2 xkj

�

�

�

�þ

þС3 xkixkj
�

�

�

�þ С4 x2ki
�

�

�

�þ С5 x
2
kj

�

�

�

�

�

�Þ≤ yk
(7)

a0 þ a1xki þ a2xkj þ a3xkixkj þ a4x
2
ki þ a5x

2
kj þ ðС0 þ C1 xkij j þ C2 xkj

�

�

�

�þ

þС3 xkixkj
�

�

�

�þ С4 x2ki
�

�

�

�þ С5 x
2
kj

�

�

�

�

�

�Þ≥ yk,

Cp ≥0, p ¼ 0, 5 k ¼ 1,M

(8)

where k is a number of a point.
As one can easily see, the task (6)–(8) is a LP problem. However, the inconve-

nience of the model (6)–(8) for the application of standard LP methods is that there
are no constraints of non-negativity for variables αi. Therefore for its solution, it’s
reasonable to pass to the dual LP problem by introducing dual variables δkf g and

δkþMf g, k ¼ 1,M. Using simplex method after finding the optimal solution for the
dual problem, the optimal solutions αi; cið Þ of the initial direct problem will be also
found.

3. Description of fuzzy GMDH algorithm

Let’s present the brief description of the algorithm FGMDH [3, 4].

1. Choose the general model type by which the sought dependence will be
described.

2. Choose the external criterion of optimality (criterion of regularity or non-
biasedness).

3. Choose the type of partial descriptions (e.g., linear or quadratic one).

4. Divide the sample into training Ntrain and test Ntest subsamples.

5. Put zero values to the counter of model number k and to the counter of
iteration number r.

6. Generate a new partial model f k (4) using the training sample. Solve the LP
problem (6)–(8), and find the values of parameters αi, ci.

7. Calculate the value of external criterion (N rð Þ
ubk or δ

2ð Þ
k rð Þ) at the test sample.

8. k ¼ kþ 1. If k>C2
N for r = 1 or k>C2

F for r >1, then k ¼ 1, r ¼ rþ 1, and go to
step 9; otherwise go to step 6.
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9. Calculate the best value of the criterion for models of rth iteration δ 2ð Þ rð Þ or
N

rð Þ
ub . If r ¼ 1, then go to step 6; otherwise go to step 10.

10.If Nub rð Þ �Nub r� 1ð Þj j≤ ε or δ 2ð Þ rð Þ ≥ δ 2ð Þ r� 1ð Þ, then go to step 11; otherwise
select F best models, assign r ¼ rþ 1 and k ¼ 1, go to step 6, and execute
(r + 1)th iteration.

11. Select the best model of the previous iteration using external criterion and
moving back by its connections and successively passing all the previous rows
find analytical form the constructed model.

4. Analysis of different membership functions

In the first papers devoted to fuzzy GMDH [3], the triangular membership
functions (MFs) were considered. But as fuzzy numbers may also have the other
kinds of MF, it’s important to consider the other classes of MF in the problems of
modeling using FGMDH. In paper [4] fuzzy models with Gaussian and bell-shaped
MFs were investigated.

Consider a fuzzy set with Gaussian MF:

μB xð Þ ¼ e�
1
2
x�1ð Þ2
c2 (9)

Let the linear interval model for partial description of FGMDH take the form
(4). Then the problem is formulated as follows:

Find such fuzzy numbers Bi, with parameters ai; cið Þ, that:

• The observation yk would belong to a given estimate interval for the set Y kð Þ
with degree not less than α, 0 < α< 1.

• The width of estimated interval of the degree α would be minimal.

In [4, 6] it was shown that the problem of finding optimal fuzzy model will be
finally transformed to the following LP problem:

minðC0 �Mþ C1∑
M

k¼1

xkij j þ C2∑
M

k¼1

xkj
�

�

�

�þ C3∑
M

k¼1

xkixkj
�

�

�

�þ

þC4∑
M

k¼1

x2ki
�

�

�

�þ C5∑
M

k¼1

x2kj

�

�

�

�

�

�

(10)

under constraints

a0 þ a1xki þ…þ a5x
2
kj þ С0 þ C1 xkij j þ…þ С5 x

2
kj

�

�

�

�

�

�

� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2ln α
p

≥ yk

a0 þ a1xki þ…þ a5x2kj � С0 þ C1 xkij j þ…þ С5 x2kj

�

�

�

�

�

�

� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2ln α
p

≤ yk

9

>

=

>

;

k ¼ 1,M (11)

To solve this problem like the case with triangular MF, it’s reasonable to pass to
the dual LP problem of the form

max ∑
M

k¼1

yk � δkþM � ∑
M

k¼1

yk � δk

 �

(12)
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with constraints of equalities and inequalities

∑
M

k¼1

δkþM � ∑
M

k¼1

δk ¼ 0,

∑
M

k¼1

Xki � δkþM � ∑
M

k¼1

Xkii � δk ¼ 0

…

∑
M

k¼1

Xkj
2 � δkþM � ∑

M

k¼1

X2
kj
� δk ¼ 0

(13)

∑
M

k¼1

δk þ ∑
M

k¼1

δkþM ≤
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2ln α
p

∑
M

k¼1

Xkij j � δkþM þ ∑
M

k¼1

Xkij j � δk ≤
∑M

k¼1 Xkij j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2ln α
p

…

∑
M

k¼1

X2
kj

�

�

�

�

�

� � δkþM þ ∑
M

k¼1

X2
kj

�

�

�

�

�

� � δk ≤
∑M

k¼1 X
2
kj

�

�

�

�

�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2ln α
p

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

(14)

δk ≥0, k ¼ 1, 2M (15)

Analyzing dual LP program (12)–(15), it’s easy to notice that this problem is

always solvable as there trivial solution δk ¼ 1 k ¼ 1, 2M always exists. Therefore
the initial problem (10) and (11) also always has solutions with any data.

Thus, fuzzy GMDH allows to construct fuzzy models and has the following
advantages:

1. The problem of optimal model determination is transformed to the problem
of linear programming, which is always solvable.

2. As the result of method work, the interval regression model is being built.

5. Fuzzy GMDH with different partial descriptions: orthogonal
polynomials

As it is well known from the general GMDH theory, model pretenders are
generated on the base of so-called partial description—elementary models of two
variables. Usually as partial descriptions, linear or quadratic polynomials are used.
The alternative to this class of models is application of orthogonal polynomials. The
choice of orthogonal polynomials as partial descriptions is determined by the fol-
lowing advantages:

• Due to orthogonal property, the determination of polynomial coefficients goes
faster than for non-orthogonal polynomials.

• The coefficients of polynomial approximating equation don’t depend on the
real degree of initial polynomial model, so if a priori the real polynomial
degree is not known, one may calculate the polynomials of various degrees,
and by this property the coefficients obtained for polynomials of lower degrees
remain the same after transfer to higher polynomial degrees. This property is
the most important during investigation of real degree of approximating
polynomial.

6
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5.1 Chebyshev’s orthogonal polynomials

Chebyshev’s orthogonal polynomials in general case have the following
form [5]:

Fν ξð Þ ¼ Tν ξð Þ ¼ cos ν � arccosξð Þ, � 1≤ ξ≤ 1 (16)

These polynomials have the following orthogonality property:

ð

1

�1

Tμ ξð ÞTν ξð Þdξ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
p ¼

0 if μ 6¼ ξ;
π

2
if μ ¼ ξ 6¼ 0;

π if μ ¼ ξ ¼ 0:

8

>

<

>

:

(17)

where
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
p

is a weighting coefficient ω ξð Þ in the Eq. (17).
The approximating Chebyshev’s orthogonal polynomial for y is obtained on the

base of function S minimization:

S ¼
ð

1

�1

ω ξð Þ y ξð Þ � ∑
m

i¼0
biTi ξð Þ


 �2

dξ (18)

where from (18) we obtain the following expression for coefficients:

bk ¼

1

π

ð

1

�1

y ξð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
p dξ, k ¼ 0

2

π

ð

1

�1

y ξð ÞTk ξð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
p dξ, k 6¼ 0

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(19)

Hence, the approximating equation takes the form

y ξð Þ ¼ ∑
m

k¼0

bkTk ξð Þ (20)

As it may be readily seen from the presented expressions, coefficient bk in
Eq. (19) doesn’t depend on the choice of degree m. Thus, the variable m doesn’t
demand recalculation of bj,∀j≤m, while such recalculation is necessary for non-
orthogonal approximation.

The best degreem ∗ of approximating may be obtained on the base of hypothesis
that investigation results y ið Þ, i ¼ 1, 2,…, r have independent Gaussian distribution
in the bounds of some polynomial function y of definite degree, for example,
m ∗ þ μ, where

ym ∗þμ xið Þ ¼ ∑
m ∗þμ

j¼0
bjx

j
i (21)

and a dispersion σ2 of distribution y‐y don’t depend on μ.

It’s clear that for very small m (m =0,1,2,…), σ2m decreases as m grows.
As in accordance with previously formulated hypothesis, dispersion doesn’t

depend on μ; therefore, the best degree m ∗ is a minimal m, for which σm ffi σmþ1.
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For determining m ∗ it’s necessary to calculate the approximating polynomials of
various degrees. As coefficients bj in Eq. (20) don’t depend on μ, the determination
of the best degree of polynomial is accelerated.

Let us have the forecasted variable Y and input variables x1, x2,…xn. Let’s search
the relation between them in the following form:

Y ¼ A1f 1 x1ð Þ þ A2f 2 x2ð Þ þ…þ Anf n xnð Þ (22)

where Ai is a fuzzy number of triangular type given as Ai ¼ αi; cið Þ,
functions f i are determined so [5, 6]

f i xið Þ ¼ ∑
mi

j¼0
bijTj xið Þ (23)

The degree mi of function f i is determined using hypothesis defined in the
preceding section. So if we denote zi ¼ f i xið Þ, we’ll get linear interval model in its
classical form.

5.2 Investigation of trigonometric polynomials as partial descriptions

Let function f xð Þ be periodic with period 2π defined at the interval �π; π½ �, and
its derivative f 0 xð Þ is also defined at the interval �π; π½ �. Then the following equality
holds

S xð Þ ¼ f xð Þ;∀x∈ �π; π½ � (24)

where

S xð Þ ¼ a0
2
þ ∑

j¼1
aj cos jxð Þ þ bj sin jxð Þ
� �

(25)

Coefficients aj and bj are calculated by Euler formulas:

aj ¼
1

π

ð

π

�π

f xð Þ cos jxð Þdx;

bj ¼
1

π

ð

π

�π

f xð Þ sin jxð Þdx;

(26)

5.3 Definition

A trigonometric polynomial of the degree M is called the following polynomial:

TM xð Þ ¼ a0
2
þ ∑

M

j¼1
aj cos jxð Þ þ bj sin jxð Þ
� �

(27)

The following theorem is true stating that exists such M,where 2M <N, which
minimizes the following criterion:

∑
N

j¼1
f xið Þ � TM xið Þð Þ2 (28)

8

Introduction to Data Science and Machine Learning



Hence the coefficients of corresponding trigonometric polynomial are deter-
mined by formulas

aj ¼
2

N
∑
N

i¼1
f xið Þ cos jxi

� �

;

bj ¼
2

N
∑
N

i¼1
f xið Þ sin jxi

� �

;

(29)

Let it be the forecasted variable Y and input variables x1, x2,…xn. Let’s search the
dependence among them in the form

Y ¼ A1 f 1 x1ð Þ þ A2 f 2 x2ð Þ þ…þ An f n xnð Þ (30)

where Ai is a fuzzy number of triangular type given as Ai ¼ αi; cið Þ, functions f i
are determined in such a way:

f i xið Þ ¼ TMi xið Þ (31)

The degree Mi of function f i is determined by the theorem described in the
preceding section. Therefore, if we assign zi ¼ f i xið Þ, the linear interval model will
be obtained in its classical form.

6. Adaptation of fuzzy GMDH models

While forecasting by self-organizing methods (fuzzy GMDH, in particular), the
problem of adaptation arises in the case of the training sample size increase when
it’s needed to correct the obtained model in accordance with new available data.
Taking into account new information obtained while forecasting adaptation may be
done by two approaches. The first one is to correct parameters of a forecasting
model with new data assuming that model structure didn’t change. The second
approach consists in adaptation of not only model parameters but its optimal struc-
ture as well. This way demands the repetitive use of full GMDH algorithm and is
connected with huge volume of calculations.

The second approach is used if adaptation of parameters doesn’t provide good
forecast and the new real output values don’t drop in the calculated interval for its
estimate.

In our work the first approach is used based on adaptation of FGMDH model
parameters with new available data. Here the recursive identification methods are
preferably used, especially the recursive LSM. In this method the parameter esti-
mates at the next step are determined on the base of estimates at the previous step,
model error, and some information matrix which is modified during all estimation
process and therefore contains data which may be used at the next steps of adapta-
tion process [5].

Hence, model coefficient adaptation will be simplified substantially. If we store
information matrix obtained while identification of optimal model using fuzzy
GMDH, then for model parameters adaptation, it will be enough to fulfill only one
iteration by recursive LSM method.

6.1 The application of recurrent LSM for model coefficients adaptation

Consider the following model:

9
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y kð Þ ¼ θTΨ kð Þ þ v kð Þ (32)

where y kð Þ is a dependent (output) variable, Ψ kð Þ is a measurement vector, v kð Þ
are random disturbances, and θ is a parameter vector to be estimated.

The parameters estimate θ at the step N is performed due to such formula [5, 6]:

θ
_

Nð Þ ¼θ
_

N � 1ð Þ þ γ Nð Þ y Nð Þ � θ
_

T N � 1ð ÞΨ Nð Þ
h i

(33)

where γ Nð Þ is a coefficient vector which is determined by formula

γ Nð Þ ¼ P N � 1ð ÞΨ Nð Þ
1þ ΨT Nð ÞP N � 1ð ÞΨ Nð Þ

(34)

where P N � 1ð Þ is so-called an information matrix, determined by formula

P N � 1ð Þ ¼ P N � 2ð Þ � P N � 2ð ÞΨ N � 1ð ÞΨT N � 1ð ÞP N � 2ð Þ
1þ ΨT N � 1ð ÞP N � 2ð ÞΨ N � 1ð Þ

(35)

As one can easily see in (35), the information matrix may be obtained indepen-
dent on parameter estimation process and parallel to it. The adaptation of two

parameter vectors θT1 ¼ α1;…; αm½ �; θT2 ¼ C1;…;Cm½ �; is performed in such a way
using the formulas (35)

θ
_

1 Nð Þ ¼ θ
_

1 N � 1ð Þ þ γ1 Nð Þ y Nð Þ � θ
_T

1 N � 1ð ÞΨ1 Nð Þ
� 


θ
_

2 Nð Þ ¼ θ
_

2 N � 1ð Þ þ γ2 Nð Þ yc Nð Þ � θ
_T

2 N � 1ð ÞΨ2 Nð Þ
� 
 (36)

yc Nð Þ ¼ ∣y Nð Þ � θT1 N � 1ð ÞΨ1 Nð Þ∣

where ΨT
1 ¼ z1;…; zm½ �;ΨT

2 ¼ jz1j;…; jzmj½ �.

7. Experimental investigations of FGMDH in forecasting

The goal of experiments was the forecasting of macroeconomic indicators of
Ukraine and estimating of efficiency of suggested FGMDH. In experiments, the
database was utilized which contains monthly values of 24 macroeconomic indica-
tors of Ukrainian economy, since July 1995 till 2013. As forecasting variables
consumer price index (CPI) and gross national product (GNP) were chosen.

While constructing forecasting models, the technique of sliding window was
utilized, whose size was determined automatically by regression analysis. For
determination of input variables significant for forecasting, the methods of regres-
sion analysis were also used.

The following experiments were performed:

1. Forecasting model construction with application of different membership
functions: triangular, Gaussian, and bell-wise one

2. For macroeconomic indicators (CPI and GNP) forecasting the construction of
forecasting models using different partial descriptions—classic Chebyshev’s
polynomials and trigonometric polynomials.
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3. For adaptation of models, the algorithm of stochastic approximation and
recurrent least squared method (RLSM) were applied.

4. Comparative analysis of the suggested algorithms with classic GMDH and
neural networks (NN), in particular neural network backpropagation, was
performed.

7.1 Comparison of different membership functions

The experimental investigations of fuzzy forecasting models were carried out
with following MF: triangular, Gaussian, and bell-wise. As accuracy criteria RMSE
was chosen. RMSE values while forecasting CPI are presented in Figure 1.

As one can see, the most efficient for constructing linear interval models is
application of bell-wise membership functions for fuzzy coefficients, on the second
place are Gaussian MFs, and the worst forecasting accuracy was achieved with
triangular MF. In the next experiment, the task was to forecast GPD values.

In Figure 2 the obtained RMSE values for forecasting GNP are presented.
As one can see, the results are practically the same as in the previous experiment.

The best accuracy was attained with bell-wise MF.

7.2 Comparison of different partial descriptions

In the next series of experiments, the investigations of FGMDH models with the
following partial descriptions were carried out: quadratic polynomials, Chebyshev’s
polynomials, trigonometric polynomials, and ARIMA models. In Figure 3 accuracy
of forecasting PCI is presented with different PD.

As we can see, the best results are obtained with models which use trigonometric
polynomials as PD. Somewhat worse are results with classic quadratic polynomials.
And the worst turned out to be ARIMA models as PD. It may be explained by the
fact that ARIMA models are functions of one variable. That is a serious drawback of
such models.

7.3 Comparison of crisp and fuzzy GMDH

For more comprehensive efficiency comparison of crisp and fuzzy GMDH,
existing implementation of GMDH was extended by inclusion of new types of PD
orthogonal polynomials: Chebyshev’s and trigonometric and ARIMA models as PD.

Figure 1.
Forecasting accuracy of PCI with different MF.
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As adaptation algorithm stochastic approximation and recurrent LSM were
implemented. In Figures 4 and 5, the mean RMSE values for crisp and fuzzy
GMDH in the whole range of data variation are presented for different types of PD
without adaptation and with adaptation algorithms.

As one can easily see from presented results, the fuzzy algorithm GMDH shows
better forecasting accuracy than classic GMDH for all adaptation algorithms.

So the results of experiments have confirmed indisputable advantages of fuzzy
GMDH over classic GMDH for problem of forecasting macroeconomic indicators.
In the next experiments, the comparison of fuzzy GMDH with results of neural
network (NN) backpropagation was performed. The final results—MSE values on
five forecasting points while forecasting CPI and GNP—are presented in Table 1.

Summing the experimental results, the following conclusions were made:

1. Forecasting accuracy of fuzzy GMDH algorithms are, in a whole, better than
of non-fuzzy GMDH.

2. Forecasting accuracy of non-fuzzy and fuzzy GMDH algorithms are better
than that of NN backpropagation. Modification of membership functions

Figure 2.
Forecasting accuracy of GNP with different MF.

Figure 3.
Forecasting accuracy of PCI for different PD.
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doesn’t lead to significant changes of forecasting quality, but the best results
were obtained with bell-wise and Gaussian MF.

3. The best forecasting accuracy for considered problems was obtained with
models of fuzzy GMDH using quadratic and trigonometric partial
descriptions.

4. The best adaptation algorithm for fuzzy GMDH models is recurrent RLSM.

In [7, 8] the generalization of fuzzy GMDH for case when input data are also
fuzzy was considered. Then a linear interval regression model takes the following
form:

Y ¼ A0Z0 þ A1Z1 þ…þ AnZn,

Figure 4.
Forecasting accuracy of classical and fuzzy GMDH for PCI.

Figure 5.
Forecasting accuracy of classical and fuzzy GMDH for GDP.
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Consider the case of symmetrical membership function for parameters Ai, so
they can be described by the pair of parameters (ai, ci), where

Ai ¼ ai � ci, Ai ¼ ai þ ci, ci is the interval width, ci ≥ 0,
and Zi is input variable which is also a fuzzy number of triangular shape, defined

by three parameters Zi ;
�Zi;Zi

� �

, where Zi is a lower border, �Zi is a center, and Zi is

an upper border of fuzzy number.
It was shown that corresponding model is also LP problem, and corresponding

algorithm FGMDH was developed for such case [7, 8].

8. Conclusions

In this paper fuzzy inductive modeling method FGMDH is considered.
The algorithms of FGMDH with different membership functions and different

partial descriptions, including orthogonal polynomials, were presented and ana-
lyzed.

The experimental investigations of GMDH and fuzzy GMDH in problems of
macroeconomic index forecast in Ukrainian economy were carried out.

The comparative investigations of FGMDH with ARIMA and neural network
backpropagation were performed.

Experimental result analysis has confirmed the high accuracy of fuzzy GMDH in
problems of forecasting in macroeconomy.

Adaptation algorithm Without

adaptation

Stochastic

approximation

RLSM

CPI GNP CPI GNP CPI GNP

Triangle MF + quadratic polynomial 0.308 530.3 0.184 330.0 0.173 311.9

Gaussian MF + quadratic polynomial 0.294 531.3 — — — —

Bell-wise MF + quadratic polynomial 0.268 497.9 — — — —

Triangular MF + Chebyshev’s polynomial 0.403 621.4 0.341 458.1 0.337 377. 2

Triangular MF + Laguerre polynomial 0.372 589.5 0.264 442.9 0.293 378.5

Triangular MF + trigonometric polynomial 0.261 537.7 0.185 347.9 0.165 331.9

Triangular MF + ARIMA model 0.862 704.3 0.683 513.5 0.597 472.6

GMDH + quadratic polynomial 0.343 596.7 0.204 428.2 0.192 369.2

GMDH + Chebyshev’s polynomial 0.425 641.4 0.351 473.2 0.347 398.4

GMDH + Laguerre polynomial 0.396 598.5 0.292 459.0 0.274 376.4

GMDH + trigonometric polynomial 0.291 574.8 0.182 349.5 0.177 332.2

GMDH + ARIMA model 0.902 728.4 0.749 518.7 0.714 498.3

NN backpropagation1 0.954 792.3 — — — —

NN backpropagation2 0.741 668.6 — — — —

1Neural network constructed with Neural Networks Toolbox 4.0.6 (MathWorks).
2Neural network constructed with Alyuda Forecaster 1.6 (Alyuda Research).

Table 1.
Forecasting accuracy (MSE) for different forecasting methods.
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