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Chapter

Non-Gaussian Entanglement and
Wigner Function
Mustapha Ziane and Morad El Baz

Abstract

A measure of non-Gaussian entanglement in continuous variable (CV) systems
based on the volume of the negative part of the Wigner function is proposed. We
analyze comparatively this quantity with a numerical evaluation of the negativity of
the partial transpose (NPT) considering a system of Bell states formed in the
coherent state basis (quasi-Bell states).

Keywords:Wigner function, negativity, non-Gaussian state, nonclassicality,
non-Gaussianity, quasi-Bell states, coherent states

1. Introduction

Continuous variable (CV) quantum optical systems are well-established tools for
both theoretical and experimental investigations of quantum information
processing (QIP) [1, 2]. Entangled states represent key resources, both for quantum
computers and for many communication schemes [1, 3], an can be realized with
Gaussian two-mode states; these states are relatively easy to work with theoretically
and are also commonly produced in a laboratory. It has been successfully applied to
implement various important protocols, such as quantum teleportation [4–6],
quantum dense coding [7–9], and entanglement swapping [10]. This advancement
comes from the development of Gaussian optical operations, such as beam splitting,
phase shifting, squeezing, displacement, and homodyne detection. Recently, it
became evident that the understanding of entanglement behavior beyond Gaussian
systems is a necessity [11–13]. Furthermore, recent theoretical investigations have
shown some limits to the Gaussian operations. For example, the no-go theorem
relating to the distillation of entanglement shard by distant parties using only
Gaussian local operations and classical communications (LOCC) [14, 15].
Moreover, on the theoretical level, the study of entanglement in many-body
systems has been limited to Gaussian states [16–19] where the quantification of
quantum correlations (QC) reduces to the study of the covariance matrix, but the
non-Gaussian entanglement doesn’t have such a simplified approach.

The problem of quantifying entanglement in non-Gaussian systems, in a way
that is independent of particular external parameters, hasn’t solved yet; it is our
main objective in this paper. An entanglement measure E of the state ρ should
satisfy some criteria [20] to be an entanglement monotone. Many quantities have
been proposed as a quantifier of entanglement in discrete variables (DV) and CV
Gaussian states. Recently, however, two entanglement measures that are much
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more amenable to evaluation have been proposed, the negativity of the partial
transpose (NPT) and its logarithmic extension [21].

In this chapter, we are interested in establishing a direct measure of
entanglement in non-Gaussian systems. This measure is based on the Wigner
representation in the phase space of the non-Gaussian states. That is, they are
defined in terms of the quantification of the degree of the negativity of Wigner
function (NWF) [22, 23]. The most distinctive feature of this entanglement
measure is the ease of calculated with a numerical integration.

2. Two-mode quasi-Bell state: an entangled non-Gaussian state

The simplest example of a non-Gaussian state is the single-photon state. There
are also other examples that can be generated by excitations of Gaussian states
[24, 25]. Here we are going to use quasi-classical state that has been extensively
studied for its nonclassical proprieties and violation of Bell inequalities; it is the
superposition of two-mode standard coherent states (SCS). Let us consider two
modes of electromagnetic fields A and B with corresponding annihilation operators

â and b̂. Two-mode coherent states are defined by ∣α, βi ¼ Da αð ÞDb βð Þ∣0,0i, where
∣0,0i is the two-mode vacuum state and Di αð Þ is the displacement operator of the
mode i i ¼ A;Bð Þ. The state ∣α, βi can be expressed into the form

∣α, βi ¼ e� αj j2þ βj j2ð Þ=2 ∑
∞

n,m

αnβn
ffiffiffiffiffiffiffiffiffiffi

n!m!
p ∣n,mi, (1)

where ∣n1, n2i are the two-mode Fock states. The quasi-Bell coherent states
(QBS) are defined by the following superpositions of two-mode coherent states:

∣ψ�i ¼ N� jα; βð i � j � α;�βiÞ, (2)

∣ϕ�i ¼ N� jα;�βð i � j � α; βiÞ, (3)

where N� ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 exp �2 αj j2 � 2 βj j2
� �

þ 2

r

is the normalization factor.

The Wigner functionW R̂; α; β
� �

of the state (1) is given by

W R̂; α; β
� �

¼ 1

π
exp f α; q1; p1

� �

þ f β; q2; p2
� �� �

, (4)

where R̂ ¼ q1; p1; q2; p2
� �T

is the quadrature operators vector and

f x; y; zð Þ ¼ �2 xj j2 þ
ffiffiffi

2
p

x ∗ þ xð Þyþ i
ffiffiffi

2
p

x� x ∗ð Þz� y2 � z2. For the quasi-Bell
entangled coherent states Eq. (2), the Wigner function is given by [26, 27].

W
�
QCS R̂; α; β
� �

¼ N2
α,β,� W R̂1; α; α

� �

W R̂2; β; β
� ��

�W R̂1; α;�α
� �

W R̂2; β;�β
� �

�W R̂1;�α; α
� �

W R̂2;�β; β
� �

þW R̂1;�α;�α
� �

W R̂2;�β;�β
� ��

,

(5)

where R̂1 and R̂2 are the quadrature operators vectors of the first and second

modes andW R̂i; x; y
� �

is the Wigner function of one-mode coherent state with

i ¼ 1, 2; x; yf g ¼ �α;�βf g satisfies the normalization condition
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R R R R

R̂W R̂; α; β;
� �

dR̂ ¼ 1. Hence the doubled volume of the integrated negative part
of the Wigner function of the state (2) may be written as

δ ψ�ð Þ ¼
ZZZZ

R̂

W
�
QCS R̂; α; β
� �

	

	

	

	

	

	dR̂ � 1: (6)

By definition, the quantity δ is equal to 0 for coherent and squeezed vacuum
states, for whichW is nonnegative. In this work we shall treat δ as a parameter
characterizing the properties of the state under consideration.

It is clear from expression (5) and the plot in Figure 1 that the Wigner
function of the quasi-Bell state (2) is non-Gaussian. In order to characterize this
non-Gaussianity, several measures of the degree of non-Gaussianity were proposed
[28, 29]. According to [29], the degree of non-Gaussianity of state ρ is defined by

δNG ρð Þ ¼ S ρ∥τð Þ: (7)

where S ρ1∥ρ2ð Þ is the quantum relative entropy between states ρ1 and ρ2.
Here τ is the reference Gaussian state with the same first and second moments of ρ.
This property of reference state τ leads to Tr ρ ln τ½ � ¼ Tr τ ln τ½ �, so that

δNG ρð Þ ¼ S τð Þ � S ρð Þ, (8)

where S ρð Þ is the Von Neumann entropy of the state ρ. Also S τð Þ ¼ h dþð Þþ
h d�ð Þ, where

h xð Þ ¼ xþ 1

2


 �

ln xþ 1

2


 �

� x� 1

2


 �

ln x� 1

2


 �

(9)

and d2� ¼ 1
2 Δ δð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ δð Þ2 � 4I4

q


 �

are the symplectic eigenvalues of the

covariance matrix σ of the reference Gaussian state τ. Here Δ δð Þ ¼ I1 þ I2 þ 2I3,
where I1 ¼ det Að Þ, I2 ¼ det Bð Þ, I3 ¼ det Cð Þ, and I4 ¼ det σð Þ are the four local
symplectic invariants of the covariance matrix:

σ ¼
A C

C† B


 �

, (10)

where

σij ¼
1

2
Ri;Rj

� 
� �

� Rih i Rj

� �

: (11)

For the considered states (2), we suppose that the two fields have the same mode
(α ¼ β); we find

σψþ ¼

uþ 0 rþ 0

0 vþ 0 sþ

rþ 0 uþ 0

0 sþ 0 vþ

0

B

B

B

@

1

C

C

C

A

, (12)

σψ� ¼

u� 0 r� 0

0 v� 0 s�

r� 0 u� 0

0 s� 0 v�

0

B

B

B

@

1

C

C

C

A

, (13)

3

Non-Gaussian Entanglement and Wigner Function
DOI: http://dx.doi.org/10.5772/intechopen.86426



Figure 1.
Wigner function of quasi-Bell states (2). (a) Wigner function of ψþ for αj j ¼ 0. (b) Wigner function of ψþ for
αj j ¼ 2. (c) Wigner function of ψþ for αj j ¼ 1. (d) Wigner function of ψþ for αj j ¼ 2. (e) Wigner function of
ψ� for αj j ¼ 0:5. (f) Wigner function of ψ� for αj j ¼ 1. (g) Wigner function of ψ� for αj j ¼ 1:5. (h) Wigner
function of ψ� for αj j ¼ 2.
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where we have defined

u� ¼ N2
α,β,� 4α2 � Γ

2 þ 1
� �

, r� ¼ 4α2N2
α,β,�, (14)

v� ¼ N2
α,β,� ∓4α2Γ2 ∓ Γ2 þ 1

� �

, s� ¼ ∓4Γ2α2N2
α,β,�, (15)

with Γ ¼ αj � αh i ¼ Exp � αj j2
2

� �

. Figure 2 shows the behavior of non-

Gaussianity of states (2) in terms of αj j. These figures show that non-Gaussianity
increases with increasing αj j (this behavior will be discussed in the fourth section).

3. Numerical evaluation of negativities (NPT and NWF)

In this section, we briefly review the NPT as a computable entanglement
measure that possesses the proprieties of an entanglement monotone given in [21].
The NPT, N ρ̂ð Þ of a state ρ̂ is defined as the absolute value of the sum of the

negative eigenvalues of the partial transpose of ρ̂ denoted ρ̂PT . We may write it as

N ρ̂ð Þ ¼ 1

2
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ̂PT
� �2

q

� ρ̂PT

 �

¼ ∥ρ̂PT∥� 1

2
, (16)

where ∥:∥ denotes the trace norm [21].
The quasi-Bell coherent state (2) is defined in a non-orthonormal basis, and it is

typically not possible to obtain an analytical expression for the negativity. However,
as shown in the following, one can compute it numerically. First, we expand the
quasi-Bell state (2) in the Fock basis:

ρ̂� ¼ ∑
n1, n2,m1,m2

ρ�n1,n2,m1,m2
∣m1i n1j⊗jm2h i n2∣,h (17)

where

ρ�n1,n2,m1,m2
¼ N2

0e
�2 αj j α n1þn2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi

n1!n2!
p þ �αð Þ m1þm2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1!m2!
p

 !

: (18)

Figure 2.
Non-Gaussianity versus αj j. (a) for states ψþ and (b) for state ψ�.
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The partial transpose of this state with respect to mode two is

ρ̂� ¼ ∑
n1, n2,m1,m2

ρ�n1,m2,m1,n2 ∣m1i n1j⊗jm2h i n2∣:h (19)

The eigenvalues are obtained by numerical diagonalization of the partial trans-
pose density matrix (19). With this result, we can obtain the NPT straightforwardly
using Eq. (16), and Figure 3a and b shows the numerical values of this NPT.

4. Discussion

In this section, we will discuss the different behaviors of the non-Gaussian
entanglement and the variation of the negativity of the WF for the bipartite system
considered early in terms of the coherent state amplitude αj j.

Figure 2 shows the variation of the degree of non-Gaussianity for the states
in Eq. (2) as a function of coherent state amplitude αj j. We see that the non-
Gaussianity δNG measured by (8) equal to 0 for small values of αj j increases with
increasing values of the parameter αj j to larger values much higher than 1 and does
not establish in a maximum value. On the other hand, the NPT plots are shown in
Figure 3a and b for the state (2) equal to 0 for αj j ¼ 0 and increase with increasing
values of the parameter αj j to reach its maximum value that is, equal to 1 for
αj j ≳ 1:3. Furthermore, it is seen that the entanglement for large values of α reaches
its maximum value. It is worthwhile noting that, at the limit of large values of the
parameter α, the coherent states ∣αi and ∣� αi become orthogonal; thus the
behavior of quasi-Bell state (2) is, as expected, exactly that of the Bell state.

Figure 3.
Negativity of the partial transpose versus αj j: for the quasi-Bell state ψþ (a) and ψ� (b). Negativity of the
Wigner function versus αj j: for the quasi-Bell state ψþ (c) and ψ� (d).
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The plot in Figure 3c and d shows the behavior of the NWF as a function of αj j
for the non-Gaussian system (2). These two plots show that the NWF δWF has the
same behavior as the NPT. This allows to show that they behave identically and they
have the same inflection points. Which confirms that the NWF is a direct comput-
able measure of non-Gaussian bipartite entanglement that posses the proprieties of
an entanglement quantifier [21].

For our measure, 1≥ δWF ≥0, equal to zero when α became null and the state in
Eq. 2 is now nothing but a two-vacuum product state, and it is maximal for large
values of α where the state (2) is maximally entangled (Bell state).

5. Conclusion

In this work, we have evaluated the negativity of Wigner function and the
negativity of the partial transpose in non-Gaussian states formed by two modes of
field coherent states. We have shown that the negative parts of the Wigner function
can be used as a detector of non-Gaussian entanglement. Interestingly, as used in
this work, the degree of Wigner function negativity can be used as a direct quanti-
fier of non-Gaussian bipartite entanglement.

This work allows us to describe the best characterization of the non-Gaussian
Wigner function and the important use of its negativity in bipartite non-Gaussian
systems, which gives more efficiency in CV quantum information theory, particu-
larly in quantum computing [30], because the Wigner function can be measured
experimentally [31, 32], including the measurements of its negative values [33]. The
interest put on such experiments has triggered a search for operational definitions
of the Wigner functions, based on the experimental setup [34, 35]. It does represent
a major step forward in the detection and the quantification of non-Gaussian
entanglement in bipartite systems.
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