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Abstract

In steady state, the central nervous system (CNS) houses a variety of myeloid 
cells, such as microglia, non-parenchymal macrophages and dendritic cells (DCs), 
and granulocytes. Most of these cells enter the CNS during embryogenesis and are 
crucial for proper CNS development. In adulthood, these resident myeloid cells 
exert crucial homeostatic functions. In neuroinflammatory conditions, like mul-
tiple sclerosis (MS), both lymphoid and myeloid cells from the periphery infiltrate 
the tissue and cause local damage. Although lymphocytes are undeniably important 
players in MS, CNS-resident and CNS-infiltrating myeloid cells have recently 
gained much-deserved attention for their roles in disease progression. Here, we will 
review significant advances made in recent years delineating myeloid cell functions 
within the CNS both in homeostasis and MS. We will also discuss how these cells are 
affected by currently employed therapeutics for MS patients.

Keywords: microglia, macrophages, dendritic cells, monocytes, granulocytes,  
disease modifying treatments, multiple sclerosis, EAE

1. Introduction

Myeloid cells are crucial for central nervous system (CNS) tissue function both 
in development and adulthood. Other than microglia, which are found in the paren-
chyma, CNS meningeal and perivascular spaces along with the choroid plexus, are 
populated by special subsets of macrophages and dendritic cells [1–3]. Additionally, 
granulocyte cells are also present in the homeostatic CNS [4]. Studies in rodents 
have elucidated mechanisms by which these cells promote tissue physiology.

In multiple sclerosis (MS), myeloid cells play a dominant role. Studies in mice 
and human patient samples show that myeloid cells from the periphery enter 
the tissue through a compromised blood-brain barrier (BBB) and together with 
CNS-resident cells perpetuate the inflammatory environment through secretion 
of inflammatory cytokines and reactivation of primed T cells. However, myeloid 
cells may also exhibit anti-inflammatory and pro-reparative functions. The exact 
contribution of each myeloid subset to disease progression is currently the focus of 
thorough investigation.

Here, we will provide an overview of myeloid cell types and functions in homeo-
stasis and how these populations evolve in neuroinflammation. In addition, we will 
review the effects of therapeutics currently employed for MS patients on myeloid 
cell populations and functions.
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2. CNS-resident myeloid cells in homeostasis

The CNS houses a variety of myeloid cell subsets that exert multiple functions 
crucial to homeostasis such as BBB maintenance, sampling of the local milieu, syn-
aptic pruning, and control of neuronal populations in development and adulthood. 
In this section, we will elaborate on the developmental origin and known functions 
of these subsets in the CNS.

2.1 Microglia

Microglia are resident immune cells within the CNS parenchyma proper. They 
derive from Runx1+ erythromyeloid precursors in the extraembryonic yolk sac and 
enter the brain early in embryonic development [5–7]. Before migrating out of the 
yolk sac, these progenitors acquire CD45 and CX3CR1 expression [8] and seed the 
brain parenchyma around embryonic day 9.5 [7, 9, 10], through a process that is 
mediated largely by the metalloproteinases MMP8 and MMP9 [8].

Microglia development relies on transcription factors PU.1, IRF8, and colony-
stimulating factor 1 receptor (CSF1R) signaling [11], whereas transcription factors 
such as MYB, BATF3, and ID2 are not necessary, suggesting that microglia are tran-
scriptionally distinct from bone marrow-derived myeloid cells [6, 10]. Moreover, 
the microglial transcriptional profile changes at each developmental stage, roughly 
divided into early microglia (microglia that seed the brain from E10.5 to E12.5), pre-
microglia (microglia found in the CNS from E12.5 up to P9), and adult microglia 
[10, 12]. Early microglia are highly proliferative, pre-microglia exert functions on 
synapse pruning [10] and excess neuron elimination [13], and adult microglia per-
form immune surveillance but also synaptic refinement [11, 14–16]. During devel-
opment, microglia control the numbers of neural progenitors via phagocytosis. This 
was shown by clodronate-mediated microglia deletion in organotypic brain cultures 
[13] or in CSF1R knockout mice, which lack microglia [17]. However, CSF1R is also 
expressed in other cells including peripheral myeloid subsets and neurons. Specific 
deletion of CSF1R in nestin+ cells recapitulated some of the observed effects in the 
global CSF1R knockout [17].

Complement components C1q and C3 tag extra synapses which are then 
removed by microglia via CR3 receptor-mediated phagocytosis [15, 16]. This 
process is known as synaptic pruning [15]. Neuronally derived CX3CL1 acting 
on microglial CX3CR1 is one of the cues that guide microglia to the synapses 
[15]. Mice deficient in microglia or CX3CR1 exhibit neuronal connectivity and 
behavioral deficits similar to those observed in autism spectrum disorders [4, 10, 
18, 19]. Developing microglia also control neural cells in the cerebellum and were 
shown to induce Purkinje cell death via NADPH activity [5, 20]. On the other hand, 
developing microglia also secrete trophic factors that promote neuronal circuit 
formation and neuronal survival. Microglial-derived insulin-like growth factor 1 
(IGF-1) promotes survival of cortical layer V neurons in postnatal development. 
In addition, it induces the fate of many cell lineages, such as oligodendrocytes, and 
also protects them from glutamate-mediated apoptosis [5]. Basic fibroblast growth 
factor, hepatocyte growth factor, epidermal growth factor, platelet-derived growth 
factor, nerve growth factor, and brain-derived neurotrophic factor are all also 
secreted by microglia and contribute to neuronal development, maintenance, and 
function throughout life [21–23].

As microglia mature, they adopt a ramified morphology characterized by a 
small body and thin, long processes. Interestingly, recent studies suggest that adult 
microglia are not a homogeneous population and their activation state is the result of 
region-specific cues [24–30]. They are self-renewing via a local progenitor [31, 32], 
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but in certain instances and when microglia are depleted for prolonged periods of 
time via genetic or pharmacologic methods, peripheral myeloid cells can enter and 
engraft in the CNS for long periods but remain functionally distinct [33]. Microglia 
in the steady-state CNS depend on CSF1R signaling for survival. Both CSF1R ligands, 
CSF1 and IL-34, are found in the normal CNS and their expression is regionally 
controlled [34]. Interestingly, in the absence of CSF1, microglia numbers decrease by 
30%, while in the absence of IL-34, microglial numbers decrease by 70%. IL-34 in 
particular controls the migration of microglial precursor cells in the CNS via CSF1R 
signaling in development [35]. TGF-β signaling is also necessary for homeostatic 
microglial functions, and in its absence, they assume a transcriptome that is similar to 
that of peripheral macrophages [36].

Defining microglial markers that are distinct from those of peripheral mono-
cytes has been the focus of investigation for many years. New RNA-Seq techniques 
yielded a number of genes that are preferentially expressed by microglia but not 
peripheral myeloid cells in homeostasis [1, 10, 18, 37, 38]. Lately, the most com-
monly employed markers are the purinergic receptor P2Y, G-protein coupled recep-
tor 12 (P2RY12), the transmembrane protein TMEM119, and the transcriptional 
regulator Sal-like 1 (SALL1) [1, 10, 18, 37, 38]. Both P2RY12 and TMEM119 are 
expressed by the vast majority of microglia within the healthy CNS. The function 
of TMEM119 in microglia has not been yet elucidated, but in other cell types, it 
has been implicated with differentiation and proliferation [39–42]. P2RY12 serves 
as a chemotactic receptor that guides microglia to sites of injury [26]. SALL1 is a 
microglia fate-determining factor, vital for expression of essential microglial genes 
and normal microglial morphology [26, 36]. Whether these markers are still able 
to differentiate between microglia and infiltrating myeloid cells in neuroinflam-
mation, when all these cells undergo major transcriptional changes, is still under 
investigation. However, SALL1 and TMEM119 are emerging as the most reliable 
microglial markers.

Adult microglia exert multiple roles in tissue maintenance: they phagocytose 
debris or dead cells, clear toxic amyloid-β, shape neural circuits via phagocytosing 
inappropriate or inactive connections [16], provide trophic support to neurons by 
producing growth factors, and regulate neurogenesis in the hippocampus and the 
subventricular zone (SVZ). Interestingly, microglial-derived CX3CL1 increases with 
exercise and confers a protective effect on neuronal cells, while CX3CR1 deletion 
results in activated microglia with an inflammatory phenotype, leading to decreased 
rates of adult neurogenesis in the hippocampus [43–45]. In addition, microglia 
phagocytose neuronal progenitors in the adult SVZ, thus controlling the local pool 
of neurons [18, 44, 46]. Microglia also influence oligodendrocyte development 
and myelinogenesis both during development and in adulthood. In the adult CNS, 
microglia are necessary for myelin homeostasis and maintenance of adult oligo-
dendrocyte progenitor cells [47, 48], promote BBB function [49, 50], and in case of 
injury, they migrate to the affected site to promote repair [51].

Microglial malfunction is associated with neurodegenerative diseases such as 
Alzheimer’s disease, Parkinson’s disease, and neurodevelopmental and psycho-
logical defects such as Rett syndrome and obsessive-compulsive disorder [10]. 
Furthermore, the lack of phagocytosis by microglia results in excess synapses which 
is associated with impaired memory formation [16].

2.2 Tissue-resident macrophages

In addition to microglia, the healthy CNS houses three types of non-paren-
chymal tissue-resident macrophages. They are named based on their location and 
are currently categorized as perivascular macrophages, meningeal macrophages, 
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and macrophages in the choroid plexus [1, 52]. These macrophage populations are 
optimally placed to regulate and interrogate peripheral cell entry, act as sentinels 
by sampling their environment, and quickly respond in the event of an insult. 
Previously thought to be derived from bone marrow (BM) monocytic progenitor 
cells, it is now established that the majority of CNS-resident macrophages are 
long-lived and transcriptionally similar to microglia. As such, most of these cells 
are derived from erythromyeloid progenitors found in the extraembryonic yolk 
sac or the fetal liver, and their generation is dependent on PU.1 and independent 
of MYB and BATF3 [1, 7]. Choroid plexus macrophages are the most distinct 
among these types of CNS non-parenchymal macrophages and originate from 
either embryonic precursors or BM.

Perivascular macrophages are located between the blood vessel endothelium (of 
BBB) and the glia limitans, which form the barrier for the CNS parenchyma. They 
are wrapped around endothelial walls with their elongated cell bodies and monitor 
the perivascular space [2]. Perivascular macrophages provide nutrients to endo-
thelial cells, regulate vascular permeability, maintain BBB integrity, clear toxic 
amyloid-β from the CNS, sample debris to assess the local milieu, and communi-
cate with surrounding cells [52]. Their location is ideal to simultaneously sample 
both the CNS interstitial fluid and the blood [1, 52]. Perivascular macrophages 
infiltrate the CNS at the same time as microglia (E 9.5) and populate the abluminal 
spaces of the newly developed vasculature. Together with microglia, these macro-
phages play significant roles on the refinements of the developing vasculature [53]. 
In adulthood and in response to injury, perivascular macrophages promote anasto-
moses and the repair of vasculature [54].

Meningeal macrophages have a very similar origin and transcriptional control as 
perivascular macrophages. They are located in between meningeal vasculature and 
ER-TR7+ fibroblast-like cells that line the meninges. They also express similar mark-
ers to those of perivascular macrophages and are also long-lived with negligible 
contribution from the periphery [1, 2].

The choroid plexus macrophages reside on the apical side of the epithelium 
facing the cerebrospinal fluid (CSF) in the stroma. The stroma of the choroid 
plexus is highly vascularized and surrounded by a monolayer of cuboidal epi-
thelial cells, which are joined together by tight junctions forming the blood-CSF 
barrier. The choroid plexus is located in all four ventricles of the brain and is 
responsible for producing CSF [52]. It allows trafficking of a variety of immune 
cell types and is an area with an anti-inflammatory environment [55, 56]. In addi-
tion, the choroid plexus is the gateway to the CNS and is an area through which 
pioneering T cells gain access into the CNS in preclinical stages of the MS murine 
model experimental autoimmune encephalomyelitis (EAE) [57]. Unlike the other 
types of CNS macrophages, these macrophages are partially replenished from the 
bone marrow [1].

All of these brain-resident macrophages express the mannose recep-
tor CD206 and scavenger receptor CD163, along with CD11b, CX3CR1, and 
MHC-II. Perivascular and meningeal macrophages also express the lymphatic vessel 
endothelial hyaluronan receptor LYVE1, which is not expressed in choroid plexus-
associated macrophages [1, 2, 58].

2.3 Dendritic cells

At steady state, dendritic cells (DCs) are sparsely distributed within the non-
parenchymal CNS spaces. They are more numerous in the leptomeninges and dura 
mater, less prominent in the choroid plexus, and mostly absent from perivascular 
spaces [3].
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DCs develop from committed DC or monocyte progenitors in the BM and 
are dependent upon FLT3 signaling [59]. They are relatively short-lived and are 
replenished roughly every 1–2 weeks [60]. Mature DCs are divided into con-
ventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs 
(moDCs). cDCs are further subdivided into cDC1 and cDC2. cDC1s are associated 
with Th1 responses [61, 62], while cDC2 with Th2 and Th17 [63]. cDC1s are also 
able to cross present antigens and activate CD8+ T cells. cDCs leave the BM in the 
form of committed precursors, while pDCs mature in the BM before entering the 
circulation. In addition, moDCs are not usually found in steady state but are crucial 
mediators on inflammatory responses [64].

IRF4 and IRF8 are transcription factors differentially expressed in the vari-
ous DC subsets. cDC1s are IRF8+IRF4lo/−, cDC2s are IRF8loIRF4+, pDCs are 
IRF8+IRF4+, and moDCs are IRF4loIRF8lo [65]. cDC1s do not express CD11b. 
Within the mouse CNS, the majority of DCs are cDC2 and are mostly located in the 
leptomeninges and dura mater, while in the choroid plexus, the majority of DCs are 
cDC1s [3].

2.4 Granulocytes

Although their presence within the CNS at steady state is commonly ignored, 
various types of granulocytes such as neutrophils, mast cells, basophils, and eosino-
phils are found within perivascular and meningeal spaces and the choroid plexus 
[4]. Mast cells in particular are also found within the parenchyma [66, 67].

Neutrophils exit the bone marrow in a mature state and are thought to be 
short-lived. However, subsets of neutrophils live much longer than previously 
thought and, more importantly, some have been found in various organs likely 
as a local reservoir [68]. It is now acknowledged that neutrophils or neutrophil 
subsets may have different functions. Other than the well-documented inflamma-
tory functions, pro-reparative CD206+ neutrophils, VEGF-responding angiogenic 
neutrophils, and CD11c+Ly6G+ “hybrid” cell types have been identified [69–72]. 
Interestingly, neutrophils were recently detected in the normal murine CNS 
localized within the subdural meningeal spaces, but their contribution to tissue 
homeostasis is still not known [73].

Mast cells (MCs) are derived from CD34+ bone marrow progenitor cells, enter 
the circulation in an immature state, and mature once they reach the tissue in 
response to local cues. They are mostly known for their effects during allergic/
atopic responses mediated by cross-linking of their FcεRI receptor by IgE. MCs are 
a heterogeneous population, and depending on the types of proteases they carry 
within their granules, they are broadly categorized into at least three subtypes: MCs 
that contain only tryptase (MCT), MCs that contain only chymase (MCC), and 
MCs that contain tryptase, chymase, carboxypeptidase, and cathepsin G (MCCT) 
[74, 75]. MCs are loaded with granules containing preformed mediators and can 
synthesize mediators de novo. They are found in many tissues and usually associ-
ated with vascular epithelial cells and nerves. CNS MCs are constitutively active and 
degranulate in response to homeostatic or inflammatory stimuli [67, 76–78]. Their 
preformed granules are released immediately upon activation and contain various 
mediators such as histamine, serotonin, and TNF-α in addition to proteases. They 
can quickly synthesize lipid mediators such as prostaglandins and leukotrienes and 
growth factors. A late-phase MC activation results in de novo production of inflam-
matory cytokines such as IL-6 and TNF-α [74, 79].

Within the healthy CNS, MCs are found within the thalamus, hypothalamus, 
entorhinal cortex, hippocampus, meninges, and perivascular spaces in proximity 
to the BBB. They interact with neurons and microglia, and their granules contain 
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a plethora of mediators including neurotransmitters. Their location allows them to 
modulate BBB permeability, and genetically modified mice that lack MCs display 
decreased BBB permeability both in homeostasis and neuroinflammation [67, 77, 78].

MC activity in stress has been associated with migraines [78, 80]. Moreover, 
histamine released from MCs was shown to promote wakefulness in adult mice [81] 
and microglial synaptic pruning in the developing CNS, which then regulates sexual 
behavior in adulthood [82].

3. Myeloid cells in multiple sclerosis

Pathologically, MS is characterized by focal demyelinating lesions disseminated 
in space and time and neuronal and axonal damage. MS lesions are rich in myeloid 
cells (microglia, infiltrating monocyte-derived macrophages, and DCs), which out-
number lymphoid cells [83]. Below we will discuss current knowledge on myeloid 
cells in MS, which are now emerging as crucial players in disease pathogenesis and 
progression. Some of this knowledge is derived from studies on the animal model 
of MS, experimental autoimmune encephalomyelitis (EAE). Although this model 
has been criticized [84], it mimics most of the CNS pathology observed in MS such 
as tissue infiltration by immune cells, formation of lesions, local inflammation, and 
progressive axonal loss [85, 86].

Monocytes are not found in the healthy CNS but are regularly found in the CNS 
and CSF of MS patients. Once they enter the CNS, monocytes mature into macro-
phages and participate in disease progression. There are three well-characterized 
monocyte subsets categorized based on expression patterns of the LPS receptor 
CD14 and the Fce (greek) RIII receptor CD16: the classical CD14++CD16- 
(similar to the inflammatory monocyte Ly6ChiCCR2+ in mice), the nonclassical 
CD14+CD16++ (similar to the anti-inflammatory CX3CR1+Ly6Clo in mice), and 
the intermediate CD14++CD16+. CD16+ monocytes have been associated with 
inflammation and promoting the generation of Th17 cells. MS patients with active 
disease show increased CD14+ cells both in the blood and the CSF. These cells also 
contribute to BBB disruption [87, 88].

Both conventional and plasmacytoid DCs are increased in the blood and CSF of 
MS patients. cDCs are usually found early in disease, and pDC numbers are highly 
increased in the CSF during relapses. Circulating cDCs in MS patients upregulate 
CCR5 which is a receptor for CCL3 and CCL5, both of which are upregulated in MS 
lesions. However, cDCs in primary progressive MS display an immature phenotype 
[89]. Interestingly, although pDC numbers increase in MS, these cells are found 
to be phenotypically similar to those of healthy controls. Although the data on 
circulating pDCs are still conflicting, imbalances in DC populations may result in 
significant changes in T-cell functionally in MS [90].

3.1 Myeloid cells in MS lesions

MS lesions are found both within the brain and spinal cord and can be formed 
within the white and the gray matter [91, 92]. The most commonly employed 
classification is the four types of lesions described by Lucchinetti and colleagues 
[93]. Type I is characterized by macrophage products, and type II is characterized 
by antibody and complement deposition, while type III lacks complement and 
antibody deposition. Types I and II have clearly demarcated borders, while type III 
is characterized by diffuse demyelination and lacks clear demarcation. Type IV is 
characterized by dystrophic apoptotic oligodendrocytes. In most of these lesions, 
the major cell types are myeloid cells [83].
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Although more pronounced during relapses, infiltrating myeloid cells and 
activated microglia are found within the CNS of MS patients throughout the disease 
and are associated with demyelination, oligodendrocytic loss, and axonal dam-
age [92, 94, 95]. With the exception of rapid progressive MS, in which the CNS 
is intensely infiltrated [94], in progressive forms of the disease, the tissue is not 
massively infiltrated; however, myeloid cells (microglia and/or infiltrating myeloid) 
remain activated [92, 96]. During progressive stages of the disease, axonal loss is 
prominent leading to tissue atrophy in both MS and EAE [86, 92]. These processes 
are likely mediated via the production of oxygen radicals produced by either 
microglia or infiltrating myeloid cells [84].

3.1.1 Microglia/macrophages

The contribution of microglia to MS is still debated. Studies in mice have shown 
that microglia are poor antigen-presenting cells and not likely to activate infiltrat-
ing lymphocytes. Instead, microglia may contribute to the disease process via 
oxidative stress and production of pro-inflammatory cytokines that may activate 
astrocytes or cause oligodendrocytic damage. Microglia are highly phagocytic and 
thus can remove myelin debris and cellular fragments, damaged axons, and dead 
cells. It is clear that microglia are activated in the CNS of MS patients, but whether 
they promote disease or facilitate repair is still not well delineated. One of the main 
hurdles for these investigations is that there is no unique marker to reliably distin-
guish microglia from infiltrating monocytes in neuroinflammation. Additionally, 
activated microglia are morphologically indistinguishable from infiltrating mono-
cytes/macrophages. RNA transcriptome analysis has yielded a number of markers 
that show preferential expression in microglia (see Section 2.1). TMEM119 is the 
only marker so far examined in MS tissue and seems to be expressed by a subpopu-
lation of myeloid cells within lesions and in cells with microglial morphology in 
nonlesional areas [97]. However, there is still not a wide breadth of studies exam-
ining the specificity of TMEM119 in neuroinflammation, when all myeloid cells 
undergo major transcriptional changes [2]. Thus, below we will talk about microglia 
and macrophages as one population in active MS lesions and specify TMEM119-
expressing cells within the MS CNS.

Microglia/macrophages (M/Ms) in active MS lesions are heterogeneous and 
capable of performing a variety of activities that may promote or control inflam-
mation and repair [98, 99]. M/Ms found within active MS lesions usually express 
markers associated with inflammatory macrophage functions, including inducible 
nitric oxide synthase (iNOS), co-stimulatory molecules CD40 and CD86, the Fc 
receptors CD32 and CD64, phagocytosis marker CD68, and p22phox, a subunit of 
NADPH oxidase [100, 101]. In addition, M/Ms may also express anti-inflammatory 
markers such as the mannose receptor CD206 and the scavenger receptor CD163 
[100]. Approximately half of the myeloid cells within active lesions express 
TMEM119, suggesting these cells may be microglia. Interestingly, PY2R12, which is 
usually expressed in homeostatic microglia, is not expressed in these cells, suggest-
ing it is downregulated upon activation [97].

MS lesions are not static and over time grow outward, eventually becoming 
chronically active. These lesions are slowly expanding and have a thin border of 
M/Ms. The center of these lesions appears quiescent and populated by lipid-laden 
(foamy) macrophages, many of them expressing CD206 and CD163 [98, 102]. 
However, M/Ms lining the rim of these lesions express iNOS and HLA-DR, suggest-
ing they are inflammatory and promote T-cell functions [103]. M/Ms at the rims of 
either active or chronically active plaques contain iron which has been suggested to 
promote MS pathology [104, 105]. In the normal CNS, most iron is found within 
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oligodendrocytes or myelin. When iron is released after oligodendrocytic death and 
demyelination, it is internalized by ferritin+ M/Ms which acquire a dystrophic phe-
notype [106]. Interestingly TMEM119+ cells that express low or no P2RY12 (likely 
activated microglia) are found within chronically active or slow-expanding lesions, 
and their density decreases inward. Strikingly, there are no differences between 
overall M/M density and levels of activation between lesion types [97, 100, 103].

Areas of the CNS that are far from the demyelinating lesions and often appear-
ing normal (normal-appearing white matter; NAWM) are also characterized by 
scattered microglial activation. Interestingly, ramified microglia were shown to 
express iNOS and were often close to injured axons [107]. However, microglia 
have also been documented to exhibit a suppressed and anti-inflammatory char-
acter [108]. Clusters of microglia or macrophages, known as microglial nodules, 
have been found in NAWM in close proximity to degenerating axons. These 
nodules appear in the absence of extensive inflammation, astrogliosis, or demy-
elination, and their formation has been argued to be one of the early events in 
MS pathology [109]. Furthermore, P2RY12+ TMEM119+ microglia in the NAWM 
also expressing activation markers CD68 and p22phox are found in both MS and 
healthy controls’ brains, suggesting that certain microglial populations are in a 
pre-activated state [97].

In addition to white matter, demyelination is also observed within the gray 
matter. MS gray matter is characterized by less infiltration by immune cells and less 
activation of M/Ms compared to white matter. This type of demyelination has been 
mostly attributed to aberrant microglia functions such as ROS production via the 
NADPH oxidase activity. This mechanism seems to be more prominent in the gray 
matter compared to white matter lesions. In addition, cortical microglial activation 
can be observed via PET imaging by administering the traditional PK11195 and 
more recently the novel PBR28 ligand [110, 111].

In progressive forms of MS, M/Ms are activated both within the lesions and in 
the normal-appearing white and gray matter, and this has been linked to inflam-
matory cytokines produced in the meninges, likely by infiltrating B cells [112, 113]. 
Activated complement component 3 fragments (C3d) are found within microglia 
clusters of slowly expanding lesions in progressive but not acute MS [114] and in 
close proximity of damaged axons. This suggests that C3 activation and deposition 
are not likely associated with lesion initiation but rather a mechanism that facilitates 
the removal of axonal and cellular debris. Furthermore, the activation/phagocytosis 
marker CD68 is significantly increased in the NAWM in progressive forms of MS 
compared to that of relapsing–remitting MS and healthy controls [97].

3.1.2 Dendritic cells

Both cDCs and pDCs accumulate in the leptomeninges and lesions in MS 
patients. MoDCs, which are not present in the homeostatic CNS, differentiate from 
infiltrating inflammatory monocytes after these reach the CNS of MS patients. 
Studies in murine EAE showed that both cDCs and moDCs are found within 
the CNS infiltrates. cDCs express CD26 and ZBTB46, a transcription factor also 
expressed in human cDCs, while moDCs express CD88 and CD64 [3, 103, 115]. 
Although these markers may be expressed by other cell types, they are useful mark-
ers for identification of DC subsets. cDCs are the most efficient antigen-presenting 
cells and are able to process larger myelin fragments to activate naive and effector 
T cells. Both cDCs and moDCs progressively expand during the onset and peak of 
EAE in every CNS compartment. pDCs are not efficient antigen-presenting cells 
but are equipped to secrete inflammatory cytokines and promote an inflammatory 
environment to support cDCs and moDCs [116].
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3.1.3 Granulocytes

Neutrophils are relatively rare in established MS lesions; thus, their contribu-
tion to disease course has long been debated. Studies in EAE show that neutrophils 
are part of the inflammatory lesions, appear early in disease process [86, 117], and 
are increased in peripheral lymphoid organs and blood [117]. Neutrophils may 
promote early disease progression by increasing permeability of the BBB, pos-
sibly through secretion of matrix metalloproteinases or the release of neutrophil 
extracellular traps (NETs) [118, 119]. Inactivation of neutrophil products, such as 
myeloperoxidase or neutrophil elastase, results in milder EAE course and associated 
optic neuritis [120, 121]. In agreement with the EAE data, CSF of newly diagnosed 
patients shows elevated neutrophil counts [122], and the CSF of patients with 
established disease contains increased levels of the neutrophil chemoattractant 
CXCL8 [123, 124]. Neutrophil elastase and chemokines that promote neutrophil 
recruitment, such as CXCL1 and CXCL5, are systemically elevated in relapsing MS 
patients and correlate with lesion burden and clinical disability [125]. Transcripts of 
the granulocyte colony-stimulating factor (G-CSF) which promotes the prolifera-
tion and differentiation of neutrophils (and other granulocytes) are found within 
lesions but not in NAWM [126], and treatment with G-CSF worsens MS symptoms 
[127, 128]. Thus, lack of neutrophil detection in MS lesions may be due to incorrect 
sampling timing.

Interestingly, mast cells are found in close proximity to MS lesions and were 
initially observed in 1890 by Neuman [129] and later by other groups [66, 130–132]. 
Their numbers are very low compared with those of the other myeloid subsets; 
thus, not much is known about their contribution to disease progression. However, 
the ability of mast cells to secrete histamine and proteases may facilitate disease 
onset or relapses by promoting vascular permeability and tissue infiltration. In 
EAE, mice with spontaneous c-Kit mutations that lead to deletion of mast cells have 
shown that these cells may prevent, promote, or have no effect on disease onset and 
progression [133]. These conflicting data are likely due to the fact that none of these 
mouse strains are specific and efficient mast cell knockouts.

4. Effect of MS therapeutics on myeloid cells

MS therapies are designed to dampen immune system activation. Although most 
of these therapies target lymphocytes, myeloid cells can also be affected directly or 
indirectly. This section will explore how current MS therapies affect myeloid cells.

4.1 IFN-β

IFN-β, the first FDA-approved biologic therapeutic for MS, is a pleiotropic 
cytokine exerting a plethora of effects on a variety of cells [134, 135]. Monocytes 
isolated from MS patients treated ex vivo with IFN-β exhibit impaired inflamma-
tory responses when stimulated with LPS/alum compared to monocytes isolated 
from healthy donors [136]. Ex vivo treatment of DCs derived from MS patients or 
healthy donors with IFN-β reduced the expression of IL-1β and IL-23 and upregu-
lated the expression of IL-12p35 and IL-27p28, which resulted in reduced generation 
of Th17 cells [137]. Additionally, studies in EAE showed that deletion of IFN-α/β 
receptor (IFNAR), the receptor of IFN-β specifically on myeloid cells, resulted in 
aggravated EAE disease [138].

IFN-β is one of the most common first-line MS treatments; however, a large 
proportion of patients is not responsive. Interestingly, non-responders exhibit 
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exaggerated upregulation of type I IFN-responsive genes either at baseline or in 
response to IFN-β treatment compared to responders [139–141]. MS patients that 
upregulated the death-associated receptor TRAIL on monocytes were responsive 
to IFN-b treatment, but those who did not upregulate TRAIL were not respon-
sive to IFN-b treatment. than patients that did not [142]. Additionally, mono-
cytes isolated from MS patients treated with IFN-β for prolonged periods of time 
(9 months to 6 years) upregulated the co-stimulatory molecules CD80, CD86, 
and CD40 [143], and were associated with responsiveness to treatment [144]. 
A different study, however, showed a positive association between monocytic 
CD40 upregulation, early after IFN-β injections (9–12 h) and relapses [145].

About 30% of MS patients treated with IFN-β also develop antidrug antibodies 
and thus are not responsive to treatment. Antidrug antibody generation was associ-
ated with decreased NOTCH2 signaling. NOTCH2, which promotes the conversion 
of patrolling inflammatory monocytes to anti-inflammatory phenotype [146], was 
markedly reduced in CD14+ monocytes of untreated MS patients that developed 
antidrug antibodies 12 months after IFN-β therapy initiation [147].

All the above suggest that defining myeloid cell subset propensities in MS before 
and after treatment initiation will be useful in determining whether IFN-β is a suit-
able treatment for specific patients.

4.2 Glatiramer acetate

Glatiramer acetate (GA) is a synthetic random copolymer, composed of glutamic 
acid, alanine, lysine and tyrosine, employed as a treatment for relapsing-remitting 
MS. MS patients treated with GA show a shift toward Th2 responses and produce 
anti-inflammatory/pro-repair mediators, likely due to GA effects on myeloid 
subsets [148, 149]. Initial studies showed that GA binds to MHC-II, altering the 
myelin antigen presentation capabilities resulting in impaired activation of auto-
reactive T cells [150, 151]. However, it was later shown that GA can also exert its 
anti-inflammatory effects independently of MHC-II [152]. Instead, GA was shown 
to promote the generation of anti-inflammatory monocytes which support regula-
tory T-cell functions [152].

In support of this, monocytes isolated from the blood of GA-treated MS patients 
produced significantly higher amounts of IL-10 and lower amounts of IL-12, and 
the levels of CD16+ anti-inflammatory monocytes were restored to those of healthy 
controls [153, 154]. DCs from GA-treated MS patients exhibit reduced IL-12 pro-
duction [155] and express lower levels of CD40, upregulation of which is associated 
with relapses [156]. Furthermore, the activity of myeloid-derived suppressor cells, 
a population that suppresses inflammatory responses, is augmented in GA-treated 
MS patients [157], and GA-treated human microglia express IL-10 and reduce 
production of pro-inflammatory TNF-α [153]. Increased levels of circulating IL-27, 
a regulatory cytokine produced by myeloid cells in inflammatory conditions, was 
recently linked to better GA therapeutic outcomes [158]. Another study showed 
increased levels of IL-27 in blood, CSF and lesions of MS patients. however, there 
was no association with treatments [159].

4.3 Fingolimod

Fingolimod is the first oral therapy approved to treat relapsing-remitting MS 
and is more effective in reducing relapses than IFN-β [160]. Fingolimod (FTY720) 
is phosphorylated by sphingosine kinase, and its phosphorylated metabolite 
(FTY720-P) binds to the G-protein-coupled sphingosine-1-phosphate (S1P) 
receptors. S1P receptors are expressed on a variety of cells including neural, glial, 
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and endothelial cells in the CNS and most of the immune cells in the CNS and the 
periphery [161]. One of the mechanisms by which fingolimod reduces disease sever-
ity and relapses in MS is that it binds S1PR1, a type of S1P receptor, on lymphocytes 
and prevents their egress from lymphoid tissues [162].

Fingolimod’s immunosuppressive effects are also exerted on myeloid cells. 
Incubation of murine macrophages or human monocytes with either S1P (the 
natural ligand of S1PR1), or fingolimod, respectively, reduced inflammatory 
responses after LPS exposure [163–165]. Although microglia, DCs, and peripheral 
macrophages express similar patterns and levels of S1P receptors, fingolimod 
downregulated ERK phosphorylation only in DCs and macrophages. Fingolimod 
also downregulated expression of the pro-inflammatory cytokine IL-12 and 
upregulated anti-inflammatory IL-10 in DCs and macrophages but not in microglia 
[164]. Fingolimod crosses the BBB [168], and therapeutic administration of fingo-
limod reduced TNF-α production by microglia and monocytes in EAE [163]. Flow 
cytometry analyses of DCs and monocytes isolated from MS patients before and 
during fingolimod treatment showed decreased levels of activation markers (CD83, 
CD150, and HLA-DR). Furthermore, fingolimod treatment reduced pro-inflamma-
tory cytokine production, phagocytic activity of DCs and monocytes, and impaired 
priming of Th1 and Th17 cells [166]. Interestingly, monocytes isolated from 
fingolimod-treated MS patients exhibited reduced expression of pro-inflammatory 
micro-RNA miR-155 but also of antioxidant genes HMOX1 and OSGIN1 compared 
to untreated patients [167]. When monocyte-derived macrophages and microglia 
were examined in vitro, fingolimod reduced LPS-induced inflammatory cytokines 
and increased expression of antioxidants. These data suggest that the effects of 
fingolimod on myeloid cells in vivo may be an indirect effect.

4.4 Dimethyl fumarate

Dimethyl fumarate (DMF) was approved as an oral first-line therapeutic for 
relapsing-remitting MS in 2013. It is a methyl ester of fumaric acid, quickly metabo-
lized to active monomethyl fumarate which activates transcription factor nuclear 
factor erythroid-derived 2 (Nrf2) and suppresses NF-κB to modulate oxidative 
stress [169]. DMF exerts its effects on multiple immune subsets [170].

Monocytes from DMF-treated RRMS patients express reduced levels of the 
pro-inflammatory micro-RNA miR-155, and DMF-treated human microglia and 
monocyte-derived macrophages had reduced production of pro-inflammatory 
cytokines after LPS stimulation, indicating direct regulatory effects [167].

DMF reduces neuroinflammation levels and cognitive deficits induced by 
systemic LPS administration in mice [171]. In EAE, DMF promoted the generation 
of anti-inflammatory monocytes and decreased macrophage infiltration into the 
CNS resulting in milder clinical deficits. Interestingly, these effects were exerted 
independently of Nrf2 [172, 173].

4.5 Teriflunomide

Teriflunomide is a reversible inhibitor of dihydroorotate dehydroge-
nase (DHODH), a mitochondrial enzyme active in proliferating cells [174]. 
Teriflunomide impairs proliferation of lymphocytes, but exerts nebulous effects 
on myeloid cells [175]. In EAE, teriflunomide reduced T-cell and myeloid cell 
infiltration of the CNS [176]. In cultured primary microglia, teriflunomide down-
regulated expression of CD86 and mildly upregulated of IL-10 [177]. Ex vivo, 
teriflunomide treatment decreased production of IL-6 and CCL2 in activated 
monocytes from healthy individuals [178].



Multiple Sclerosis

12

Furthermore, MS patients after 6 months of treatment showed increased IL-10 
production and PD-L1 expression in monocytes, implying that teriflunomide 
induces anti-inflammatory and regulatory responses in these cells [179].

4.6 Monoclonal antibodies

Several recently developed antibody-based MS therapies target lymphocytes. 
Below, we will discuss whether and how these therapies affect myeloid cells.

4.6.1 Natalizumab

Natalizumab (NTZ) is an immunomodulatory antibody that limits immune cell 
infiltration into the CNS by blocking the interaction between the very late activa-
tion antigen-4 (VLA-4), an integrin expressed on lymphocytes and myeloid cells, 
and vascular adhesion molecule-1 (VCAM-1) [180]. As a result, fewer cells are 
able to migrate and infiltrate the CNS [181]. NTZ reduces relapses and lesion load 
but increases the risk for progressive multifocal leukoencephalopathy [182]. NTZ 
reduced the frequencies of mature activated pDCs; however, this activation was not 
a direct effect of NTZ on pDCs [183].

Triggering receptor 2 expressed on myeloid cells (TREM2) is an innate immune 
receptor associated with inflammatory responses and within the CNS expressed 
by microglia [184]. In neuroinflammation, microglia shed TREM2, which can be 
detected in CSF [185, 186]. NTZ reduced CSF-soluble TREM2 to baseline levels, 
indicating dampened microglial activation, which is associated with improved 
clinical outcome after 12 months of treatment [187]. It is not clear however whether 
there is a direct effect of NTZ on microglia.

4.6.2 Anti-CD20 antibodies

There are multiple anti-CD20 monoclonal antibodies shown to ameliorate 
relapses in relapsing-remitting MS including rituximab, ocrelizumab, and ofatu-
mumab [188]. However, ocrelizumab is the only anti-CD20 antibody that exerts 
beneficial effects in relapsing-remitting and also in primary progressive MS [189]. 
A subset of GM-CSF-producing memory B cells, more prevalent in MS patients 
than healthy controls, was shown to activate pro-inflammatory myeloid cells 
in vitro [190]. Following B-cell-depleting therapy in MS patients, the inflammatory 
myeloid response is diminished [190].

4.6.3 Alemtuzumab

Alemtuzumab is a monoclonal antibody that binds CD52 and effectively 
depletes CD52-expressing lymphocytes through antibody-dependent cell-mediated 
cytolysis. Both lymphocytes and myeloid cells express CD52; however, myeloid 
cells are more resistant to alemtuzumab-mediated cytolysis. Thus their numbers 
are not affected by treatment [191]. Neutrophils, however, express CD52 and are 
subject to lysis during alemtuzumab treatment [192], occasionally leading to severe 
 neutropenia [193].

5. Conclusion

The contribution of myeloid cells to MS progression is now widely appreciated. 
Their persistent elevated presence in lesions and activated phenotype, regardless 
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of tissue infiltration load, in both relapsing and progressive MS, suggest they play 
crucial roles in disease progression and chronicity. Although gaps in knowledge still 
exist, recent advances faciltated the efforts by researchers and clinicians to dissect 
the roles of each myeloid subset in the disease process.

Current therapeutics have broad activities or specifically target lymphocyte 
functions. In many instances, however, their efficacy stems from their direct or 
indirect effects on myeloid cell functions. Future research focusing on modulation 
of myeloid populations and their activities will prove useful for the design of novel 
therapeutics for MS patients.
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