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Abstract

Due to an increase in the incidence of leishmaniases worldwide, the development 
of new strategies such as prophylactic vaccines to prevent infection and decrease the 
diseases has become a high priority. The development of vaccines against the various 
species of pathogenic Leishmania to humans has been hampered, in part, by the inef-
ficient stimulation of the protective cellular immunity promoted by the administration 
of purified or recombinant antigens, indicating the need for new approaches. Viral 
vectors represent an attractive way to deliver and present vaccine antigens that may 
offer advantages over traditional platforms. Among the most attractive and efficient 
viral vectors in inducing a cellular immune response, vaccinia virus has been the most 
used in leishmaniases vaccine trials. The first report of the use of recombinant vaccinia 
virus (VACV) in the induction of protection against Leishmania infection was made in 
1993. Since then, several Leishmania spp. antigenic subunits were cloned into recom-
binant VACV. Although highly attenuated poxviral vectors are capable of inducing 
protective immunity against Leishmania spp., their limitation in replicative capacity 
reduces their potential as compared to replicative vectors. In order to achieve a balance 
between safety and replication, several VACV strains with intermediate phenotype 
have been developed.

Keywords: leishmaniases, vaccines, viral vectors, recombinant vaccinia virus,  
VACV

1. Introduction

Leishmaniases are important neglected tropical diseases (NTD) caused by 
protozoan parasites from the genus Leishmania Ross, 1903, of which more than 20 
species are pathogenic to humans. Such parasites are transmitted by about 30  species 
of infected female sandflies (genus Phlebotomus and Lutzomyia) [1, 2], and their 
biological cycle alternates between the amastigote forms (obligatory intracellular), in the 
mammalian host, and promastigote forms (extracellular), in the vector digestive tract [3].  
The diseases present a range of mammalian hosts, such as canids, rodents, marsupi-
als, edentates, and primates, both human and nonhuman. The species that infect 
humans are distributed in two subgenera: Leishmania and Viannia, based on the 
development of the parasites inside the insect vector digestive tracts. Depending on 
the Leishmania species and the host’s immune status, leishmaniases present a broad 
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spectrum of clinical manifestations, which can be divided into two main groups: (I) 
visceral leishmaniasis (VL) caused by Leishmania (Leishmania) infantum (syn. L. 
(L.) chagasi) and L. (L.) donovani and (II) tegumentary leishmaniasis (TL), with 
cutaneous form (CL) caused by L. (L.) major, L. (L.) amazonensis, L. (L.) mexicana, 
L. (L.) aethiopica, L. (Viannia) braziliensis, L. (V.) guyanensis, and L. (V.) panamensis 
and the mucocutaneous form (MCL) mainly caused by L. (V.) braziliensis and L. (V.) 
guyanensis, in the New World, and L. (L.) aethiopica, in the Old World [4, 5].

It is estimated that 14 million people are infected worldwide, and 350 million are 
at risk of infection. Approximately 1.3 million new cases are registered annually [3].  
According to the Global Burden of Disease Study (GDB) 2010, about 50,000 people 
die each year from the diseases, resulting in 3.3 million disability-adjusted life years 
(DALY) lost [6]. In recent decades, several Leishmania species have spread to non-
endemic areas [7].

According to the World Health Organization (WHO), leishmaniases are among 
the emerging and uncontrolled category 1 diseases, and their prevention is based 
primarily on three parameters: (I) vector control, (II) control of parasitic reser-
voir animals, and (III) research and development of new vaccine candidates [8]. 
Spraying of intra- and peri-domiciliary residual insecticides has been crucial in 
the control of sandflies. However, there is concern about the emergence of vector 
resistance to dichlorodiphenyltrichloroethane (DDT), especially in highly endemic 
areas [9]. The chemotherapeutic treatment of infected dogs, the main reservoirs 
of the parasite in VL, reduces or eliminates symptoms. Yet, many animals are still 
able to transmit the parasite, remaining the epidemiological risk. Other measures, 
such as topical insecticides and impregnated collars, are expensive and difficult to 
implement in national control programs [10]. In the absence of effective strategies, 
vaccine development is cost-effective in controlling leishmaniases. It is estimated 
that a vaccine with a 70% efficacy providing protection for 10 years is able to pre-
vent 41–144 thousand CL cases in seven Latin American countries (Bolivia, Brazil, 
Colombia, Ecuador, Mexico, Peru, and Venezuela) with an inferior cost than the 
currently recommended treatments. As for VL, even a vaccine that provides protec-
tion for only 5 years with a 50% efficacy would still be more economically feasible 
compared to current treatments [9].

The first leishmaniases vaccination attempts, named leishmanization, were 
based on the observation that an individual cured of a cutaneous lesion became 
refractory to reinfection [7, 8]. In leishmanization, the infectious lesion material, 
later replaced by the cultured parasites, was used in the inoculation of uninfected 
individuals. This method was interrupted due to a number of factors, including 
quality control, persistence of the parasite in the body, the emergence of the HIV 
virus in the 1980s, and ethical reasons [11].

The first generation of vaccines emerged from leishmanization and comprises 
heat or phenol-killed promastigote forms associated with different adjuvants, 
including BCG (Mycobacterium bovis, bacillus Calmette-Guérin) and irradi-
ated or attenuated live promastigotes. However, the standardization of vaccines 
derived from parasites in culture hinders their register by the competent national 
institutions [7, 8]. Human vaccination using dead strains of Leishmania spp. 
dates back to the late 1930s was a pioneering strategy among Brazilian scientists. 
Phase III clinical trials conducted in Ecuador and Colombia utilized a Brazilian 
vaccine called Leishvacin®, composed of L. amazonensis killed promastigotes 
in association with BCG adjuvant, which demonstrated safety but low efficacy 
[10, 11]. After a period of 4 years of commercial production by Bioquímica do 
Brasil (BIOBRÁS, Brazil), Leishvacin® is now only produced in a nonindustrial 
way in research laboratories for clinical assays. The vaccine is also accepted as an 
immunotherapeutic agent with or without association with Glucantime® (Rhône 
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Poulenc Rorer, France), for the treatment of resistant individuals or for the ones 
Glucantime® induces high toxicity. Of late, three forms of vaccines consisting 
of L. major, L. amazonensis, and L. Mexicana were evaluated by first-generation 
vaccines of human clinical trials [12].

The second generation of vaccines includes purified or recombinant Leishmania 
spp. proteins [8]. In Brazil, in 2003 and 2006, respectively, two second-generation 
vaccines against canine visceral leishmaniasis (CVL), Leishmune® (Fort Dodge, 
Brazil) and Leish-Tec® (Hertape Calier, Brazil), were registered. Leishmune® is 
composed of a purified fraction of the fucose-mannose ligand (FML) isolated from 
L. donovani promastigotes, associated with the saponin adjuvant. Their formulation 
has been shown to be safe, protective, and highly immunogenic for dogs, in addition 
to being able to prevent the transmission of CVL [13]. However, since November 
2014, the vaccine has been suspended for manufacturing and marketing due to 
noncompliance with the complete requirements of the Ministério da Agricultura, 
Pecuária e Abastecimento (MAPA, Brazil) for phase III studies on vaccine efficacy 
(NOTA TÉCNICA N° 038/2014/DFIP/DAS). As for Leish-Tec®, it is composed of 
the L. donovani recombinant A2 protein associated with the saponin adjuvant. A2 
is a highly expressed surface protein in the amastigote form of L. donovani and was 
the first virulence factor identified in Leishmania spp.; such protein is necessary for 
the survival of the parasite in the mammalian host and is involved in the visceral-
ization of the pathogen during infection [14]. Dogs immunized with Leish-Tec® and 
experimentally infected by L. infantum were able to develop a partially protective 
immune response against CVL, presenting positive parasitism in the bone  
marrow 9 months after the challenge [15]. In Europe, the first CVL vaccine reg-
istered and commercially available in 2011 was LiESP/QA-21, named CaniLeish® 
(Virbac, France), a second-generation vaccine composed of L. infantum excreted/
secreted recombinant proteins (LiESP) associated with a highly purified fraction 
of Quillaja saponaria saponin (QA-21) as an adjuvant [16]. Clinical trials in dogs 
vaccinated with CaniLeish® and experimentally infected by L. infantum demon-
strated, after 1 year, reduced parasite load, specific cellular immune response, and 
decreased chance of relapses [17]. Another vaccine currently commercialized in 
Europe is LetiFend®, whose active principle is a recombinant chimeric protein, 
named Protein Q , composed by the fusion of five epitopes of the acidic ribosomal 
proteins LiP2A, LiP2B, LiP0, and the histone H2A of L. infantum. The efficacy of 
vaccination in a large-scale dog population demonstrated that LetiFend® is a novel, 
safe, and effective vaccine for the active immunization of noninfected dogs from 
6 months of age in reducing the risk of developing clinical visceral leishamaniasis 
after natural infection with L. infantum [18].

Likewise A2, FML, LiESP, and Protein Q , several other Leishmania-derived 
antigens have already been identified as immunogenic based on T cell clones, due 
to its abundance and specific location in the parasite, by screening of expression 
libraries against human- and dog-infected sera [19] or by reverse vaccinology 
[20, 21]; and their efficacy has been thoroughly evaluated in preclinical and 
clinical trials. However, to date, there is no effective vaccine against the dif-
ferent clinical forms of human leishmaniases, despite the progress of the vac-
cines against CVL. The development of vaccines against the various species of 
pathogenic Leishmania to humans has been hampered, in part, by the inefficient 
stimulation of the protective cellular immunity promoted by the administration 
of purified or recombinant antigens. The third generation of leishmaniases vac-
cines is based on coding DNA, including recombinant microorganisms used as 
gene expression vectors [22].

Among the possible vaccine vectors, the most promising are those based 
on recombinant viruses, capable of expressing heterologous proteins directly 
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within the cells of the host organism, likewise in natural infection. Vaccines 
based on viral vectors represent a highly versatile platform for the development 
of vaccines. Viral genomes can be manipulated to express any target antigen and 
consistently carry relatively large transgene insertions [23]. Moreover, among the 
advantages of using recombinant viruses as vaccine vectors is the fact that viruses 
have evolved as the most efficient organisms in infecting cells. After 10 minutes 
of infection, more than 95% of certain viruses can be found inside host cells. 
Another advantage is that viral proteins can play as powerful adjuvants. Besides, 
viruses can infect antigen-presenting cells (APC), avoiding cross-presentation. 
Lastly, some recombinant viruses can be lyophilized and stored without the need 
for special refrigeration equipment [22]. Considering the recombinant viruses 
most commonly used as vaccine vectors, there are already established high-
throughput and large-scale production processes, aiming to use this technology 
in the context of pandemics [23]. Vaccinia virus is one of the most attractive and 
efficient vectors [22] and widely used in leishmaniases vaccine trials, which is the 
focus of the present study.

2. Immunology of leishmaniases

Resistance to infection by Leishmania spp. is mediated by both innate (mac-
rophages, neutrophils) and adaptive (T cells) immunity. Macrophages are the 
main cells of the mononuclear phagocytic system parasitized by Leishmania spp., 
despite the fact that neutrophils are among the first cells recruited to contain 
the parasite at infection site [19]. A protective immunity against all forms of 
leishmaniases depends on the elimination of parasites by activated macrophages. 
Paradoxically, Leishmania spp. use the phagocytic function of macrophages as a 
strategy of internalization and replication within phagolysosomes. In this way, 
macrophages play both as host cells and as effector cells that attack parasites. 
Internalization of Leishmania spp. by host cells induces the production of pro-
inflammatory cytokines involved in the elimination of parasites [11]. Activation 
of macrophages is firstly mediated by Toll-like receptors (TLR), subtypes of 
pattern recognition receptors (PRR) that play as the first line of defense against 
parasites, activating NFκB (nuclear factor “kappa-light-chain enhancer” of 
activated B cells) and resulting in the production of pro-inflammatory cyto-
kines, such as interleukin-12 (IL-12) and tumor necrosis factor (TNF). Also part 
of the innate immune response is the NOD-like receptors, which are cytosolic 
PRR essential in the detection of intracellular pathogens. Together, the signaling 
cascades of TRL and NOD regulate the inflammatory and apoptotic responses of 
infected cells [24].

Reactive oxygen, nitrogen, and nitric oxide (NO) species, induced by IL-12, are 
the main responsible for the macrophages leishmanicidal activity. NO is produced 
from the metabolism of L-arginine, in a reaction catalyzed by the inducible nitric 
oxide synthase (iNOS). Cytokines such as interferon gamma (IFN-γ) and TNF-α 
stimulate iNOS expression, while IL-4 and IL-10 inhibit its expression, turning 
macrophages refractory to leishmanicidal activity [23, 24].

Dendritic cells (DC) also belong to the mononuclear phagocytic system and 
play as a link between innate and adaptive immune responses. DC are recruited to 
the site of infection by cytokine/chemokine released by infected macrophages and 
neutrophils. The ability of DC to present antigens through MHC (major histocom-
patibility complex) classes I and II induces the stimulation of Leishmania-specific 
CD8+ and CD4+ T cells, respectively, which are essential in acquiring Leishmania 
spp. resistance [19].
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CD4+ T cells play a crucial role in the protective immunity against Leishmania 
spp. due to the production of various cytokines associated with parasite resis-
tance, such as IFN-γ and TNF-α [25]. The use of murine models in leishmaniases 
preclinical vaccine trials allowed the identification of two subtypes of CD4+ T 
cells, which produce and secrete cytokines capable of inducing different effector 
functions. The studies that used as basis the model of L. major infection, estab-
lished in BALB/c mice and proposed by Sacks et al. [26], defined the Th1/Th2 
paradigm of resistance/susceptibility to infection and the role of cytokines such 
as IL-12 and IL-4 in the development of Th1 and Th2 cells subtypes, respectively 
[25, 27]. Generally, CL-causing Leishmania species require a Th1-type immune 
response pattern for cure in murine models [28]. Protective immunity in visceral 
infection is also related to the Th1 response pattern and occurs in the presence 
of macrophage-activating cytokines, such as IL-12 and IFN-γ, and by the forma-
tion of hepatic granulomas, structures capable of containing infection through 
the action of the mononuclear phagocytic system cells, which are activated by 
IFN-γ [29]. However, unlike the disease caused by L. major, the dichotomy of the 
Th1/Th2 immune response profile is not evident in VL murine models [30]. The 
susceptibility phenotype in VL murine seems to be more related to the inability to 
develop an effective Th1 response than in the elaboration of an exacerbated Th2 
response [31]. The mechanisms involved in the differentiation of naïve CD4+ T 
cells in the Th1 and Th2 phenotypes are not yet well known, and several factors 
influence the resistance or susceptibility to leishmaniases, including host genetic 
variations, genetic variations between species and parasite strains, as well as the 
size of inoculum, and number of Leishmania spp. infective forms received by the 
host through the phlebotomine bite [24].

Although Leishmania spp. reside within phagolysosomes of mononuclear phago-
cyte system cells, mainly macrophages, their antigens can be presented via MHC 
class I to CD8+ T cells by cross-presentation [32]. The production of cytokines and 
the cytotoxic activity of CD8+ T cells contribute to the completion of Leishmania 
spp. infection. It was initially believed that CD8+ T cells performed effector func-
tion only during reinfection by parasites. However, studies have shown that they are 
also crucial in controlling primary infection by inducing the Th1 profile of immune 
response through the production of IFN-γ [11]. In addition to the production of 
cytokines, CD8+ T cells also participate in the control of infection through cytotoxic 
mechanisms, such as the production of granzyme and perforin [8, 33].

The wide variety of cytokines and effector mechanisms involved in the immune 
responses induced by various species of Leishmania clarifies the complexity of 
leishmaniases. However, murine models of Leishmania spp. are able to mimic 
several aspects of human disease, being the main source of knowledge about the 
immunology of leishmaniases and the tool most used in the evaluation of efficacy in 
preclinical vaccine trials [11].

3.  Activation mechanisms of the immune response by recombinant  
viruses

The mammalian immune system has evolved to the efficient recognition 
of intruder viruses, being able to activate potent innate and adaptive immune 
responses (see Figure 1). Depending on the nature and replication strategy of 
the viral genome, several PRR are involved in the innate immune response to the 
recombinant virus (see Figure 1). Receptors for nucleic acids include TLR3, TLR7, 
TLR8, and TLR9 in the endosome, as well as cytosolic RNA/DNA sensors such as 
RIG-I (retinoic acid inducible gene I), MDA5 (melanoma differentiation-associated 
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gene 5), and cGAS (cyclic GMP-AMP synthase). After binding to the viral genome, 
these receptors signal via the NFκB and MAPK (mitogen-activated protein kinase) 
pathways, resulting in the induction of pro-inflammatory cytokines and chemo-
kines. Viral vectors that induce inflammation generally play as “self-adjuvanted.” 
A second effect of endosomal TLR signaling is the activation of interferon regula-
tory factor (IRF) 3 and IRF7, transcription factors necessary for the expression 
of the type I interferon (IFN-I) genes: IFN-α and IFN-β [34]. IFN-I induces the 
maturation of APC (see Figure 2), especially DC, by stimulating the expression of 
co-stimulatory molecules such as CD80, CD86, and CD40, which in turn, lead to an 
efficient DC homing to secondary lymphoid organs and the antigens presentation to 
CD4+ and CD8+ T cells. IFN-I also promotes the cross-presentation of viral antigens 
processed on the DC endosomes to CD8+ T cells [35].

While first-generation (killed or attenuated parasites) or second-generation 
(purified or recombinant proteins) vaccines are capable of inducing an intense 
humoral immune response, they are inefficient in activating cellular immune 
response based on cytotoxic CD8+ T cells (CTL). Recombinant viral vectors, how-
ever, have the specificity of inducing an intense expression of heterologous proteins, 
encoded in the transgene, inside infected cells [22]. Activation of CTL requires the 
expression of the pathogen proteins in the cytosol APC, as well as the binding of the 
antigen to the MHC class I molecules [36]. The immune response based on CD8+ T 
cells is initiated by the generation of peptides from their protein precursors cleaved in 
the cellular proteasome. After cleavage, the resulting peptides are complexed to TAP 
(transporter associated with antigen processing) and transported from the cytosol 

Figure 1. 
Mechanisms of immune activation by recombinant virus as a vaccine. The recombinant viruses inside the 
endosome release their genome into the cytoplasm of an antigen-presenting cell (APC). (1) If the viral genome 
gets exposed inside endosome rather than being released into the cytoplasm, it is sensed by toll-like receptors 
(TLR). Once inside the cytoplasm, the viral genome is amplified and detected by cytoplasmic sensors of viral 
nucleic acids (“RNA/DNA sensor”). Both pathway signals, through common pathways, will result in the 
transcriptional activation of pro-inflammatory cytokines but also in type I interferon (IFN-α/β) production. 
(2) Simultaneously, the viral genomic will be expressed, leading to synthesis of viral proteins. Cytosolic proteins 
are proteolytically digested and delivered to nascent major histocompatibility complex (MHC) class I chains in 
the endoplasmic reticulum (ER). (3) The recombinant viruses inside the endosome are degraded to yield peptide 
fragments that can associate with MHC class II molecules. *This image has not been previously published.
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into the endoplasmic reticulum (ER), where the interaction between the peptide 
and the MHC class I molecule occurs (see Figure 1). Subsequently, the peptide/
MHC I complex is transported to the cell surface, and the epitope can be presented 
and recognized by CD8+ T cells [34]. CD8+ T cells recognize the antigenic peptides 
of endocytosed microorganisms, producing cytokines such as IFN-γ, which activate 
infected phagocytes to extinguish microorganisms (cytotoxic mechanism) and 
stimulate inflammation (see Figure 2).

In addition to the CD8+ T cell epitopes, other important epitopes are those 
responsible for the induction of immune response by CD4+ T cells. Viral proteins 
(“self-adjuvanted”) or heterologous antigens fused to the viral capsid structural 
proteins may activate immune responses based on CD4+ T cells. Viral protein or 
heterologous proteins fused to the virus are processed inside endosomal/lysosomal 
vesicles, and the resulting peptides bind to MHC class II molecules (see Figure 1). 
The peptide/MHC II complex is presented on the surface of APC to CD4+ T cells. 
Vaccine viral vectors composed of these epitopes may induce memory CD4+ T cells 
potentially capable of being activated by the body’s natural exposure to the patho-
gen [22]. The differentiation of CD4+ T cells in the Th1 subtype occurs in response 
to microorganisms, including viruses, which infect or activate APC. Activated 
Th1 cells secrete IFN-γ, among other cytokines. IFN-γ acts in the APC to stimulate 
the destruction of microorganisms (see Figure 2). If the heterologous proteins 
expressed by the recombinant viral vectors present associated signal-peptide (SP), 
they have the potential capacity to be surface and/or secreted proteins. When the 
destination of these proteins is the mitochondria or the secretory pathway, their dis-
placement usually requires the presence of N-terminal sequences capable of being 
recognized by the cellular transport machinery. SP are responsible for targeting the 
proteins to the ER and, later, to the cell secretory pathway. Thus, these proteins may 
be anchored to the cytoplasmic membrane or secreted [37] and recognized by B 
cells, activating the production of specific antibodies (see Figure 2).

Figure 2. 
Effector functions of innate and adaptive immune cells responses induced by recombinant virus infection. (1) 
The viral genome stimulates endosomal TLR or RNA/DNA cytosolic sensors, triggering signaling cascades that 
lead to the production of pro-inflammatory cytokines, IFN-I, and APC activation. (2) Heterologous proteins 
are available for antigen-processing pathways, and the resulting peptides are bound to the MHC class I or II 
molecules, favoring the presentation of the antigens to CD8+ or CD4+ T cells, respectively. (3) If the heterologous 
proteins present associated signal-peptide (SP), they can be led to the cellular secretory pathway and activate 
B cells. APC, antigen-presenting cell; BCR, B cell receptor; MHC, major histocompatibility complex; N, cell 
nucleus; TCR, T cell receptor; TLR, toll-like receptors. *This image has been previously published.
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4.  Leishmaniases experimental vaccines based on vaccinia  
virus-derived vectors

Although almost every viral genome can be manipulated in order to acquire 
heterologous protein expression capacity in host cells, not all viruses are as effective 
in doing so. Some types have been shown to be more efficient than others in the 
induction of cellular immune response, with vaccinia virus being one of the most 
attractive and efficient vector [22] and widely used in leishmaniases vaccine trials.

The vaccine virus (VACV or VV) is a member of the family Poxviridae, genus 
Orthopoxvirus, able to replicate in cells of several species of vertebrates, both 
in vitro and in vivo. The virus is the etiologic agent of smallpox. However, VACV 
does not have a natural reservoir nowadays and is considered, almost exclusively, 
a laboratory virus [22]. The vaccinia virus has an approximate size of 200 nm in 
diameter and 300 nm in length, and its genome consists of a segmented linear 
double-stranded DNA (dsDNA) of 130–300 kb. Highly attenuated strains, such as 
modified vaccinia virus Ankara (MVA) or NYVAC, are able to accommodate large 
segments of exogenous DNA (>20–25 kb) in their genome, constituting excellent 
expression vectors. Among the main characteristics that make them excellent 
vaccine vectors are (I) thermostability, low cost, and easy manufacture/administra-
tion; (II) gene expression in the cytoplasm of cells; (III) ability to induce humoral 
and cellular immune responses to heterologous antigens and may exhibit long-term 
immunity after a single inoculation; (IV) and its genome flexibility, which allows 
loss or deletion of much of the DNA for transgene insertion without, however, 
losing infectivity. In addition, in the global population, the prevalence of vector 
immunity is low due to the discontinuation of smallpox vaccination in the 1970s 
after its eradication [38].

4.1  Construction of a recombinant vaccinia virus by homologous  
recombination

The construction of recombinant viral vectors requires adaptation of the gene of 
interest for expression in host cells. In many cases, this requires intracellular recom-
bination steps for the incorporation of the gene of interest into the viral genome.  
The construction of a recombinant vaccinia virus is based on a helper virus-dependent 
system [22]. Expression of the gene of interest may occur if the gene, under the 
control of a vaccinia virus promoter, is cloned into a plasmid (shuttle vector). The 
plasmid is transfected into a permissive cell highly infected with wild-type vaccinia 
virus. The gene of interest is incorporated into the wild-type vaccinia virus through 
homologous recombination between the viral genome and the shuttle vector (see 
Figure 3) [39].

4.2 Vaccinia virus in leishmaniases vaccines development

The development of vaccines against smallpox, which culminated in its eradication 
in the 1970s, resulted in a number of strains of vaccinia virus [40]. The first genera-
tion of vaccines against cancer, HIV/AIDS, and other infectious diseases was based on 
replication-competent strains of VACV, such as WR (Western Reserve strain), Wyeth, 
and Copenhagen. However, for safety reasons, most of the vectors currently used in 
vaccine trials are VACV non-replicative strains, such as MVA and NYVAC. Although 
highly attenuated vectors are capable of inducing protective immunity against various 
pathogens, their limitation in replicative capacity reduces their potential as compared 
to replicative vectors. In order to achieve a balance between safety and replication, 
several VACV strains with intermediate phenotype have been developed [41].
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The first report of the use of recombinant vaccinia virus in the induction of 
protection against Leishmania infection was made by McMahon-Pratt et al. (1993). 
The L. amazonensis GP46/M2 membrane glycoprotein was cloned into a live, 
highly attenuated strain of vaccinia virus (MuLEISH vaccine). Immunization by 
MuLEISH was able to induce protection in 45–75% of BALB/c mice challenged by 
L. amazonensis, in addition to generating memory T cells. This study demonstrated 
that recombinant vaccinia virus has great potential in the development of a safe and 
effective leishmaniases vaccine [41].

Since then, several Leishmania spp. antigenic subunits were cloned into recom-
binant VACV and used in leishmaniases preclinical and clinical vaccine trials. Over 
the past 10 years, studies using recombinant VACV in prophylactic immunizations 
have emphasized three antigenic subunits of Leishmania spp.: TRYP, LACK, and 
KMP-11 (see Table 1). Tryparedoxin peroxidase (TRYP, also known as TSA) was 
isolated from L. major, is highly conserved among Leishmania species, presents high 
expression in promastigote and amastigote forms, and plays a protective role against 
oxidative stress to the parasite [42]. LACK (also known as p36), the Leishmania 
homolog for receptors of activated C kinase, is an intracellular protein expressed in 
promastigote and amastigote forms, highly conserved among Leishmania species 
and highly immunogenic [43]. Kinetoplastid membrane protein-11 (KMP-11) is a 
protein present in all kinetoplastid protozoa and considered a potential candidate 
for leishmaniases vaccine [44].

The recombinant MVA vaccine vector expressing TRYP was used in a phase I 
clinical trial in dogs, the main VL domestic reservoirs caused by L. infantum, and has 
been shown to be safe and immunogenic. Uninfected, unexposed outbred endemic 
dogs immunized with TRYP-DNA plasmid prime and MVA-TRYP boost produced a 

Figure 3. 
The construction of recombinant vaccinia virus occurs by intracellular homologous recombination between 
the shuttle vector, which contains the foreign sequence (FS), and the viral genome. Generation of recombinant 
vaccinia virus requires a helper virus-dependent system. *This image has not been previously published.
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type 1-dominated pro-inflammatory cellular immune response which is necessary 
for protection against Leishmania challenge and an immune memory that persists for 
at least 4 months postvaccination in the absence of restimulation or infection [45]. 
Mice also immunized by DNA/MVA prime/boost vaccines expressing TRYP were 
protected against challenge by L. panamensis. This protection was achieved specifi-
cally through the expansion of antigen-specific effector CD8+ T cells. However, 
protection was dependent on modulating the innate immune response using the 
TLR1/2 agonist Pam3CSK4 during DNA priming. Heterologous prime-boost vaccina-
tion using only DNA fails to protect [46].

Ramos et al. [47] constructed two poxviral vectors: (I) a vaccinia virus derived 
from the wild-type WR strain (rVV), replicative and (II) an MVA, both expressing 
LACK. These vectors were used in a clinical vaccine trial to evaluate efficacy and 
immune response against CVL. This study showed that dog vaccination priming 
with DNA-LACK followed by a booster with MVA-LACK or rVV-LACK triggered a 
Th1 type of immune response, leading to protection against challenge by  
L. infantum. In addition, MVA-LACK in the booster demonstrated an advantage 
when compared to replication-competent rVV-LACK as a vaccine vector against 
CVL [47]. DNA-LACK/MVA-LACK prime/boost vaccines were also able to protect 
mice later challenged by L. major [48]. In both cases, protection was mediated by 
a Th1-like immune response against LACK antigen. However, a deep study of the 
immune populations involved in protection was still needed. Sánchez-Sampedro 
et al. [49] performed an in-depth analysis of the T cell populations induced in 
BALB/c mice during the DNA-LACK/MVA-LACK vaccination protocol, as well 
as after challenge with L. major parasites. In the adaptive response, there is a 

Table 1. 
Recombinant vaccinia viruses used as experimental leishmaniases vaccines within the last 10 years.
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polyfunctional CD4+ and CD8+ T cell activation against LACK antigen. At the 
memory phase, the heterologous vaccination induces high-quality LACK-specific 
long-term CD4+ and CD8+ effector memory cells. After parasite challenge, there is 
a moderate boosting of LACK-specific CD4+ and CD8+ T cells. The immune param-
eters induced against LACK and triggered by the combined vaccination DNA/MVA 
protocol could be relevant in protection against leishmaniases [49].

In 2013, Sánchez-Sampedro et al. constructed two vaccinia virus mutants, M65 
and M101. These replication-competent mutants were generated after 65 and 101 
serial passages of persistently infected Friend erythroleukemia (FEL) cells. Mice 
immunized in a DNA prime/M65 or M101 boost regimen with viral vectors express-
ing the LACK showed protection or a delay in the onset of CL. In immunized mice, 
DNA-LACK/M65-LACK protocol preferentially induced CD4+ T cell, whereas 
DNA-LACK/M101-LACK preferentially induced CD8+ T cell responses. Although 
both mutants were able to induce protection in mice challenged by L. major, they 
did not induce protection against L. amazonensis infection. Protection was similar to 
that triggered by MVA-LACK [50]. Nevertheless, the protocol of DNA-LACK prime/
MVA-LACK or M65-LACK virus boost vaccination significantly reduced the parasite 
load in the liver and bone marrow of hamsters challenged by L. infantum, with no 
differences recorded between the use of MVA or M65 virus vector options [51].

In addition to MVA, NYVAC is one of the most studied attenuated strains of 
vaccinia virus. NYVAC was derived from a plaque-cloned isolate of Copenhagen 
smallpox vaccine strain by selective deletion of 18 open reading frames (ORF) 
involved in virulence, pathogenicity, and host range regulation. Sánchez-Sampedro 
et al. [52] constructed a NYVAC capable of expressing LACK with insertion of the 
viral host range gene C7L that allows the virus to replicate in human cells. DNA-
LACK-prime/NYVAC-LACK-C7L boost protocols were able to induce preferentially 
LACK-specific CD8+ T cell responses, with a reduced CD4+ T cell response and 
reduction in lesion size in mice immunized and challenged by L. major. The type 
and potency of the immune response induced by NYVAC-LACK were improved by 
C7L insertion [52].

Finally, a heterologous prime-boost immunization strategy using KMP-11-DNA 
priming followed by boosting recombinant vaccinia virus (rVV) expressing the same 
antigen was able to induce protective immunity in both hamsters and in mice against 
VL caused by both antimony resistant (Sb-R) and sensitive (Sb-S) L. donovani. 
Parasite load is kept significantly low in the vaccinated groups even after 60 days 
postinfection in hamsters, which are extremely susceptible to VL. Protection in mice 
is correlated with strong cellular and humoral immune responses. Generation of 
polyfunctional CD8+ T cell was observed in vaccinated groups, which is one of the 
most important prerequisites for successful vaccination against VL [53].

5. Conclusion

The declaration of smallpox eradication by the World Health Organization, 
in 1980, and the discovery that genes encoding heterologous antigens could 
be inserted into the genome of attenuated vaccinia virus, in 1982, resulted in a 
burst of scientific publications highlighting the potential clinical benefits of the 
recombinant poxvirus vectors as vaccines against various pathogens. Among 
the most attractive and efficient viral vectors in inducing a cellular immune 
response, vaccinia virus has been the most used in leishmaniases vaccine trials, 
especially in combination with DNA vaccines (heterologous prime/boost proto-
cols). However, studies showed that greatly enhanced immune responses could be 
obtained when two different viral vectors expressing the common antigen were 
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used following the prime-boost immunization protocol, which may be experienced 
in future  leishmaniases vaccine efficacy studies. Although highly attenuated 
vectors, especially MVA and NYVAC, are safe and capable of inducing protective 
immunity against infection by several Leishmania species, their limitation in rep-
licative capacity reduces their potential when compared to replicative vectors. For 
a safety and replication balance, VACV strains with intermediate phenotypes are 
desirable. Accordingly, in the last 5 years, two replicating competent mutants were 
developed, M65 and M101, derived from WR strain, capable of inducing a protec-
tive immune response against murine infection by L. major (mice, M65 and M101) 
and L. infantum (hamsters, M65), as well as recombinant strain NYVAC-C7L, a 
highly attenuated vector but competent to replicate in human cells that was also able 
to potentiate the protective immune response against murine infection by L. major. 
Furthermore, TLR1/2 modulation may be useful in vaccines where CD8+ T cell 
responses are critical. In conclusion, the potential of poxviral vectors as promising 
tools for vaccine development against leishmaniases can be explored by the devel-
opment of new-generation vectors with refined specificity and improved efficacy 
through the use of co-stimulatory molecules, deletion of viral immunomodulatory 
genes still present in the poxvirus genome, enhancing both virus promoter strength 
and vector replication capacity, optimizing expression of foreign heterologous 
sequences, and the combined use of adjuvants. An optimized poxvirus vector trig-
gering long-lasting immunity with a high protective efficacy against leishmaniases 
should be sought and can be feasible.
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