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Chapter

A Critical Review on Population 
Synthesis for Activity- and Agent-
Based Transportation Models
Ossama E. Ramadan and Virginia P. Sisiopiku

Abstract

Traditional four-step transportation planning models fail to capture novel 
transportation modes such as car/ridesharing. Hence, agent-based models are 
replacing those traditional models for their scalability, robustness, and capability 
of simulating nontraditional transportation modes. A crucial step in developing 
agent-based models is the definition of agents, e.g., household and persons. While 
model developers wish to capture typical workday travel patterns of the entire study 
population of travelers, such detailed data are unavailable due to privacy concerns 
and technical and financial feasibility issues. Hence, modelers opt for population 
syntheses based on travel diary surveys, land use data, and census data. The most 
prominent techniques are iterative proportional fitting (IPF), iterative proportional 
updating (IPU), combinatorial optimization, Markov-based and fitness-based syn-
theses, and other emerging approaches. Yet, at present, there is no clear guideline 
on using any of the available techniques. To bridge this gap, this chapter presents a 
comprehensive synthesis of practice and documents available successful studies.

Keywords: transportation planning, traffic simulation, agent-based models, 
population synthesis

1. Introduction

Transportation simulation models are widely used for travel demand forecast-
ing, testing design alternatives, or predicting travel behavior. In 1992, Axhausen 
and Gärling [1] developed a comprehensive review of conceptualizations and 
approaches of activity-based transportation models with special regard to the valid-
ity of behavioral assumptions of modeled population. In the course of their review, 
they concluded that individual travelers and households, rather than aggregates, 
should be identified and considered. Nevertheless, detailed travel records for 
individuals have never been easily accessible for several reasons, the most impor-
tant being privacy issues and cost. Hence, individual travel diaries needed to be 
synthesized from travel surveys, census data, and publically available records. That 
process has since been known as population synthesis.

Population synthesizers initially were used as feeder data avenues to travel 
demand models [2]; however, recent shifts toward activity- and agent-based models 
brought population synthesizers to the spotlight, as they became determinants to 
the success or failure of any transportation model of that kind. Fitting is the core 
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of any population synthesizer, with the main focus on fitting disaggregate sample 
of agents (represented by tabulated demographics of a representative sample of 
household and individual data) to aggregate constraints (represented by available 
aggregate data, such as data available from census). There are several approaches for 
fitting including iterative proportional fitting (IPF), iterative proportional updat-
ing (IPU), combinatorial optimization, Markov-based and fitness-based syntheses 
(FBS), and other emerging approaches [3]. The following sections present a critical 
review of each approach in the chronological order by which they were introduced 
to illustrate the progression and evolution of each approach, with emphasis on 
notable and well-established efforts.

2. Iterative proportional fitting approach

Iterative proportional fitting has been first introduced in 1940 by Deming and 
Stephan [4]. Since then, it became the foundation of population synthesis for 
transportation models and sometimes referred to as the Fratar technique [5]. The 
most notable realization of the IPF technique is attributed to Beckman et al. [6] who 
pioneered population synthesis efforts through their development of a methodol-
ogy for creating a synthetic baseline population of individuals and households for 
microscopic activity-based models. Their technique relied on using census data rep-
resented by a Census Standard Tape File and Public Use Microdata Sample (PUMS) 
for a given Public Use Microdata Area (PUMA) of 100,000 individuals with match-
ing variables. In their case, the marginal totals of a multiway table were known, 
and a sample from the population which generated those totals was provided; thus, 
they applied the IPF technique to develop constrained maximum entropy estimates 
of the true proportions in the population multiway table. Their rationale was built 
upon the consensus that IPF estimates maintain the same odds ratios as those in the 
sample table in the absence of any marginal information which was their case. To 
validate the population synthesis method, they compared demographic character-
istics of the synthetic population with those of the true population using variables 
not involved in the population synthesis. Despite their pioneer effort, Beckman 
et al. [6] did not provide an answer to the zero-cell problem in the PUMS; instead, 
they replaced it by 0.01 and imputed the corresponding household size. Müller and 
Axhausen [3] illustrated this as computing a series of tabulations   n  ij  

 (k)   , starting with 
the seed at  k ≔ 0 , thus   n  ij  

 (0)   ≔  n  ij    for all  i  rows and  j  columns. Furthermore, they 
illustrated how that series can be computed as represented by Eq. (1):

   n  ij  
 (k+1)   ≔  n  ij  

 (k)   ·  { 
 r  i   ÷  n  i·  

 (k)  
  

 c  j   ÷  n  .j  
 (k)  

     (1)

where   n  i.   , is the row sum;   n.  j   , is the column total;   r  i   , is the control total for 
row  i;  c  j   , is the control total for column  j. 

Almost a decade later, Arentze et al. [7] addressed one of the limitations of the 
IPF methods, that is, generating synthetic households when the demographic data 
describes population in terms of individual counts. Their solution relied on devel-
oping a two-step IPF procedure where, first, known marginal distributions of indi-
viduals are converted to marginal distributions of households of similar attributes 
and, second, the resulting marginal household distributions are used as constraints 
of a multiway household counts. Additionally, their approach aimed to assess the 
relevance of spatial heterogeneity across populations. The Dutch Albatross model 
was used as a case study and proof of concept. The validation results yielded sample 
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biases in the synthetic population on the dimensions of socioeconomic class, the 
presence of children, and the availability of transport modes. However, they were 
able to resolve biases in over- or underrepresentation of groups that were related to 
age and work status by fitting the relevant tables on these dimensions.

Simultaneous to the efforts of Arentze et al. [7], Guo and Bhat [8] addressed the 
two main drawbacks of IPF approach, namely, the zero-cell problem and the inabil-
ity to control for statistical distributions of both household- and individual-level 
attributes. Additionally, their study aimed to enhance the scalability and generality 
of the IPF method as it required code-level changes that are cumbersome and skills 
that are not typically found within planning agencies, who are the typical users of 
such approach. The algorithm developed by Guo and Bhat [8] featured generic data 
structures and accompanying functions to avoid the zero-cell problem, as well as 
revisions to the algorithm of Beckman et al. [6] to allow simultaneous control of 
both household- and individual-level attributes. That generic algorithm was built 
upon an object-oriented architecture and contained eight major steps and a recur-
ring procedure for merging any two contingency tables with common variables. The 
proposed approach was used to generate synthetic population for the Dallas-Fort 
Worth metropolitan area in Texas, and the statistical comparison yielded results 
that were closer to true population than that of Beckman et al. [6]. In addition, Guo 
and Bhat [8] concluded that a higher percentage deviation from target size (PDTS) 
yielded better balance at satisfying the household- and individual-level multiway 
distributions than lower values of PDTS.

Srinivasan et al. [9] went a step further and attempted to fine-tune existing 
efforts to accommodate the household- and individual-level controls as well as 
assess the significance of controlling individual-level attributes. That study was 
performed in support of Florida Department of Transportation (FDOT) efforts 
to incorporate sociodemographic attributes within the Florida Standard Urban 
Transportation Model Structure (FSUTMS). The research was motivated by the 
need for reduced aggregation errors, ensuring sensitivity to demographic shifts 
like that of aging population, and the ability to accommodate population-specific 
transportation modes. That fine-tuning effort mainly aimed to address individual-
level attributes of age and gender through the means of a greedy-heuristic data-
fitting algorithm that was implemented in the matrix programming language 
GAUSS. Validation of Srinivasan et al. [9] algorithm yielded satisfactory distribu-
tions of household, size, age, gender, and employment status; however, the distri-
butions for all other variables did not match well.

Given the limited number of attributes that can be synthesized per agent, 
researchers had to further improve the IPF approach to overcome this limitation. 
Pritchard and Miller [10] introduced a method that implements IPF approach with 
sparse list-based data structure that allows more attributes per agent. Additionally, 
they used both the conventional Monte Carlo integerization procedure and the 
conditional Monte Carlo to synthesize a list of individual agents from fitted tables. 
Despite their thorough efforts, the study of Pritchard and Miller [10] had only a 
minor impact on goodness-of-fit, relative to the conventional approach.

Auld and Mohammadian [11] developed a methodology to improve the basic 
IPF population synthesis routine in a manner that accounts for multiple levels 
of analysis units—control variables, which was a limitation to the population 
synthesizers mentioned hereinabove. Their methodology, named multilevel 
control, allows population characteristics to be replicated for multilevel synthetic 
population with one level (such as households) serving as the base level of analy-
sis. After a runtime of 16 hours, the proposed method was able to synthesize a 7.9 
million agent population for Chicago, IL, with an improved fit of the synthesized 
individual-level characteristics when compared with synthesis procedures that do 
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not account for individual-level controls. The study concluded that the improved 
fit comes at no cost to the fit against household-level controls. However, the 
developed methodology was never experimented as to synthesizing commercial- 
or business-related agents.

Lee and Fu [12] realized that the IPF-based population synthesis approaches, 
specifically the original synthetic reconstruction method [6] and the complimen-
tary combinatorial optimization method [13], are not generally applicable to all 
population synthesis scenarios. Based on a comparison by Ryan et al. [14], Lee and 
Fu [12] concluded that combinatorial optimization method produces more accurate 
demographic information for populations over a small area and that the popula-
tion synthesis problem should be evaluated from an optimization point of view. In 
addition, they explored how the estimation of a multiway demographic table can be 
formulated and solved as a constrained optimization problem in full consideration 
of both household- and individual-level attributes. Accordingly, that study tackled 
the inconsistency problem through an approach that is based on the minimum 
cross-entropy theory. The validity of that model was confirmed through a case 
study in Singapore, through which results from a 10,641 household study area were 
superior to conventional IPF approaches. However, Lee and Fu [12] did not provide 
a full-scale application which constrains the applicability of their model to theoreti-
cal applications only.

Zhu and Ferreira [15] were intrigued by the inability of the standard IPF algo-
rithm to fit marginal constraints on multiple agent types simultaneously. Hence, 
they developed a two-stage population synthesizer that utilized IPF on the first 
stage and then estimated the spatial pattern of household-level attributes through 
a second stage IPF-based approach. Their two-stage algorithm consisted of four 
distinctive steps. The first step involved developing an estimate joint distribution 
of household- and individual-level attributes. In the second step, households and 
individuals were drawn from microdata samples. The third step consisted of a 
conventional IPF with household type and parcel capacity marginal constraints. 
The fourth and last step included an estimated marginal distribution of other 
attributes from the fitted model. To validate their approach, Zhu and Ferreira [15] 
generated synthetic population for Singapore. Their evaluation approach involved 
four comparisons, namely, fitting only for households-level constraints, fitting for 
both household- and individual-level constraints, allocating households to build-
ings while constraining building capacity, and repeating the previous comparison 
with income level constrained. Validation results yielded realistic spatial heteroge-
neity while preserving some of the joint distribution of household and locational 
characteristics.

Choupani and Mamdoohi [16] addressed the issue of integerization of IPF 
results in non-integer values instead of integers, for example, fractions of house-
hold- or individual-level attributes for zones. In doing so, they proposed a binary 
linear programming model for tabular rounding in which the integerized table 
totals and marginals perfectly fit to input data obtained from the Census Bureau. 
The main advantages of using tabular rounding were that it did not bias joint or 
marginal distributions of socioeconomic attributes of minority demographic groups 
and it minimized the distortion to the correlation structure of household- and 
individual-level non-integer tables. Furthermore, the tabular rounding approach 
outperformed all other eight rounding approaches. In addition, sensitivity analysis 
of tabular rounding demonstrated that small and large values are equally significant 
when it comes to integerization. Their findings were confirmed by a comprehensive 
literature review [17] that they performed 1 year later, which concluded that IPF 
is the most feasible approach for synthesizing populations for agent- and activity-
based transportation models, once integer conversion and zero-cell issues were 
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resolved. In addition, they confirmed that tabular rounding is the most efficient 
and feasible solution for the integerization issue.

Most recently, in an effort to further enhance the IPF approach, Otani et al. [18] 
identified an issue that they named the modifiable attribute cell problem (MACP) 
which arises from combining discrete categories of individual-level attributes 
or due to the contiguous nature of those attributes. The proposed solution to the 
MACP issue was identified as “the organized cell set” which is the best combina-
tion of categories. The procedure to identify the best organized cell set consists 
of five steps. The first step involves aggregation of the elemental cell set to find 
several cases of cell organization that generate large cells. The second step involves 
constructing base-year data using the conventional IPF approach. The third step 
focuses on forecasting using microscopic simulation. The fourth step involves 
identifying the statistically acceptable cell value using a Student’s t-test. The fifth 
and final step involves considering the case with minimum number of cells to be 
the best cell organization. This method is computationally complex and cannot be 
performed using conventional optimization algorithms. Yet, it is the sole identifi-
able solution to the modifiable attribute cell problem.

3. Iterative proportional updating approach

The iterative proportional updating approach is a heuristic approach that 
was developed by Ye et al. [19] to address the drawbacks of the IPF approach. 
Specifically, the IPU approach addresses the issue of control for individual-level 
attributes and joint distributions of personal characteristics. The IPU algorithm 
matches both household- and individual-level attributes in a computationally effi-
cient manner by iteratively adjusting and reallocating weights among households 
of a specific type until both household- and individual-level attributes are matched. 
Another advantage of the IPU approach is its practicality from the implementation 
and computational points of view. Eq. (2) represents the mathematical optimiza-
tion problem as addressed by the IPU approach. In addition, the IPU approach has 
been generally described in 23 computational steps that can be easily coded in most, 
if not all, programming languages:

  Minimize  ∑ 
j
       (  

 ∑ i      d  i,j    w  i   −  c  j  
 _________  c  j  

  )    

2

  or  ∑ 
j
       

  ( ∑ i      d  i,j    w  i   −  c  j  )    2 
  ___________  c  j  

   or  ∑ 
j
       

 | ∑ i      d  i,j    w  i   −  c  j  | 
 __________  c  j  

    (2)

Subject to   w  i   ≥ 0 
where  i , denotes a household ( i = 1, 2, … , n );  j , denotes the constraint or popula-

tion characteristic of interest ( j = 1, 2, … , m );   d  i,j   , represents the frequency of the 
population characteristic (household/person type  j  in household  i );   w  i   , is the weight 
attributed to the   i   th   household;   c  j   , is the value of the population characteristic  j .

Furthermore, Ye et al. [19] proposed an alternative method to address the 
zero-cell problem that undermined the IPF practicality. Their method is based on 
borrowing the prior information for the zero cells from PUMS data for the entire 
region, where zero cells are not likely to exist as long as the control variables of 
interest and their categories are defined appropriately. However, that method has 
the inherent risk of overrepresenting the demographic group of interest. Despite 
their attempt to overcome the zero-cell problem, the researchers could not over-
come the zero-marginal problem that may result due to nonexistence of a certain 
attribute in households of a certain geographic area, for example, having no low-
income households in a certain census block or tract. Furthermore, a review by 
Müller and Axhausen [3] pointed to the lack of a theoretical proof of convergence.
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4. Combinatorial optimization approach

The combinatorial optimization approach was materialized by Abraham et al. 
[20] and is a versatile approach capable of matching targets at multiple agent levels 
for both household- and individual-level attributes. A combinatorial optimiza-
tion approach is generally simpler and more direct than IPF. Mostly, it starts by 
the creation of a trial population from the disaggregate sample data, and then the 
overall level of fit is assessed across all marginal targets. Units from the trial popula-
tion are swapped with units chosen from the disaggregate samples, and when the 
measure of fit improves, the swap is made. This is implemented through a propri-
etary computer program that first identifies a list of units whose aggregate attribute 
values match a pre-specified set of corresponding target values and then iteratively 
performs one of three operations, namely, adding a unit from the sample to the list, 
subtracting a unit, or swapping a unit between the sample and the previously iden-
tified list. That process is performed on a zone-by-zone level with equal probability 
of the three actions (i.e., add, subtract, or swap) being considered. The developed 
algorithm was applied to California and Oregon to synthesize populations for their 
models. The California application served the California Statewide Travel Demand 
Model including short- and long-distance travel considering personal and com-
mercial vehicles. The Oregon application served the Oregon Statewide Integrated 
Model, which included employment synthesis for 34 industries. Both model 
applications resulted in a near-perfect fit for synthesized populations. Generally, 
the population synthesis procedure using combinatorial optimization has proven 
to be fast and flexible with the possibility for application to both households and 
employment scenarios. However, this algorithm can be further improved by using 
multicore and parallel computing techniques.

5. Markov process-based approaches

As demonstrated, hereinabove, IPF, IPU, and combinatorial optimization 
approaches rely on cloning attributes that were captured in microdata. In addition, 
they all share key drawbacks including (a) fitting of a contingency table while 
ignoring other solutions matching the available data; (b) loss of heterogeneity 
that has been captured in the microdata due to cloning rather than true popula-
tion synthesis; (c) dependency on the accuracy of captured data to determine the 
cloning weights which may replicate inherent inaccuracies; and (d) limited scal-
ability, in terms of the number of attributes of synthesized agents. Hence, Markov 
process-based approaches were developed to overcome such drawbacks and to offer 
an approach that truly synthesizes populations instead of cloning them.

The earliest notable effort in this direction was pioneered in 2013 by Farooq 
et al. [21] who developed a Markov chain Monte Carlo (MCMC) simulation-based 
approach for synthesizing populations. The proposed approach is a computer-
based simulation technique that can be used to simulate a dependent sequence 
of random draws from complicated stochastic models. To synthesize populations 
that approach uses three sources of data, namely, (a) zoning systems such as 
census blocks, census tracts, counties, and states; (b) sample of individuals such 
as the North American PUMS and the European Sample of Anonymized Records 
(SARs); and (c) cross-classification tables for socioeconomics and demographics 
like income by age at a certain zoning level. Assuming that in a given spatial region 
at any point in time there exists a true population, the MCMC simulation-based 
approach synthesizes that population by drawing the individual attributes from 
their uniquely joint distribution using the available partial views while ensuring 
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that the empirical distribution in the synthetic population is as close as possible 
to the unique actual distribution of that population. The proposed approach was 
applied to the Swiss census data, and results were compared against those devel-
oped by a conventional IPF approach. Eq. (3) illustrates the standardized root 
mean square error (SRMSE)-based goodness-of-fit tests that were performed on 
each case, and results indicated that MCMC simulation-based synthesis outper-
formed IPF synthesis while featuring a higher level of heterogeneity:

  SRMSE =   
  (  ∑ i=1  

m   … ∑ j=1  
n      ( R  i…j   −  T  i…j  )    2 ⁄ N )     

1 ⁄ 2  
  ____    ∑ i=1  

m   … ∑ j=1  
n     T  i…j   ⁄ N     (3)

where  N , is the total number of agents;   R  i…j   , is the number of agents with attribute 
values  i…j  in the population synthesized;   T  i…j   , is the number of agents with attribute 
values  i…j  in the actual population.

Two years later, in 2015, Casati et al. [22] proposed an extension of the MCMC 
simulation-based approach to simultaneously combine both individual- and house-
hold-level attributes in a process that was named hierarchical MCMC. Furthermore, 
generalized raking was introduced as a technique to fit the simulated synthetic 
population to actual observed control totals. The hierarchical MCMC is a combina-
tion of two methods: (a) an extension of the original MCMC method that allows 
producing hierarchies of persons grouped into households and (b) a post-process-
ing method to satisfy known control totals on both the individual- and household-
level. That extension aimed to synthesize populations with a hierarchical structure 
that is based upon ordering the agents living in the same household according to 
their household roles. The general formulation of the extension is based upon the 
definition of three groups of agent types (viz., owners, intermediate, and others) 
running Gibbs sampling on the three groups and merging subpopulations. The 
proposed approach was applied to the 2008 household interview travel survey of 
Singapore. The application resulted in realistic synthetic populations, and SRMSE-
based test confirmed the goodness-of-fit of synthesized populations and their 
generated hierarchical structures.

Saadi et al. [23] proposed an integrated MCMC approach and profiling-based 
methods to capture the behavioral complexity and heterogeneity of synthesized 
agents. This approach used two types of datasets, namely, (a) aggregated sociode-
mographic and transportation-related variables derived from household travel 
surveys and (b) individual activity-travel diaries collected from travel diary sur-
veys. The integrated approach consists of six steps that run on those two data types. 
The first step involves performing a MCMC simulation on the sociodemographic 
dataset. The second step concerns synthesizing population by a Gibbs sampling 
procedure. The third step selects sociodemographics to compare behaviors in 
the activity-travel patterns. The fourth step uses results from the previous two 
steps to cluster synthesized populations according to sociodemographics and 
related activity sequences. The fifth step utilizes multiple sequence alignments 
to estimate hidden Markov model (HMM). The final step characterizes clusters 
including mixed socioeconomic effects. The integrated approach was applied to the 
2010 Belgian household daily travel survey. Results indicated that the integrated 
approach effectively captured the behavioral heterogeneity of travelers. In addi-
tion, comparisons against IPF and IPU approaches demonstrated that the proposed 
integrated approach is adequately adapted to meeting the demand for large-scale 
microsimulation scenarios of urban transportation systems.

Realizing the advantages of Markov process-based approaches, Saadi et al. [24] 
developed an extended HMM-based approach which promised better alternatives 
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than the existing ones. More specifically, the proposed HMM-based approach 
promised great flexibility and efficiency in terms of data preparation and model 
training while being able to reproduce the structural configuration of a given 
population from an unlimited number of micro samples and a marginal distribu-
tion. The HMM-based approach considers population synthesis as a variant of 
the standard decoding problem, at which the state sequences are supposed to be 
unknown. Accordingly, the maximum likelihood estimators related to the transition 
states were determined through the Viterbi algorithm. An important advantage 
of the HMM-based approach is its ability to handle both continuous and discrete 
variables, which addresses the inherent issue of loss of information due to aggrega-
tion of continuous variables like age. Also, the proposed HMM-based approach 
satisfies the need to discretize continuous variables to meet the fundamental limita-
tion of Markov process to discrete states. The statistical and machine Learning 
Toolbox of MATLAB was used to generate sequences from an estimated HMM that 
were applied to the 2013 Belgian National household travel survey. Three simula-
tions were run to illustrate the HMM-based approach. The first simulation tested 
the combined effects of scalability and dimensionality. The second simulation 
compared the HMM-based approach against IPF, and the third demonstrated the 
advantage of the HMM-based approach over IPF using various samples. Simulation 
results indicated that the proposed HMM-based approach provided accurate results 
due to its ability to reproduce the marginal distributions and their correspond-
ing multivariate joint distributions with an acceptable error. Furthermore, the 
HMM-based approach outperformed IPF for small sample sizes while using smaller 
amount of input data than IPF. In addition, simulation results demonstrated that 
the HMM-based approach can integrate information provided by several data 
sources to allow good estimates of synthesized population.

6. Fitness-based synthesis approach

To address the inability of the IPF approach to deal with multilevel controls, Ma 
and Srinivasan [25] developed the fitness-based synthesis approach that directly 
generates a list of households to match several multilevel controls without the need 
for determining a joint multiway distribution. The FBS approach generally involves 
selecting a set of households from the seed data, like PUMS, such that tract-level 
controls are satisfied. The FBS approach starts with an initial set of households that 
can either be a null set or a random sample from the seed data. Then, the popula-
tion of each census tract is synthesized in an iterative fashion, with one household 
being either added or removed from the current list in each iteration. Count tables, 
defined in terms of control attributes, are used to track the number of households 
of each type that have already been included. The FBS approach implements an 
adding or removing procedure, while swapping is not considered. The main criteria 
in the FBS approach is the reduced sum of squared error for addition   F  I  

in
   and cor-

responding error for removal   F  II  
in

   as illustrated by Eqs. (4) and (5):

   F  I  
in  =  ∑ 

j=1
  

J

     ∑ 
k=1

  
 K  j  

    [  ( R  jk  n−1 )    
2

  −   ( R  jk  n−1  − H  T  jk  i  )    
2

 ]   (4)

   F  II  
in  =  ∑ 

j=1
  

J

     ∑ 
k=1

  
 K  j  

    [  ( R  jk  n−1 )    
2

  −   ( R  jk  n−1  + H  T  jk  i  )    
2

 ]   (5)

Subject   to   F  I  
in  + F  II  

in  =-2  ∑ 
j=1

  
J

     ∑ 
k=1

  
 k  j  

       (H  T  jk  i  )    
2
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where   R  jk  n−1  =  T  jk   − C  T  jk  n−1  ;  j , is an index representing the control (and the cor-
responding count) tables;  J , is the total number of control (or count) tables;  jk , is an 
index representing the different cells in a table;   T  jk   , represents the value of cell  k   
in control table  j; C  T  jk  n−1  , represents the value of cell  k  in count table  j  after itera-
tion  n − 1;  R  jk  n−1  , is the number of households/persons required to satisfy the target 
for cell  k  in control table  j  after iteration  n − 1; H  T  jk  i   , is the contribution of the   i   th   
household in the seed data to the   k   th   cell in control table  j .

Three applications of the FBS approach were performed to demonstrate the 
feasibility of incorporating many controls at multiple levels in the synthesis 
and increased accuracy of synthesized population. The three applications were 
performed using the 2000 Census data for 12 census tracts in Florida. The first 
application involved population synthesis using the IPF approach with only house-
hold-level controls. The second application involved population synthesis using 
the proposed FBS approach with few household- and individual-level controls. The 
third application also involved population synthesis using the FBS approach but 
with significantly larger number of controls. Validation for the three applications 
was performed by comparing the mean absolute error against 22 artificial census 
tracts that were created by randomly selecting subsets of households from the 2000 
PUMS. Validation results demonstrated that FBS outperformed IPF and demon-
strated efficiency and scalability. In addition, FBS did not require many iterations as 
it required only one to three times the number of households to be synthesized. In 
addition, the proposed FBS approach addresses the notorious IPF issues of zero-cell 
problems, computational resources (memory), and non-integers cell value in the 
joint-distribution tables.

Hafezi and Habib [26] refined the FBS approach, and the refined FBS popula-
tion synthesizer was examined by three models. The first model used household-
level control tables. The second model used individual- and household-level 
control tables, and the third model used weighting individual-and household-level 
control tables. The models were applied to the province of Nova Scotia in Atlantic, 
Canada, using the 2006 Canadian Census and Public Use Microdata File (PUMF). 
The refined approach was implemented using the sparse matrix technique pack-
age in MATLAB that is based on high-level matrix programming for numerical 
computation. The three models were validated by error percentages and goodness-
of-fit evaluation. Validation results indicated that the refined FBS approach can 
efficiently obtain a satisfactory result using both individual- and household-level 
control tables. However, higher homogeneity was achieved within the third model.

7. Emerging approaches

Other emerging approaches have been developed in an attempt to replace the 
IPF approach or to overcome one or more of its drawbacks. Emerging approaches 
include Bayesian network, annealing algorithm, linear programming, heuristic-
based, copula-based, and entropy maximization approaches. The following para-
graphs introduce each of the emerging approaches.

The Bayesian network approach was developed by Sun and Erath [27] in 2015. 
The proposed Bayesian network approach is a probabilistic population synthesizer 
that is intended as an alternative to approximate the inherent joint distribution in 
a more efficient manner. Using a graphical model, the proposed Bayesian network 
approach encodes probabilistic relationships, like causality or dependence, among 
a set of variables. The advantages of Bayesian network models lie in their ability to 
learn the structure of population systems, particularly when the number of attri-
butes of interest is large using limited amounts of microdata. The Bayesian network 
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approach was founded on the inference of the joint distribution—that is, perceiving 
the population synthesis problem as an inference of a multivariate probability dis-
tribution of demographic and socioeconomic household- and individual-level attri-
butes. Like the Markov process-based approaches, the Bayesian network approach 
does not require marginals as input. In addition, it does not require any conditionals 
since structure learning and parameter estimation are inherently integrated in the 
learning model. The performance of the proposed Bayesian network approach was 
demonstrated through an application to the 2010 household interview travel survey 
of Singapore. The Bayesian network approach demonstrated good performance 
as illustrated by low SRMSE values. It also demonstrated good heterogeneity in 
synthetic population when the size of PUMS is less than 70% of the full population.

The simulated annealing (SA) algorithm was developed by Kim and Lee [28] 
to synthesize populations for activity-based models. The proposed SA algorithm 
is built upon the concepts of thermodynamics and metallurgy and was first intro-
duced as a generic heuristic method for discrete optimization. The Metropolis-
Hastings Algorithm was employed to solve the inherent problems of hill climbing 
and cooling schedule when applying SA to population synthesis. The proposed algo-
rithm consists of seven steps. The first step concerns setting the maximum number 
of iterations. The second step sets up the total amount of columns and rows in the 
population and enters observed values of sample distribution. The third step sets up 
the before-distribution, which is composed by random numbers, while satisfying 
the total amount of restrictive conditions. The fourth step sets up the after-distribu-
tion, which is also composed by random numbers that satisfy total amount restric-
tive conditions. The fifth step involves calculation of absolute error on the before−/
after-distributions as well as observed data. The sixth step involves calculation 
of selection probability. The seventh and final step iterates steps 4 through 6 and 
ends the calculations when the absolute error (calculated in the fifth step) has the 
smallest value or satisfies ending conditions. The SA algorithm was implemented 
using the household travel diary survey from the Korean National Statistics Office. 
Results from the implementation indicated the need for further verification of the 
accuracy of this algorithm.

The linear programming (LP) approach was developed by Vovsha et al. [29] 
to synthesize populations as part of an activity-based model developed for the 
Maricopa Association of Governments. The LP approach is an analytical method 
that balances a list or sample of household weights to meet the controls imposed at 
some spatial level, typically, for each traffic analysis zone (TAZ). Features of the 
LP approach include (a) the general formulation of convergence of the balancing 
procedure with imperfect controls, (b) optimized discretization of weights while 
preserving the best possible match to the controls, and (c) ability to set controls at 
multiple spatial levels. In addition, the proposed LP approach featured an innova-
tive discretizing method applied for the household weights and integrated with the 
balancing procedure. While validation of the proposed LP approach is questionable, 
it still demonstrates reasonable accommodation to various fine-resolution spatial 
levels that are much needed by newer-generation activity- and agent-based models.

The heuristic-based approach was developed by Zhuge et al. [30] to address two 
IPF limitations that received less attention from earlier studies. The first limitation 
stems from the existence of various solutions for one target marginal distribution. 
The second limitation stems from the optimization nature of population synthesis 
with the objective function being minimizing the mean absolute percentage error 
(MAPE) of control variables. The proposed heuristic-based approach consists of 
11 steps arranged in three parts. The first part, including steps 1 and 2, is used to 
generate the initial household weights. The second part, including steps 3 through 
11, adjusts the household weights until a stop criterion is met. The third part, 
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including steps 10 and 11, calculates the adjustment steps and adjustment range, 
which are two fundamental parameters of the approach. The 2007 household travel 
survey data from Baoding, China, were used as a case study. Results indicated that 
heuristic-based approach cannot perform as well as IPF-based on comparing MAPE 
values for both approaches.

Most recently, the copula-based approach was proposed by Kao et al. [31] to 
address previously identified limitations of IPF approach. Copulas are joint proba-
bility distributions with uniform marginal, which are a relatively new statistical tool. 
Hence, the copula-based approach was designed to preserve marginal distributions 
and dependence structure between variables. The proposed method was tested for 
the state of Iowa, and the results were compared with the IPF approach using mean, 
median, and correlation matrices. The synthesized households resulted in the same 
local statistics at each block group, but having similar intervariable correlations as 
described in the PUMS suggests the applicability of the copula-based approach.

Another recent effort to develop an alternative to IPF approaches resulted in 
the development of entropy maximization-based population synthesizer by Paul 
et al. [32] which handles multiple geographies and avoids algorithmic errors. The 
entropy maximization approach was developed as part of the Oregon Department 
of Transportation (ODOT) effort to utilize an open-source population synthesis 
platform. The approach consists mainly of two algorithms. The first algorithm, 
namely, list balancing, finds weights that match the given marginal control dis-
tributions. The second algorithm, namely, integerizing, implements a LP-based 
procedure to covert fractional weights to integers. The proposed entropy maximiza-
tion-based approach was implemented in Python and made heavy use of the Pandas 
and NumPy libraries, which allow for vectorization of operations to reduce overall 
runtime. Validation results against those of IPF approach were promising and 
demonstrated reasonable match to controls.

8. Conclusion

This study presented a critical, comprehensive literature review of population 
synthesizers starting from the early efforts through the most recent approaches. 
The review and synthesis indicated that, despite its identified limitations and draw-
backs, IPF approach is the most feasible and widely used population synthesizer. All 
other studies and efforts used it as a reference for comparison and produced similar 
or slightly improved results. Evidently, IPF has its drawbacks and limitations. Yet 
reviewed literature indicates that there is no single approach that can result in an 
efficient and accurate population synthesizer. However, an integration of robust 
methods appears as the most promising approach, like the effort of Fournier 
et al. [33] where the limitations of IPF are resolved by combining five methods 
into an integral framework for population synthesis. Table 1, in the Supplemental 
Information section, summarizes the advantages and disadvantages of the presented 
approaches.

Almost three-decade old, yet the IPF approach is still being used in state-of-the-
art simulation platforms like MATSim. Given that IPF is the most studied approach 
and the fact that none of the alternatives provided an out-of-the-box solution, IPF is 
preferred approach by modelers and practitioners. This conclusion is confirmed by 
the findings of Saadi et al. [34], who investigated the influence of scalability on the 
accuracy of different population synthesizers using both fitting- and generation-
based approaches. Their results revealed that simulation-based approaches are more 
stable than IPF approaches when the number of attributes increases; however, IPF 
approaches are less sensitive to changes in sample size.
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Overall, this study provides a critical review and comprehensive synthesis of 
population synthesis approaches that can serve as a valuable reference to future efforts 
focusing on population synthesis for activity- and agent-based transportation models.
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Approach Advantage(s) Disadvantage(s)

Iterative 

proportional fitting 

(IPF)

Synthesized estimates maintain 

the same odds ratios as those in the 

sample table

Most studied and improved 

approach with more than 20 years 

of continuous refinements

Widely available with ready-to-

use implementations in several 

computer programming languages

Does not provide an answer to the zero-cell 

problem in the public use microdata 

sample (PUMS)

Unable to control for statistical 

distributions of both household- and 

individual-level attributes

Limited number of attributes that can be 

synthesized per agent

Iterative 

proportional 

updating (IPU)

Addresses the issue of control for 

individual-level attributes and 

joint distributions of personal 

characteristics

Computationally efficient

Described in 23 computational 

steps that can be easily coded in 

most programming languages

Cannot overcome the zero-marginal 

problem that may result due to 

nonexistence of a certain attribute in the 

households of a certain geographic area

Combinatorial 

optimization

Generally simpler and more direct 

than IPF

Fast and flexible with the 

possibility for application to both 

households and employment 

scenarios

Implementation is limited to a proprietary 

computer program

Resource-demanding and needs multicore, 

parallel computers

Markov process-

based approach

Truly synthesizes populations 

instead of cloning them

Meets the demand for large-scale 

microsimulation scenarios

Can handle both continuous and 

discrete variables

Requires extensive knowledge of computer 

programming

Difficult to trace errors

Refinement for specific scenarios 

or locations requires substantial 

redevelopment of the computer algorithm

Fitness-based 

synthesis (FBS)

No need for determining a joint 

multiway distribution

Addresses the notorious IPF issues 

of zero-cell problems

Requires extensive knowledge of the sparse 

matrix technique package in MATLAB that 

is based on high-level matrix programming 

for numerical computation

Emerging 

approaches

Scalable and adaptive

Addresses all disadvantages of IPF 

approach

Requires advanced expertise in Python 

and makes heavy use of the Pandas and 

NumPy libraries

Limited successful applications compared 

to IPF

Table 1. 
Key advantages and disadvantages of population synthesis approaches.
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