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Chapter

Implementing Symmetric
Cryptography Using Sequence
of Semi-Bent Functions

Samed Bajri¢

Abstract

Symmetric cryptography is a cornerstone of everyday digital security, where
two parties must share a common key to communicate. The most common
primitives in symmetric cryptography are stream ciphers and block ciphers that
guarantee confidentiality of communications and hash functions for integrity.
Thus, for securing our everyday life communication, it is necessary to be convinced
by the security level provided by all the symmetric-key cryptographic primitives.
The most important part of a stream cipher is the key stream generator, which
provides the overall security for stream ciphers. Nonlinear Boolean functions were
preferred for a long time to construct the key stream generator. In order to resist
several known attacks, many requirements have been proposed on the Boolean
functions. Attacks against the cryptosystems have forced deep research on Boolean
function to allow us a more secure encryption. In this work we describe all main
requirements for constructing of cryptographically significant Boolean functions.
Moreover, we provide a construction of Boolean functions (semi-bent Boolean
functions) which can be used in the construction of orthogonal variable spreading
factor codes used in code division multiple access (CDMA) systems as well as in
certain cryptographic applications.

Keywords: symmetric cryptography, Boolean functions, Walsh spectrum,
nonlinearity, resiliency, (fast) algebraic attack

1. Introduction

Cryptography has become a branch of information theory and is used within a
mathematical approach to study the transmission of information from place to
place. In a modern society, exchange and storage of information in an efficient,
reliable, and secure manner are of fundamental importance. Applications of cryp-
tography are present in many aspects of our society, and they include authentica-
tion and encryption (bank cards, wireless telephone, e-commerce), access control
(car lock systems, ski lifts), and payment (prepaid telephone cards, e-cash). Behind
all the previously mentioned applications, an underlying cryptographic system has
to satisfy a number of security goals. Some important aspects in information secu-
rity are data confidentiality, data integrity, authentication, and non-repudiation,
and some of these goals will be elaborated later in the framework of Boolean
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functions. Therefore, cryptography is evermore important for business and
industry as well as for society at large.

A classic example of a cryptosystem is depicted in Figure 1. Such a cryptosystem
primitive is also called symmetric-key encryption algorithm, since the transmitted
message (plaintext) is encrypted (into ciphertext) and decrypted with the same
secret key which is shared between both sender and recipient. Symmetric cryptog-
raphy is best introduced with an easy-to-understand problem: There are two users,
Alice and Bob, who want to communicate over an insecure channel. The actual
problem starts with the bad guy, Oscar, who has access to the channel, for instance,
by hacking into an Internet router or by listening to the radio signals of a Wi-Fi
communication. This type of unauthorized listening is called eavesdropping. Obvi-
ously, there are many situations in which Alice and Bob would prefer to communi-
cate without Oscar listening. For instance, if Alice and Bob represent two offices of
a car manufacturer, and they are transmitting documents containing the business
strategy for the introduction of new car models in the next few years, these docu-
ments should not get into the hands of their competitors or of foreign intelligence
agencies for that matter. In this situation, symmetric cryptography offers a power-
ful solution: Alice encrypts her message 7 using a symmetric algorithm, yielding
the ciphertext c. Bob receives the ciphertext and decrypts the message. Decryption
is, thus, the inverse process of encryption. What is the advantage? If we have a
strong encryption algorithm, the ciphertext will look like random bits to Oscar and
will contain no information whatsoever that is useful to him.

Symmetric-key cryptography comprises two large families of cryptographic
primitives, namely, block and stream ciphers (see Figure 2). Since both block and
stream ciphers provide significant performance improvement compared to public-
key encryption techniques, they are commonly used as encryption schemes in
practice. However, the design rules for these two primitives are quite different.

In general, symmetric-key cryptography is much more computationally efficient
than public-key cryptography (approximately 1000 faster), and it requires shorter
key length to ensure the same level of security. On the other hand, every pair of
users that wants to communicate using symmetric encryption must share a com-
mon secret key. If # users want to ensure a pairwise secure communication, a total

of @ secret keys need to be exchanged, and every user must store and keep safe
n — 1 different secret keys, which is in many cases highly impractical. In compari-
son, public-key cryptography offers a functionality of only keeping a single private
key secret.

The security of symmetric cryptosystems is strongly influenced by Boolean
functions. They are often used as nonlinear combining functions in stream ciphers
based on linear feedback shift register. Those functions allow making the relation-
ship between the plaintext and the ciphertext as complex as possible. More pre-
cisely, a bit of the ciphertext is obtained from a bit of the plaintext by adding

attacker

plaintext - ciphertex - plaintext
> Encryption > Decryption >

\ke /

(same key is used to encrypt and decrypt message)

Figure 1.
Model of classic cryptosystem.
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Figure 2.
Symmetric-key encryption schemes. (a) Stream cipher using algorithmic bit stream genevator. (b) Block cipher.

bitwise a key digit (the output of the Boolean function) whose dependence upon the
LFSR entries (the secret information) is nonlinear. Thus, the security of such
cryptosystems deeply relies on the choice of the Boolean function because the
complexity of the relationship between the plaintext and the ciphertext depends
entirely on the Boolean function. Indeed, some properties of the Boolean function
can be exploited to gain access to the contents of encrypted messages, even if the
key is unknown. Therefore, Boolean functions need to have some important char-
acteristics that are called security criteria to resist several types of attacks (see
Section 3). Furthermore, the research fields of Boolean functions regarding the
cryptography include the design and implementation, the properties of Boolean
functions, the construction and counting of Boolean functions with certain
properties, the trade-off between different properties, and the properties
according to new attacks.

A special class of Boolean functions defined as semi-bent function has been
introduced in 1994, by scientists Chee, Lee, and Kim [1]. The motivation for their
study is firstly related to their use in cryptography (in the design of cryptographic
functions). Indeed, semi-bent functions can be balanced and resilient. They also
possess various desirable characteristics such as low autocorrelation, a maximal
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nonlinearity among balanced plateaued functions, but they cannot have high alge-
braic degree. In terms of linear feedback shift-register synthesis, they are usually
generated by certain power polynomials over a finite field and in addition are
characterized by a low cross-correlation and high nonlinearity. Besides their practi-
cal use in cryptography, they are also widely used in code division multiple access
(CDMA) communication systems for sequence design [2, 3]. In this context, fami-
lies of maximum length linear feedback shift-register sequences having three-
valued cross-correlation are used. Such sequences have received a lot of attention
since the late 1960s and can be generated by a semi-bent function. Even though a lot
of work has been done on semi-bent functions, there are a few generic methods of
constructing semi-bent functions that can be found in the literature. The classifica-
tion of these functions is still elusive, especially their construction are challenging
problems. Some open problems and an overview of the known construction related
on semi-bent functions can be found in the book of Mesnager [4]. The rest of this
chapter is organized as follows. In Section 2 the essential background on Boolean
functions is given. Some main requirements for constructing significant Boolean
function are given in Section 3. An infinity class of semi-bent function specified by
employing some sufficient conditions is given in Section 4. Some concluding
remarks are given in Section 5.

2. Useful definitions and terms

Let I} denote the n-dimensional vector space over the prime field F,. Let
x = (x1, ...,x,) be a vector over F, of length .

A Boolean function f (x1, ..., x,) in n-variables is an arbitrary function from F to
[F. It can also be interpreted as the output column of its truth table, i.e., a binary
string of length 2",

f=1f(0,0,..0),f(1,0,..,0),...f(1,1,...,1)]. (1)

An n-variable function f is said to be balanced if its output column in the truth
table contains equal number of 1’s and O’s.

Any Boolean function has a unique representation as a multivariate polynomial
over Galois field of two elements, called algebraic normal form (ANF),

f(xl, ,xn) =ag + Z a;x; + Z AXiXj + oo T A12. 0 X1X2...Xp (2)

1<i<n 1<i<j<n

where the coefficients ao, a;, ..., @12, belong to {0, 1}.
The algebraic degree, denoted by deg( f), is the number of variables in the
highest order monomial with nonzero coefficient. A Boolean function with deg( f) <1
is said to be affine, and the set of all #n-variable affine functions is denoted by .A,.
An affine function with the constant term equal to zero is called a linear function.
The nonlinearity of an n-variable function f is Ny = min, ¢ 4, 4( f,g), which
measures the minimum distance between f and all #n-variable affine functions.
Many properties of Boolean function can be deduced from its Walsh spectra.

The Walsh transform of f (x) in point w € F} is an integer-valued function over I}
defined by

Wi(w) = ¥ (-1, 3)

n
x €l

where x - @ = x1w1 + ... + X, @, is the inner product of two vectors over F;. The
set {W¢(w) : @ €F} is called the Walsh spectrum of f.
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A Boolean function f (x) is called plateaued if its Walsh spectrum only takes three

values, 0 and +2*, where / is some positive integer.
Two Boolean functions f(x), g(x) are said to be a pair of disjoint spectra
functions if

We(w) - W, (w) = 0. (4)

forall welF;.
In terms of Walsh spectra, the nonlinearity of f is given by

1
Np=2""- 5 max Wy (w)|. (5)

"
w el

A function is balanced if and only if W¢(0) = 0, i.e., #{x[f (x) = 0} =
#{x[f(x) = 1}.

An n-variable Boolean function f is said to be bent if its Walsh transform takes
only two values +27. Moreover, f is said to be semi-bent function if for all w € IF)

{0, :|:2n_;1}, if nis odd
Wy (w) € (6)

{0, i2#}, if nis even

The derivative of f (x) at a € ), denoted by D,f (x), is a Boolean function defined
by D,f (x) =f(x +a) +f(x), for all x € F}. The notion of the derivative of a Boolean
function is extended to higher orders as follows.

Suppose {a1, ...,a;} is a basis of a k dimensional subspace V of ;. The k-th
derivative of f with respect to V, denoted by Dyf (x), is a Boolean function
defined by

DVf(x) = DakDak—l"'Dﬂlf(x)’ (7)

forallx eF;.

3. Cryptographic requirements for constructing Boolean functions

One of the fundamental research topics in cryptography is the construction of
cryptographically significant Boolean functions, that is, a function which possesses
some of the following properties:

1. High algebraic degree aims to increase the linear complexity in ciphers. Using
Boolean functions of high degree in block ciphers leads to more complicated
systems of equations describing the cipher and hence makes cryptanalysis of
the cipher more difficult. All cryptosystems using Boolean functions for
confusion can be attacked if the functions have relatively low algebraic degree,
i.e., the Berlekamp-Massey attack [5] or the Ronjom-Helleseth attack [6] can
be applied. Note that the algebraic degree of a Boolean function in n-variables
is at most #.

2.In order to prevent the system from leaking statistical dependence between the
input and output, the concept of balancedness implies that a given Boolean
function outputs equally many zeros and ones over all possible input values. To
avoid distinguishing attacks [7], cryptographic function must be balanced.
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Note that the algebraic degree of a Boolean balanced function in #-variables is
at most z — 1.

3. High nonlinearity is one of the most important properties in the design of
symmetric-key cryptosystems, since it directly affects the resistance of the
cipher to majority of cryptanalytic techniques. The nonlinearity simply
measures the Hamming distance to the set of all affine functions. Therefore, a
high nonlinearity implies a better resistance to affine approximation attacks
[8]. According to the definition of nonlinearity, all affine functions have zero
nonlinearity. On the other hand, a Boolean function having nonzero
nonlinearity implies the function is not affine. Thus, the nonlinearity of a
nonlinear Boolean function cannot exceed 2”~!. On an even size Boolean space,
there is a class of Boolean functions, called bent functions, that have maximum
nonlinearity (2"~' — 2271). In general, it is not an easy problem to identify all
Boolean functions with high nonlinearity. However, this problem has been
completely solved for quadratic Boolean functions (Boolean functions with the
algebraic degree 2).

4.In order to avoid correlation attack [9], the concept of correlation immune of
order m implies that any sub-function deduced from a given Boolean function
by fixing at most 7 inputs has the same output distribution as a given Boolean
function. Correlation immune has long been recognized as one of the critical
indicators of nonlinear combining functions of shift registers in stream
generators. Moreover, if a balanced Boolean function f is correlation immune
of order m, then fis said to be m-resilient. When used in stream cipher systems,
a Boolean function is required to have high nonlinearity and resiliency for
protection against correlation attacks. It is actually very difficult to find a
balanced Boolean function which has a high correlation immunity order and at
the same time has a high nonlinearity.

5. Optimal algebraic immunity aims to provide resistance against algebraic
attack. The algebraic immunity is the minimum value of 4 such that a given
Boolean function f or its complement 1+ f admits an annihilator (a nonzero
Boolean function g such that fg = 0) of algebraic degree 4. In ciphers, Boolean
functions with high algebraic immunity should be used in order to avoid the
application of algebraic cryptanalysis [10]. Recall that algebraic attacks recover
the secret key, or at least the initialization of the system, by solving a system of
multivariate algebraic equations that describes a cipher. Although a high
algebraic immunity is the necessary cryptographic requirement, it is not
sufficient, because of a more general kind of attack introduced by Courtois [11]
in 2003 called fast algebraic attack. It is well-known that maximum algebraic
immunity of n-variable Boolean function is [%]. The problem of efficiently
constructing balanced Boolean functions with optimal algebraic immunity is
thus of great significance. Moreover, several examples of functions having
optimal algebraic immunity could be found but no example of correlation
immune Boolean function with optimal algebraic immunity.

However, the major problem in construction of cryptographically strong func-
tions is that the multiple criteria mentioned above have to be satisfied at the same
time, while there exist intrinsic trade-offs between them. Such properties allow the
system designer to quantify the level of resistance of the system to attacks. Since the

number of Boolean functions in z#-variables is 2%, an exhaustive search of functions
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which satisfy some of the properties above is practically impossible (unless the
input variable space # is quite small). Indeed, the difficulty precisely lies in finding
the best trade-offs between all criteria and proposing concrete constructions of
functions achieving them. Thus, bringing new construction methods of these func-
tions is still a vivid research activity.

By (n, m,d,N¢ ) function we specify an n-variable, m-resilient Boolean function
f algebraic degree d, and nonlinearity N. Siegenthaler [9] proved that
m +d <n+ 1ifm <n — 2. The exact nature of trade-offs among order of correlation
immunity, nonlinearity, and algebraic degree has also been investigated, for
instance, ([12, 13]. Using the above bounds, one may naturally try to provide the
construction of an (n, m,d, Nf) function for any given z» and m while at the same
time attempting to optimize d and Ny . This optimization can be efficiently done for
a small number of variables 7 <5, but even some interesting open problems for 7>5,
related to the existence of (8,1,6,116) and (7,2, 4,56) functions, were settled using
some sophisticated computer search and theoretical results [14]. The importance
of finding these optimized functions in small number of variables lies in the fact
that one can use these functions recursively to obtain new instances of optimal
functions in larger number of variables. For instance, Tarannikov [15] has provided
a construction technique of optimized resilient Boolean functions with maximum
possible nonlinearity. Basically Tarannikov’s construction is a recursive one, and
using this technique and taking an (n, m,d, Nf) optimized function, such as the
(7,2,4,56) function, one can generate a sequence of optimal plateaued
(74 3i,2 + 2i,4 47,2731 — 22*2+1) functions, (10, 4,5, 480), (13,6, 6,3968),
(16,8,7,32256), etc. A modified version of Tarannikov’s construction was presented
in [16]. A construction of Boolean functions with maximum nonlinearity and small
order of resiliency has also been considered in [17]. Later, Carlet [18] proposed a
general framework for these iterative concatenation methods, unifying most of
these techniques into a single method called “indirect sum.” This construction leads
to a multiple branching infinite tree of functions, but in order to employ this
construction in the design of optimal plateaued functions in an iterative manner,
there are certain conditions imposed on the initial pairs of disjoint spectra functions.

A recursive construction method of optimal plateaued functions (the functions
of the form (n,m,n —m —1,2""' — 2"*") and for m>2% — 2) is given in [19]. The
iteration once again employs a (7,2, 4,56) function, whose 6-variable sub-functions
have disjoint spectra, to construct a sequence of (7 + 4i,2 + 3i, 4 + 7,241 — 223 H)
optimal plateaued functions (whose (7 + 4i — 1)-variable sub-functions are again
disjoint spectra functions). Nevertheless, this iterative method generates the
functions with relatively large order of resiliency ((11, 5, 5, 964), (15, 8, 6,15872),
(19,11,7,258048), etc.), and in addition it only gives one infinite sequence of opti-
mal plateaued functions. For instance, in the first step of iteration, an optimal
plateaued (11,5, 5, 964) function is generated whose 10-variable sub-functions are
again disjoint spectra functions (two (10, 5, 4, 452) disjoint spectra functions), thus
leaving some open slots concerning the construction of optimal plateaued functions
when z = 8,9, 10. On the other hand, a modified Tarannikov construction has a
slightly different effect, since the resiliency is increased by two at each step of
iteration (but the degree is also increased by one) and the iteration step is three
instead of four. Still, optimal plateaued functions cannot be generated for » = 8 or
n = 9 using the particular (7,2, 4,56) function.

The idea of employing a set of disjoint spectra functions in construction of
highly nonlinear resilient functions was firstly elaborated in [16]. Later, the sets of
disjoint spectra functions were successfully used in constructions of almost optimal
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resilient functions. The generalized Maiorana-McFarland (GMM) construction
method for obtaining the almost optimal resilient functions has been proposed in
[20]. Namely, this construction generates the functions with relatively large num-
ber of variables and small order of resiliency. The resulting functions cannot be
viewed as a pair of disjoint spectra almost optimal resilient functions. Recently,
Zhang and Pasalic used GMM technique to obtain the strictly optimal resilient
functions with high nonlinearity and good algebraic properties [21]. The design of
some balanced functions that also achieve currently best known nonlinearity can be
found in [22]. Although these construction methods achieve currently the best
nonlinearity for a given function, these methods are only efficient for relatively
large input space of variables.

4. A construction of semi-bent Boolean functions

As it is described in the previous section, in the design of cryptographic func-
tions, there is a need to consider various nonlinear characteristics simultaneously.
But some characteristics restrict each other. Bent functions, for example, have
maximum nonlinearity and satisfy the propagation criteria with respect to every
nonzero vector over the Boolean spaces on which they are defined. However, bent
functions are not balanced and exist only on even size Boolean spaces. Furthermore,
bent functions are not correlation immune, and they are not suitable for use in
cryptosystems. Partially bent functions are highly nonlinear and can be balanced.
However, except for bent functions, partially bent functions have nonzero linear
structures that are cryptographically undesirable. For these reasons, people study
other classes of Boolean functions to try to overcome the disadvantage of bent
functions or partially bent functions. The class of plateaued Boolean functions is one
candidate that is defined by a series of inequalities and examines the critical case of
each inequality. Compared with other functions, plateaued functions may reach the
upper bound on nonlinearity given by the inequalities.

In what follows we specify a simple generic method for deriving semi-bent
functions. This method is deduced from two bent functions whose derivatives differ
by a constant one. It should be noticed that there are strong connections behind the
concepts of bentness and semi-bentness though many questions remain unan-
swered. In particular, it is not settled how the cardinality of the whole class of bent
functions relates to the class of semi-bent functions. Most notably, it appears that
certain classes of semi-bent functions derived in [23] defined for even # are not
extendable to bent functions in # + 2 variables. In [24] and recently in [25], a
sufficient condition on two bent functions g and % used in the construction of
semi-bent functions was given as the following theorem.

Theorem 1. Let n be even, and suppose that f and g are two bent Boolean
functions in n-variables. If there exists an a €F) such that D,f (x) = D,g(x) + 1, then
the function

h(x) =f(x) +g(x) + Daf (x) 4 Da[ f (x)g(x)] (8)

is a semi-bent function in even number of variables.

This condition immediately implies the possibility of constructing infinite clas-
ses of semi-bent functions using known classes of quadratic bent functions. Notice
that all quadratic Boolean functions (including bent and semi-bent functions) are
classified up to equivalence and any quadratic bent function is affine equivalent to

. . 2
the canonical form given by Zl":/ 1%2i-1%2;.
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One may define a Boolean function f with # even to be a quadratic bent function
of the form f(x) = Y. bixi + > <i<j<n CiLjXiX for suitably chosen b, ¢; j € F,. Fur-
thermore, let g be a Boolean function defined asg(x) = f(x) + X ax;, where
a; €Fy. Then, if a € F; is such that a - @ = 1, it can be shown that the function

h(x) =f(x) +g(x) + Dyf () + Da[ f (x)g(x)]

is a quadratic semi-bent Boolean function.

Another related approach, though without restriction on the degree of a single
bent function used, is given by the following result.

Theorem 2. Let f be bent Boolean function in even number of variables. For a, a € IF)
such that a - a = 1 define the function g as either

0= {01

flx+a)+a-x+d’ ©)

where d € IFy. Then, the function

h(x) =f(x) +g(x) + Dof (x) + Dal f (x)g(x)]

is a semi-bent function.
Proof. Obviously, in both cases g is also a bent function, and if
g(x) =f(x) + ax +d, we have

Dyf (x) + Dag(x) = [f(x) +f(x +a)] + [g(x) +g(x +a)]
=[flx) +fx+a)] +[f(x) +ax +d +f(x +a) + ax + aa +d]

A similar calculation gives that
D,f(x) + Dag(x) =1if g(x) =f(x +a) + ax +d.

By Theorem 1 we deduce that k(x) = f(x) +g(x) + Dsf (x) + Da[f (x)g(x)] is a
semi-bent function. q.e.d.

This result enables us to construct, for even 7, an infinite sequence of semi-bent
functions from bent functions. It would be of interest to find other examples or
classes of bent functions g, g,, apart from using affine equivalent functions g, and
2, satisfying D,g,(x) = D,g,(x) + 1. This appears to be a nontrivial task since apart
from establishing the fact that the used bent functions are indeed affine
inequivalent, at the same time, their derivatives need to satisfy the condition in
Theorem 1.

Example 1. Let f (x1,%2,X3,X4,X5,X6) = X1X3X4 + X2X3X4 + X1X5%6 + X2X5X6
+x1%2 + X3%5 + X4X6 + X5x6 be a bent function of degree 3 over Fg . Take
a=(0,0,1,0,0,0)and @ = (1,0,1,0, 0, 0) such thata - @ = 1. Define the function g
as either

) fx) +x1+x3 f(x) +2x1 + x3
&) = = ,
fle+a)+x1+x3 f(x) +x1%4 + X224 + %1 + X3 + X5

whered = 0 €F,.
Let us take g(x) = f(x) + x1 + x3. We have
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D f(x) =f(x) +f(x+a) =f(x) +f(x) +x1x4 + X2%4 + X5 = X1X4 + X2X4 + X5,
so that
f(x) +g(x) +Daf(x) = X1X4 + X2X4 + X1 + X3 + X5.

Then, using the idempotent property of Boolean ring,

Fl)ge) = F()(Fx) + 1 +x3) = F(x) (14201 +x3)
= (x1%3%4 + X2x3%4 + X1X5%g + X2X5Xg + X1X2 + X3%5 + X4%6 + x5%6 ) (1 + X1 + X5)
= X1X2X3X4 + X1X2X5X6 + X2X3X4X5 + X1X2X5 + X1X3X4 + X1X3X5 + X1X4X6
+X2X3X4 + X4X5X6 + X4X6.
flor+a)gle +a) = flx +a)(f (e +a) +x1 4+ x5 + 1) = f(x +a) (1 +x3)
= (f(x) + 2154 + X2X4 + 2x5) (261 + X3)
=f(x) (%1 +x3) + (%1204 + 22%4 + x5) (%1 + x3).

After some simplification, we get
D,[f (x)g(x)] =f(x)g(x) +f(x +a)g(x +a)
= f(x) + (o134 + X224 + x5) (%1 + x3)

= X1X5Xg + X2X5%X6 + X1X7 4+ X1X4 + X1X5 4+ X2X4 + X4Xe + X5X6.

Finally,
h(x) =f(x) +g(x) + Daf (x) + Da[f (x)g(x)]

= X1X5X6 + X2X5X6 + X1X2 + X1X5 + X4X6 + X5X6 + X1 + X3 + X5.

It is easy to compute the Walsh spectrum of function z(x), i.e., Wj,(w) = {0, £16},
which means that %(x) is a semi-bent function.

Notice that the standard derivation rule for multiplication does not apply for our
definition of derivatives. Indeed, the derivative D,[f (x)g(x)] = f(x)g(x) +
f(x+a)g(x +a) is different from g(x)D,f (x) 4+ f (x)D,g(x) =f(x + a)g(x) +
f(x)g(x + a). Furthermore, using the fact that D,D,f (x) = O for any Boolean
function f, we have

Duh(x) = h(x) + h(x +a)
=f(x) +g(x) + Daf (x) + Da[f (x)g(x)] +f(x +a) +g(x +a)
+Dyf (x +a) + D,[f (x +a)g(x + a)]
= Df (x) + Dag(x) + DaDaf (x) + DaDalf (x)g(x)]
— D,f (x) + Dag(x) = 1.

Thus, the element a is always a linear structure of /(x). Nevertheless, we show
that under certain sufficient conditions, a is the only linear structure of z(x). We
have the following theorem.

Theorem 3. Let h be defined as in Theovem 2, and assume that a bent function f (x) is
such that deg(Dyf (x))>1, for any b € F5~{0}. Then h has a single linear structure, that
is, Dyh(x) = h(x) 4+ h(x + b) is a constant function only for b = a.

10
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Proof. Assume that g(x) =f(x +a) + ax + d. Without loss of generality, we can
take d = 0. Then,

Dyf (x) + Dpg(x) = [f(x) +f (% +b)] + [g(x) +g(x + b)]
=[f(x)+f(lc+b)]+[f(x+a)+alx+a)+d+f(x+a+Db)+alx+a+b)+d]
= Dy, Dyf (x) + ab

where D,D,f (x) =f(x) +f(x +a) +f(x +b) +f(x +a + b), and therefore
Dyh(x) = DyDf(x) + ab + DypD,f (x) + DyDa[f (x)g(x)] = DyDu[f (x)g(x)] + ab.
Hence, Dyh(x) is constant if and only if D,D,[f (x)g(x)] is constant. But,
DyD,|[f (x) =D, [f(x)g(x) +f(x +a)g(x + a)]
=Dy[f (x)(f(x +a) + ax) +f(x +a)(f(x) + a(x +a))]
= Dylax(f(x) +f(x +a)) + aaf (x + a)]
= Dylax(f(x) +f(x +a)) +f(x+a)]
= axDyD,f (x) + ab[f (x +b) +f(x +a+Db)|+f(x+a) +f(x+a+Db).
Thus, if ab = 0, then Dyh(x) is constant if and only if
axDyDyf (x) =f(x +a) +f(x +a +b)
ax[f(x) +f(x+a)+f(x+b)+fx+a+b)|=f(x+a)+f(x+a+b)
(ax +1)[f(x +a) +f(x+a+b)] + ax[f(x) +f(x+b)] =

(ax +1)Dyf (x + a) + axDyf (x) =
axDyf (x + a) + axDyf (x) + Dyf (x + a) = 0.

There are four possible cases:

1. axDyf (x + a) = axDyf (x) = Dpf (x +a) = 0, i.e.,
Dyf(x +a) =0&f(x+a) =f(x +a+b) = b = 0. A contradiction.

2.axDyf (x + a) = axDyf (x) = LADyf (x +a) = 0, i.e.,
Dyf(x +a) =0 = b = 0. A contradiction.

3.axDyf (x +a) = 0 AaxDyf (x) = Dyf (x +a) =1, i.e.,
Dyf(x +a) =0 = b = 0. A contradiction.

4.axDyf (x +a) = Dif (x +a) = 1AaxDyf (x) = 0, i.e,,
Dyf(x +a) = 0= b = 0. A contradiction.

On the other hand, if ab = 1, then Djk(x) is constant if and only if

axDypD,f (x) =f(x +a) +f(x+b)
ax[f(x)+f(lc+a)+f(lx+b)+f(lx+a+Db)]=f(x +a)+f(x+b)
(ax +1)[f(x +a) +f(x+Db)] +ax[f(x) +f(x +a+b)| =

11
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It is obvious that f (x +a) =f(x + b) is equivalent to f (x) = f(x + a + b). Thus,
the above equation is constant if and only if f (x + a) = f(x + b), which implies
that a = b. The sufficiency of this condition is obvious. For the necessity, we first
observe that for a # b the functions f (x +a) +f(x +b) and f(x) +f(x +a + b)
being derivatives of a bent function f are both nonconstant. Then, assuming that

DypDyf (x) =f(x)+f(x+a)+f(x+b)+f(x+a+b) =0,

it would imply that f (x +a) 4 f (x + b) is constant, a contradiction. On the
other hand, the function axD,D,f (x) cannot be balanced, unless D,D,f (x) = ax.
Because of the assumption, deg(f (x +a) +f(x + b))>1 and therefore cannot be
equal to ax.

The proof for the case g(x) = f(x) + ax +d is similar as above, and it is omitted
here. q.e.d.

Notice the condition in Theorem 3 that deg(D,f (x))>1 is sufficient but may not
be necessary. An analysis of other cryptographic criteria appears to be difficult due
to the dependency of / on the choice of a bent function f and the use of the
derivative D,[f (x)g(x)] in its definition, which is illustrated in the following
example.

Example 2. Let n be even and f (x,y) = x - y, where x, y € F% is a bent function and
belongs to the Maiorana-McFarland class. Then, defining

2(x,y) =f(x+a,y+b)+ (a,p) - (x,y) for a nonzero (a,b) €F% x FX such that
(a,p) - (a,b) =1, we have

gxy)=x-y+(a+b)-x+(@a+p)-y+a-b,
which is clearly a bent function obtained by adding an affine function to f.

Similarly,
D(a,h)f(an’) =x-b+a-y+a-b,sothat

f(x,)/) +g(x7y) +D(a7b)f(xﬂy) =a-Xx +ﬂ'y'

Then, using the idempotent property of Boolean ring,

fley) glx,y)=(xc-y)x-y+(a+b)-x+(@a+p)-y+a-b)
=1+a-b)x,y)+ ((@a+b)-x+(a+p) y)(x-y).

Note that the first term is a quadratic function and the second term is cubic.
After some simplifications we have

Duplfx,y)gly)=x-y+b-x+a-y+a-b)(1+a-b+ta-x+a-a+b- -x
+a-b+a-y+p-y+p-b)
=x-y+b-x+a-y+a-b)(a-x+b-x+a-y+p-y+a-b+p-b)
=x-y+b-x+a-y+a-b)((a+b)-x+(B+a)-y+a-b+p-b).

Finally,

h(x,y) =f(%,9) +2(%,9) + Dp f(x,9) + Daplf (x,9)g(x,)]
=x-y+(a-x+p-y)b-x+a-y+a-b+1)+b-x+a-y+a-b)1+p-Db).

More precisely, it can be illustrated using Example 1.
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Example 3. Let
(1,2, %3,%4,%5,X6) = X1X3%X4 + X2X3X4 + X1X5X6 + X2X5%6 + X1X2 + X3X5+
X4X6 + X5%¢ be a bent function of degree 3 over Iﬁ‘g. Takea = (0,0,1,0,0,0) and
a=(1,0,1,0,0,0) such thata - a = 1. Define the functiong asg(x) = f (x)+ x1 + x3.
By Example 1 we have

h(x) = x1%5%6 + X2X5%6 + X1X2 + X1X5 + X4X6 + X5X6 + X1 + X3 + X5.
Moreover, by Theorem 2 % has a single linear structure only for b = a. Indeed,

D,h(x) = h(x) +h(x + a)
= X1X5X¢ + X2X5X6 + X1X2 + X1X5 + X4Xg + X5%6 + X1 + X3 + X5+
+X1X5%¢ + X2X5%6 + X1X2 + X1X5 + X4X6 + X5X6 + X1 + X3 + 1 4+ X5
=1

5. Conclusions

The need for the most possible secure cryptographic primitives in cipher sys-
tems is of great importance. In the case of stream ciphers, most of the reliability and
security lies in the Boolean functions. For the cryptographic point of view to be
good, a Boolean function should possess several cryptographic properties men-
tioned in this work. Very often such properties contradict each other. Therefore, the
problem of constructing Boolean functions with stronger cryptographic properties
is still a vivid research activity. We may also require new properties because attacks
never stop. On the other hand, semi-bent functions are interesting for defending
against the so-called soft output joint attack on pseudorandom generators, which
are used in the IS-95 standard of code division multiple access technology. In this
work we present an infinite sequence of semi-bent functions using known classes of
quadratic bent functions. The construction of other classes of infinite sequences of
semi-bent functions is an interesting research challenge.
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