
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

1

Chapter

Global Optimization Using Local
Search Approach for Course
Scheduling Problem
Ade Jamal

Abstract

Course scheduling problem is a combinatorial optimization problem which
is defined over a finite discrete problem whose candidate solution structure is
expressed as a finite sequence of course events scheduled in available time and
space resources. This problem is considered as non-deterministic polynomial
complete problem which is hard to solve. Many solution methods have been stud-
ied in the past for solving the course scheduling problem, namely from the most
traditional approach such as graph coloring technique; the local search family such
as hill-climbing search, taboo search, and simulated annealing technique; and
various population-based metaheuristic methods such as evolutionary algorithm,
genetic algorithm, and swarm optimization. This article will discuss these various
probabilistic optimization methods in order to gain the global optimal solution.
Furthermore, inclusion of a local search in the population-based algorithm to
improve the global solution will be explained rigorously.

Keywords: course scheduling, optimization, local search, genetic algorithm,
particle swarm optimization, combinatorial optimization problem,
probabilistic optimization algorithm

1. Introduction

Scheduling is the process of assigning a set of given tasks to resources by
some means. Among the resources, time resource usually plays a central role in
scheduling process; hence this process is often called timetabling. Besides the time
resource, there are other resources involved in the scheduling process such as space
or room, machine or tools, and human resources. The resources are usually subject
to constraints that make scheduling problems interesting for researchers in finding
an optimal solution or in developing a method for solving it. Course scheduling
problem attracts researchers from the field of operation research and artificial
intelligence [1–9].

This manuscript will focus on the problem of university course schedul-
ing which has several variants such as school timetabling [10] and examination
scheduling [11–13]. The variation of course scheduling problem is merely due to
different constraints on the resources involved in the scheduling processes. Despite
of these variations, they can be considered as the same family of course scheduling
problem. In the scheduling problem, courses or exams have to be assigned into time

Scheduling Problems - New Applications and Trends

2

and space resources by considering some constraints. University course scheduling
problem can be divided into two categories, post-enrolment scheduling [1–4] and
prior-enrolment scheduling [5–9]. In the prior-enrolment-based course scheduling,
students are not taken into account as an individual person but as a group of study
curriculum and student grade; hence it is also named a curriculum-based schedul-
ing [5, 6]. In the post-enrolment-based course scheduling, students and faculty
members or lecturers are considered as individual person and not as specified
parameter on courses.

University course scheduling problem is simple to understand, yet complex
enough to admit solution at varying level of difficulty in the implementation.
Several studies of university course scheduling are conducted using operation
research, human computer/machine interface, and artificial intelligence. The main
issues in the solving method of university course scheduling problem are quality of
the schedule solution, namely, the optimal solution, and time spent to produce the
schedule solution, i.e., algorithm efficiency.

The most traditional technique for solving the course scheduling problem is the
graph coloring technique [14, 15]. Graph coloring algorithm comes from a clas-
sical problem in graph theory which implies the problem to color the nodes of an
undirected graph such that no two adjacent nodes share the same color. The course
scheduling problem is modeled by letting the nodes and edges represent the courses
and the common students, respectively. Dandashi and Al-Mouhamed [15] have
given a good historical review on the graph coloring technique since 1967 up to
recently.

The second group of solution method is the family of local search methods.
This is a heuristic-based search method. It finds the best solution among a number
of candidate solutions by applying local change from the last found solution. This
is a very fast algorithm, but it has a downside that it can easily be stuck at a local
optimum. This local optimum issue can be cured by many local search variants
such as the taboo search [13], simulated annealing search [2, 10, 12], and improved
hill-climbing search [1, 4, 9, 11, 16].

The third group of solution method is the population-based optimization
methods that gain more attention by researchers in seeking new methods that are
inspired by the nature phenomena such as genetic algorithm [7, 8, 12], evolution-
ary algorithm [3, 17, 18], ant colony algorithm [19], bee colony algorithm [20, 21],
firefly algorithm [22], and particle swam optimization [23, 24].

Evolutionary algorithm was originally not a population-based approach as
introduced by Rechenberg in 1965 where only one species is mutated and only one
species, i.e., the fittest one, survived in every evolution generation. Mutation is the
only reproduction mechanism necessary in the evolutionary algorithm. Crossover
mechanism is another reproduction mechanism inspired by biological evolution
theory. Crossover mechanism is a simplification model of genetically offspring
from mating process of a parent pair. The work of John Holland in the early 1970s
included both genetic operators, and since then a so-called genetic algorithm
became popular that belongs to the evolutionary strategy family. In genetic algo-
rithm, each individual in a population forms a candidate solution. The candidate
solution is evolved by mutation and crossover mechanism in every generation.
Through fitness selection scheme, they move toward a better generation.

After successful mimicking of the nature phenomena from the evolution theory,
once again, Mother Nature has inspired researchers to develop new optimization
algorithm based on swarm intelligent theory. Swarm behavior or swarming is a
collective behavior exhibited by particularly animals which aggregate together in
finding food and moving or migrating in some direction. Ant colony optimiza-
tion algorithm is one of the first metaheuristic optimizations in this group of

3

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

optimization method, initially proposed by Marco Dorigo in 1992. Initially ants
wander randomly, and upon finding food they return to their colony while leav-
ing trail called pheromone trails. When other ants find such trail, they are likely
to follow the trail and return and reinforce the trails if they eventually find food.
The pheromone trail is the main issue of swarm intelligent communication in ant
colony, on which the algorithm was developed.

Another algorithm that imitates the intelligent foraging behavior of animal is
artificial bee colony optimization algorithm proposed by Karaboga in 2005. There
are three groups of bees in bee colony, i.e., employed bee, scouts, and onlookers.
Employed bees go to their food source and back to hive and dance. Onlookers watch
the dances of the employed bees, and depending on employed bee’s waggle dances,
food sources are chosen or abandoned. The employed bees whose food sources have
been abandoned become a scout and start to seek for a new food source.

The most recent bio-inspired algorithm, as far as the author’s knowledge, is the
firefly algorithm developed by Xin-She Yang in 2008. It is a heuristic algorithm
which is a population-based stochastic method which is derived and motivated by
the flashing or mating behavior of fireflies. The position of all fireflies represents a
possible set of solutions, and their light intensities represent corresponding fitness
values or quality of all solutions.

Particle swarm optimization is a population-based evolutionary computation
technique developed by Eberhart and Kennedy in 1995, inspired by social behavior
of bird flocking or fish schooling. This algorithm is the simplest model of swarm
behavior algorithm. This algorithm shares similarity with genetic algorithm, but
it differs mainly due to the absence of genetic operator. A kind of communication
between particles in the swarm controls the movement of each particle in searching
food. When an animal spots a location that is rich of food, it memorizes the location
until better location is found. The movement of each particle is calibrated to its best
location so far and the best location from the whole animals in the swarm. The algo-
rithm is also much simpler because it has only few parameters to adjust compared
to genetic algorithm. Its simplicity and its generic computation model for broad
application make this algorithm more attractive to assess than other new algorithms
inspired by animal behavior as reviewed by Poli et al. [23].

The following sections will be structured as follows: first we will discuss the
probabilistic optimization methods from three different previously described
approaches. Thereafter we will rigorously explain the university course scheduling
problem and how we model it appropriately for all the employed solution methods.
Discussion of experimental result will be presented in the last section before some
concluding remarks are briefly inscribed.

2. Probabilistic optimization method

From the beforehand described optimization approaches for discrete problem
such as university course scheduling problem, we can summarize that there are
three groups of solution approach, namely, coloring graph, local search approach,
and the population-based approach. The population-based approach can be further
classified into the population-based evolutionary approach and the population-
based social behavior approach.

While the probabilistic characteristic is inherent in the population-based
approaches, the local search approach is a single-based solution technique and nor-
mally not a probabilistic solution method. In this article, we will bring probabilistic
nature into the local search approach by introducing scattered neighborhood [9]
and multiple random start local search method [25]. We will discuss thoroughly this

Scheduling Problems - New Applications and Trends

4

multiple-scattered local search and compare these two population-based methods,
namely, genetic algorithm and particle swarm optimization, respectively, from
evolutionary approach family and social behavior approach family.

2.1 Multiple-scattered local search (MSLS)

Local search approach has little probabilistic nature. In its original form, namely,
the steepest-ascent hill-climbing method, wherein from its current position sys-
tematically for every possible single mutation is evaluated to find the highest fitness
increase in the neighborhood, this method has no probabilistic aspect at all. The fast
local search, called the next ascent hill-climbing [26], wherein a single mutation
is evaluated systematically from current position until any increase in the fitness
is found, has a little probabilistic nature. Random mutation hill-climbing [26] or
scattered local search [9] is a probabilistic variation of local search wherein from
its current position, a random mutation mechanism takes place until an increase in
fitness is found. Random mutation hill-climbing takes randomly a single mutation,
while scattered hill-climbing takes a certain number of mutation randomly, and
the highest increase in fitness is chosen. Other local searches, such as taboo search
and simulated annealing search, are also improvements and derivatives of the
hill-climbing search method. However, they can hardly be classified as hill-climbing
search technique since the changing makes them differ too much from the original
method.

In general, the hill-climbing procedures are as follows:

1. Evaluate the fitness, i.e., the heuristic objective function, for the current
position.

2. Find the candidate for the next position in the neighborhood area by small
changing from the current position and then evaluate the fitness for the
candidate position.

3. If there was an increase in fitness, then set the candidate for the next position
as the current position.

4. Repeat from step 1 until the maximum iteration was reached or other stop
criteria are fulfilled.

The difference between various hill-climbing search described in previous
paragraph is found only in step 2 of the above procedure. Because of systematically
searching for the candidate for the next position, the steepest ascent hill-climbing
and the next ascent hill-climbing methods are classified as deterministic search
techniques. The random mutation hill-climbing and the scattered hill-climbing are
probabilistic search techniques due to random mutations in searching for the next
position.

Random restart hill-climbing is another approach to embed the probabilistic
nature. In case the hill-climbing search stopped due to its maximum iteration, the
whole hill-climbing search above restarted with a completely new initial position
which set randomly. The restart algorithm will continue until the optimization
criteria are reached. The multiple-scattered local search is actually a set number of
scattered hill-climbing searches running with randomly set initial positions.

Let np be the number of initial position and n the number of scattered candidate
position in the neighborhood of current position, and then the algorithm of the
multiple-scattered local search is as follows:

5

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

1. Set up np initial positions randomly, and evaluate their heuristic fitness or
objective functions, and save in array of np current positions.

2. Repeat the following steps until maximum iteration or another stop criterion is
reached:

a. For each position in a set of np positions, do:

i. Find n new positions in the neighbor of current position.

ii. Evaluate the fitness of each new position, and save the best position whose
fitness has the highest value.

iii. If the best position gives an increase in fitness compared to the current
position, set the best position as current position.

2.2 Genetic algorithm

Genetic algorithm is a population-based optimization technique that simpli-
fies survival of the fittest principle from the evolution theory. Any individual
chromosome represents a solution state of the problem. Every generation has a
population that consists of a fixed number of individual instances. The popula-
tion of the next generation will inherit their ancestor by crossover of two mating
chromosomes, by mutation of single individual chromosome, and by elitism.
All of these three evolution mechanisms hold the true survival of the fittest
principle.

Elitism in the evolution mechanism means superior chromosomes survive to
the next generation without any changes. This elite group which is only a small
fraction of the population has the highest fitness in the population. The rest of the
population will be selected in pairs through a probabilistic scheme involving their
fitness values. Each pair acts as parent that will have two descendants produced by
crossover between two parent’s chromosomes. Since the population size is constant,
every pair of children replaces their parents in every generation. Finally, mutations
take place in all children by chance of probability distribution.

The following is the pseudocode of genetic algorithm:

1. Set up np individual chromosomes for the first generation.

2. Repeat the following steps limited by maximum generation number:

a. Evaluate the fitness values of every chromosome in the population of current
generation.

b. Sort the chromosomes by the fitness values.

c. Select a small number of ne elite chromosomes, i.e., the highest ranked
chromosomes.

d. Select a pair of parents via a selection mechanism from the rest of the
chromosomes.

e. Based on a crossover probability, crossover scheme takes place between each
selected pair, and the two successors will replace the parents.

Scheduling Problems - New Applications and Trends

6

f. Based on a mutation probability, every single chromosome outside the elite
group undergoes a mutation.

Elitism mechanism has a purpose to make sure that the individuals with the
highest fitness do not vanish by chance of probabilistic. Pairing the parents aims
to find better descendants which differs from both parents but still inherits their
characteristics. Hence, crossover mechanism has a function of an exploration
for new chromosomes. Single chromosome is slightly changing by mutation
which aims to improve the individual in exploitation scheme. Exploration power
of crossover combined with exploitation power of mutation and an additional
power, a conservatism of elitism, makes genetic algorithm very popular for
a long time in the area of artificial intelligence and organization research for
optimization problem [17].

2.3 Particle swarm optimization

Foraging behavior of some animals is in a group of numerous individuals in
swarm formation. In the swarm behavior, animals such as birds, insects, or fishes
move in such mechanism that they do not collide with each other, but they can cover
broaden area for finding the foods. This behavior inspired an optimization tech-
nique called particle swarm optimization which is rather simple than the previously
nature-inspired genetic algorithm. Every position of animals in the swarm repre-
sents a solution state of the problem. Every animal or particle moves in directions
that are influenced by the best individual position so far and the best position of all
individuals in the swarm. The best position means, in the real natural condition, the
richest food available, and in the optimization problem means the highest fitness
solution state.

Let np particles be in the swarm and each particle has its own initial positions
Xo and velocity Vo; then, the pseudocode of the particle swam optimization is as
follows:

1. Evaluate the fitness value of each initial position Xo, and save the individual
best position as XPbest and the global best position as XGbest.

2. Repeat the following steps until maximum iteration or another stop criterion is
reached.

a. Update the velocity of each particle for the next move as follows:

Vi + 1 = Vi + r1 * (XPbest – Xi) + r2 * (XGBest –Xi)

b. Update the new position of each particle as follows:

Xi + 1 = Xi + Vi + 1

c. Evaluate the fitness value of the new position of each particle, and update the
individual best position and the global best position if necessary.

According to James Kennedy who proposes particle swarm optimization (1995),
the adjustment particle movement toward the individual and global best solution is
conceptually similar to the crossover mechanism in genetic algorithm. This move-
ment ensures exploration power of the algorithm. The two types of best positions
are in some sense acting as elitism in genetic algorithm which holds the conserva-
tism of the particle swarm optimization algorithm.

7

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

2.4 Exploitation power of local search in the global optimization

Genetic algorithm and particle swarm optimization have great power of explora-
tion. The exploration power could almost guarantee finding a global optimum if the
number of iteration is large enough or at least finding a sufficient global optimum
for a reasonable number of iteration. Lack of exploitation power in particle swarm
optimization and slight exploitation power in genetic algorithm make these two
algorithms slow in finding of good enough solutions. We will introduce the exploi-
tation power into genetic algorithm and particle swarm optimization with the aid of
the local search on the elite groups [17, 18].

2.4.1 Hybrid genetic algorithm (HGA)

In the original genetic algorithm, the elites are not mutated, but could be
replaced by new elites in the next generation. Empowering the algorithm using
single iteration of scattered local search on the elites, the hybrid genetic algorithm
becomes as follows:

1. Set up np individual chromosomes for the first generation.

2. Repeat the following steps limited by maximum generation number:

a. Evaluate the fitness values of every chromosome in the population of
 current generation.

b. Sort the chromosomes by the fitness values.

c. Select a small number of ne elite chromosomes, i.e., the highest ranked
chromosomes.

d. For each chromosome in ne elite, do:

i. Randomly develop n new mutated chromosomes.

ii. Evaluate the fitness of each new mutated chromosome, and save the best
chromosome whose fitness has the highest value.

iii. If the best chromosome gives an increase in fitness compared to the current
elite chromosome, set the best chromosome as the new elite chromosome.

e. Select pair of parents via a selection mechanism from the rest of the
chromosomes.

f. Based on a crossover probability, crossover scheme takes place between
each selected pair, and the two successors will replace the parents.

g. Based on a mutation probability, every single chromosome outside the elite
group undergoes a mutation.

2.4.2 Hybrid particle swarm optimization (HPSO)

We will bring the exploitation power in the particle swarm optimization by
performing scattered local search on the individual best positions and the global

Scheduling Problems - New Applications and Trends

8

best position of particles in the swarm. Hence, the hybrid particle swarm optimiza-
tion algorithm becomes as follows:

1. Evaluate the fitness value of each initial position Xo, and save the individual
best position as XPbest and the global best position as XGbest.

2. Repeat the following steps until maximum iteration or another stop criterion is
reached.

a. Update the velocity of each particle for the next move as follows:

Vi + 1 = Vi + r1 * (XPbest – Xi) + r2 * (XGBest –Xi)

b. Update the new position of each particle as follows:

Xi + 1 = Xi + Vi + 1

c. Evaluate the fitness value of the new position of each particle, and update
the individual best position and the global best position if necessary.

d. For each individual best position XPbest and the global best position
XGbest, do:

i. Find n new positions in the neighbor of the best position.

ii. Evaluate the fitness of each new position, and save the new best position
whose fitness has the highest value.

iii. The new best position will replace the best position under consideration,
if it gives increase in fitness.

3. University course scheduling problem and model

3.1 Problem definition

University course scheduling is a process of assigning a set of courses to limited
time resources and space resources, namely, classrooms. We consider only curricu-
lum-based or prior-enrollment course scheduling. In this case, each course has been
set who will teach and which student group will attend the course. The assigning
process must satisfy some hard constraint, for instance, avoiding lecturer conflict.
In addition, some soft constraint such as considering preference time of lecturer
will be desired to be fulfilled in the schedule.

Formally, the curriculum-based course scheduling problem will be described as
follows:

• There is a set of courses [C1, C2, … Cnc] where each course is attended by a
number of students from specified studies and taught by specified lecturers. A
course could be given in more than 1 course hour and probably need computer
equipment in the classroom.

• There is a set of lecturers [L1, L2, … Lnl] who have been assigned to teach some
courses and probably have some unavailable time slots and some preference
time slots to teach.

9

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

• There is a set of student group [S1, S2, … Sns] which consist of a number of
student from the same department and the same grade.

• There is a set of room [R1, R2, … Rnr] which has a number of seat capacity and
some room equipped with computers.

• There is a set of time slot [T1, T2, … Tnt] which can be expressed in daytime and
clock time.

A feasible course schedule has to satisfy the following eight hard constraints:

• Complete schedule which means all courses have been assigned into available
time and rooms

• Avoiding room conflict which means no room is used by more than one course
event at the same time slot

• Avoiding lecturer conflict which means no lecturer teaches more than one
course event at the same time slot

• Avoiding student conflict which means no student group from the same depart-
ment and same grade must attend more than one course event at the same time

• Avoiding excessive attending student number in classroom

• Avoiding lecturers’ unavailable time which means no lecturer teaches in his or
her unavailable time slot

• Proper equipped classroom which means room has a feature needed by the
assigned course

• Continuous course event which means multiple hour courses must be assigned
in the same room contiguously

Beside the hard constraints that must be fulfilled unconditionally, course
 schedule preferably satisfy some soft constraints such as:

• Avoiding lecturer’s preventive time which means lecturers do not teach in his
or her preventive time slot.

• Lecturer’s preference time which means lecturers teach in their preference time

• Full classroom which means the number of students joining the course is more
than the half of classroom capacity

A course schedule is defined as optimum if the number of hard constraint viola-
tion is zero and the number of soft constraint fulfillment is as many as possible.

3.2 Course scheduling model

Computational model of a course schedule can be represented as a two-
dimensional matrix where rooms and time slot denote as row number and column
number [3, 5, 7]. Each matrix cell is filled up with course event. Time slots comprise

Scheduling Problems - New Applications and Trends

10

of day and hour, for instance, if the number of day is 5 and every day consists of
8 course hours, then the number of time slot columns are 40 time slots. A variant of
this model has flexible time slot length [7].

A slightly different model from the two-dimensional model is a three
dimensional-model wherein the two components of time slot are put into a two-
dimensional matrix, namely, hour in row and day in column. The room dimension
is placed in the third direction of matrix [9, 17, 18, 27]. As in the two-dimensional
matrix model, every matrix cell contains a single hour of course event.

These two matrix-based models have an advantage that the “room conflict”
hard constraint is inherently fulfilled. However, it has disadvantage on “complete
schedule” hard constraint, namely, ensuring all course events are completely put in
the model. Hence the matrix-based model is inappropriate for randomly assigning
course events in the matrix. Another problem with the matrix-based model is in
crossover evolution mechanism where parent mating could make a course event
duplicate and course event missing in their successors [9, 17].

To get around these two problems, we will use a list of 3-tuple which consists of
course event, room, and time slot <Ci, Rj , Tk> [6, 25]. This 3-tuple list can be simpli-
fied by introducing a space–time function f(Rj , Tk). If we denote all the variable
using only their indices in the 3-tuple such that <Ci, Rj , Tk > is written as <i, j, k>,
then the space–time function can be expressed as

 f (j, k) = k + (j − 1) ∗ nt (1)

where j = 1 .. nr is room index and k = 1 .. nt is time slot index and maximum
value of f(j,k) = nr*nt.

Hence the 3-tuple list schedule is shortened as a vector Sch:

 Sch = { f 1 (j, k) , f 2 (j, k) , … , f i (j, k) , … f nc (j, k) } (2)

where index i represents a course which is associated to student groups Sl,
lecturers Lm, and course event duration.

The first hard constraint, namely, the complete schedule constraint, is assured
by schedule model in Eq. (2). The other seven hard constraints are taken into
account in penalty function HC(Sch) which is an accumulation of every hard con-
straint violation in each course Ci. The three soft constraints are taken into account
in score function SC(Sch) which is an accumulation of every soft constraint fulfill-
ment in every course Ci. Hence the fitness function is formulated as

 fitness (Sch) = w sc ∗ SC (Sch) − w hc ∗ HC (Sch) (3)

where wsc and whc are weight factors. The objective of optimization is to maxi-
mize this fitness function and make sure a zero hard constraint penalty function
HC(Sch).

Using the tuple list scheduling model, the problem size of course scheduling is
mainly determined by the number of course nc.

3.3 Computational model

In the previous section, we explain how the scheduling model is described
including the heuristic fitness function. Here we will describe the computational
model of three algorithms, namely, multiple-scattered local search, hybrid genetic
algorithm, and hybrid particle swarm optimization. Computational model
identifies parameters for the computational size. The objective of defining the

11

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

computational model is to ensure a fair comparison among three different types of
algorithm, because considering only an equal problem size can yield biased evalua-
tion if the computational model is significantly different.

The global search computational model is governed by population number
np. In the case of multiple-scattered local search, this exploration power size
determines the number of hill climbers; in the case of hybrid genetic algorithm,
it is the amount of chromosomes; and for hybrid particle swarm optimization, it
is set by the number of particles in the swarm. The local search algorithm of all
three algorithms implements the same scattered local search; hence the size of
this exploitation power is determined by the number of probable positions in the
neighborhood ne.

The computational model size, i.e., population number np and neighbor number
ne, and the problem size, i.e. course number nc, will completely govern the size of
three different algorithms. The performance of the success runs for the heuristic
approach control by the required number of iterations or generation in the case of
genetic algorithm.

4. Experimental results and discussion

4.1 Evaluation model

Because course scheduling is a non-deterministic polynomial complete problem
(NP-problem) [5, 28], algorithm evaluation tool for a deterministic polynomial
problem (P-problem), such as complexity asymptotic analysis, is not really
appropriate to evaluate course scheduling algorithms. An empirical approach was
introduced by Hoos [29, 30] to analyze the behavior of non-deterministic polyno-
mial problem for such three algorithms under consideration. Run time distribution
(RTD) and run length distribution (RLD) are empirically constructed by running
the same algorithm with the same condition for a sufficient number of runs until
some stop criteria are reached or up to some cutoff time or maximum iteration. For
each run, the required run time and the required number of iteration, for RTD or
RLD, respectively, to reach a good solution are recorded.

RTD and RLD will represent cumulative probability distribution function:

 F (x) = P ∣ x ≤ X ∣ (4)

where X is a random variable which represents required run time in RTD or
required run length in RLD.

Specification Set I Set II

Number of courses 25 51

Number of rooms 2 4

Number of time slots 80 160

Number of instructors 14 23

Number of student group 4 7

Number of course hours 67 138

Table 1.
Two sets of small course scheduling data [15].

Scheduling Problems - New Applications and Trends

12

4.2 Experimental data

We will evaluate the three algorithms using two sets of small curriculum-based
course scheduling problems as given in Table 1.

On each set, evaluation will be performed for 250 runs on each set of schedul-
ing problems until at least one zero HC(Sch) or a specified maximum iteration
is reached. Size of computational model of all three algorithms, i.e., population
number np and neighborhood number ne, will be varied to grant the performance
behavior of these three different algorithms.

4.3 Discussion of results

The effect of two computational size parameters, namely, the population num-
ber np and the neighborhood number ne, will be studied. While the population
number np gives the exploration force to enhance a global search, the neighbor-
hood number ne provides the exploitation force for the local search.

4.3.1 Exploration for global search

We will firstly investigate influences of parameter np on the success probabil-
ity for each algorithm separately using the scheduling problem set I. Test results
from the hybrid particle swarm optimization are represented in Figures 1 and 2,
respectively, RLD and RTD. Figure 1 shows that the higher number of population,
the better its run length distribution, namely, the most left distribution function.
It is also shown that using cutoff of 1000 iterations, 100% probability of success to
find a zero HC(Sch) is obtained for a population number np of at least 40, and for
the smaller np, it is slightly less than 100%. However, the variation of population
number almost does not affect RTD for the hybrid particle swarm optimization as
shown in Figure 2.

Figures 3 and 4, respectively, represent RLD and RTD from the multiple-
scattered local search. Figure 3 shows the same behavior as Figure 1 for the hybrid
particle swarm optimization, namely, increasing number of population shifts RLD
function to the left side, the better behavior. Run time distribution using multiple-
scattered local search depends significantly on the population number because the

Figure 1.
RLD resulting from hybrid particle swarm optimization for population number np 10, 20, 40, and 100 and
neighborhood number ne 20.

13

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

Figure 2.
RTD resulting from hybrid particle swarm optimization for population number np 10, 20, 40, and 100 and
neighborhood number ne 20.

Figure 3.
RLD resulting from multiple-scattered local search for population number np 10, 20, 40, and 100 and
neighborhood number ne 20.

Figure 4.
RTD resulting from multiple-scattered local search for population number np 10, 20, 40, and 100 and
neighborhood number ne 20.

Scheduling Problems - New Applications and Trends

14

Figure 6.
RLD resulting from multiple-scattered local search for population number np 1, 2, 4, 8, and 10 and scheduling
in four rooms.

required run time growth is higher than the reduction of required run length as
function of population number as shown in Figure 4.

Reducing the number of population until np = 10, we found that using multiple-
scattered local search, finding of a feasible schedule is assured if one lets the
algorithm run up to 1000 iterations. We have investigated thoroughly this algorithm
for lower population number until it becomes a single-scattered local search as pre-
sented in Figures 5 and 6. Note that we set maximum iteration of 3000 for this test.
We found that a success run probability of 100% at maximum iteration of 3000
needs at least np = 4 population members and the minimum population number is
getting higher, i.e., np = 8, for larger schedule problem, i.e., scheduling problem set
II as shown in Figure 6.

Figures 7 and 8 show the result of hybrid genetic algorithm. In this case,
increasing number of population np merely improves the run length distribution
as shown in Figure 7. Figure 8 shows that the increasing number only made things
worse, as logically higher population number needs more run time for the same
level of probability.

Figure 5.
RLD resulting from multiple-scattered local search for population number np 1, 2, 4, and 8 and scheduling in
two rooms.

15

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

4.3.2 Exploitation for local search

The novelty of the presented hybrid algorithms is the introducing of exploita-
tion force in the original algorithm where exploration power is essential. This
enhancement is affected by the number of scattered candidates in the neighborhood
of the elites, denoted as ne. If this neighborhood number ne is zero, it means the
hybrid algorithm is exactly the same as the original versions.

Figure 9 depicts effect of local search in the hybrid genetic algorithm on the
run length probability distribution. Even a small neighborhood number ne = 2
affects the probability function significantly compared to the original genetic
algorithm.

Figure 10 depicts effect of local search in the hybrid particle swarm optimi-
zation on the run length probability distribution. Using 6000 iterations as the
maximum stop criterion, the original particle swarm optimization fails to yield any
feasible solution; hence no result is given in Figure 10 for the original version. Even
a small neighborhood number ne = 2 affects the probability function significantly
compared to the original genetic algorithm.

Figure 7.
RLD resulting from hybrid genetic algorithm with population number np 20, 40, 100 and neighborhood
number ne 20.

Figure 8.
RTD resulting from hybrid genetic algorithm for population number np 20, 40, and 100 and neighborhood
number ne 20.

Scheduling Problems - New Applications and Trends

16

Figure 10.
RLD resulting from hybrid particle swarm optimization with variation of neighborhood number ne 2, 5, 20,
and 40.

Figure 11.
RTD resulting from the three algorithms for population number np 20 and neighborhood number ne 20, which
are multiple-scattered local search, hybrid genetic algorithm, and hybrid particle swarm optimization.

Figure 9.
RLD resulting from hybrid genetic algorithm with variation of neighborhood number ne 2, 10, and 20 and the
original genetic algorithm.

17

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

4.3.3 Comparison between three algorithms

Figure 11 depicts RTD for three algorithms for the same computational size,
i.e., np = 20 and ne = 20. It shows that multiple-scattered local search is the most
efficient in time and also in the required iteration number, while hybrid particle
swarm optimization is the worst.

5. Conclusions

Course scheduling problem is a discrete optimization problem and considered as
NP complete problem which is hard to solve. Therefore, we presented three algo-
rithms which are modification from three popular algorithms. The first algorithm
is multiple-scattered local search which is an enhancement of the hill-climbing
search. The improvement is achieved by introducing exploration search power in
the original single local search.

The hybrid genetic algorithm and the hybrid particle swarm optimization are
the last two presented algorithms. The original version of these two algorithms is
well known for their powerful of exploration ability in searching of global solution
for a sufficiently large number of iterations. The hybrid enhancement of these two
algorithms was implemented by implanting scattered local search on the small elite
group. The enhancement aimed to accelerate searching process.

Course scheduling problems used for the evaluation of three algorithms are
curriculum-based or pre-enrollment course schedules which must fulfill eight hard
constraints and three soft constraints. The course schedule problem was modeled
using a list of 3-tuple which consists of course event, room, and time slot <Ci, Rj,
Tk> which further simplified as a vector containing time–space allocation of every
course. The essential advantage of using this course model is to resolve the problem
of missing courses and double allocated of the same courses in the evolution mecha-
nism. Furthermore, this course model can be used for all three algorithms under
consideration with comparable computation model size, i.e. the population number
np the neighborhood number ne.

The experimental test results have proven that the population number consis-
tently governs the exploration power for better global search in term of required
iteration numbers at cost of more time needed. In the case of multiple-scattered
local search, only a small number of population are needed to obtain a good prob-
ability behavior of success run.

The effect of implanting local search in two originally global search algorithms
is more remarkable. Letting a very small-scattered local search in the elite group has
improved the cumulative probability distribution function of hybrid genetic algo-
rithm and hybrid particle swarm optimization compared to the original versions.
However, comparing all three algorithms for the same problem condition yields the
multiple-scattered local search as the superior algorithm over the other two hybrid
algorithms for cumulative time probability distribution and cumulative run length
distribution.

Acknowledgements

The author would like to thank Anisa Utami and Dody Haryadi for their contri-
bution in this research.

Scheduling Problems - New Applications and Trends

18

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Author details

Ade Jamal
University of Al-Azhar Indonesia, Jakarta, Indonesia

*Address all correspondence to: adja@uai.ac.id

19

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

References

[1] Goh SL, Kendall G, Sabar NR.
Improved local search approaches
to solve the post enrolment course
timetabling problem. European
Journal of Operational Research.
2017;261(1):17-29. DOI: 10.1016/j.
ejor.2017.01.040

[2] Elmohamed MAS, Fox G,
Coddington P. A comparison of
annealing techniques for academic
course scheduling. DHPC-045, SCSS-
777; 1998

[3] Myszkowski P, Norbeciak M.
Evolutionary algorithms for timetable
problems. Annales UMCS, Informatica.
2003;1(1):115-125. Available from:
http://www.annales.umc.lublin.pl

[4] Phillips AE, Walker CG, Ehrgott M,
Ryan, DM. Integer programming
for minimal perturbation problems
in university course timetabling. In:
Proceeding of 10th International
Conference of the Practice and Theory
of Automated Timetabling (PATAT
2014); August 2014; York, United
Kingdom; 2014. pp. 26-29

[5] Al-Betar MA, Abdul Khader AT.
A harmony search algorithm for
university course timetabling.
Annals of Operations Research.
2012;194(1):3-31. DOI: 10.1007/
s10479-010-0769-z

[6] Moody D, Kendall G, Bar-Noy A.
Constructing initial neighborhoods to
identify critical constraints. In: Burke
EK, Gendreau M, editors. Proceedings
of the 7th International Conference on
the Practice and Theory of Automated
Timetabling (PATAT '08); August 2008;
Montréal, Canada; 2008

[7] Lewis R, Paechter B. Application
of the grouping genetic algorithm to
university course timetabling. In: Raidl
G, Gottlieb J, editors. Evolutionary
Computation in Combinatorial

Optimization. Berlin, Germany:
Springer; 2005. pp. 144-153. LNCS 3448

[8] Massoodian S, Esteki A. A hybrid
genetic algorithm for curriculum based
course timetabling. In: Burke EK,
Gendreau M, editors. Proceedings of
the 7th International Conference on
the Practice and Theory of Automated
Timetabling (PATAT’08); August 2008;
Montréal, Canada; 2008

[9] Jamal A. Solving university course
scheduling problem using improved
hill climbing approach; In: Proceeding
of the International Joint Seminar in
Engineering; August 2008; Jakarta,
Indonesia; 2008

[10] Abramson D. Constructing school
timetables using simulated annealing:
Parallel and sequential solutions.
Management Science. 1991;37(1):98-113.
DOI: 10.1287/mnsc.37.1.98

[11] Meyers C, Orlin JB. Very large scale
neighborhood search in timetabling
problems. In: Proceeding of the 6th
International Conference on the
Practice and Theory of Automated
Timetabling (PATAT '06); Brno, Czech
Republic; 2006

[12] Akinwale OC, Olatunde OS, Olusayo
OE, Temitayo F. Hybrid metaheuristic
of simulated annealing and genetic
algorithm for solving examination
timetabling problem. International
Journal of Computer Science and
Engineering - IJCSE. 2014;3(5):7-22

[13] Lawal HD, Adeyanju IA, Omidiora
EO, Arulogun OT, Omotosho OI.
University examination timetabling
using Tabu Search. International
Journal of Scientific and Engineering
Research. 2014;5:10. Available from:
http://www.ijser.org

[14] Leighton FT. A graph coloring
algorithm for large scheduling problems.

Scheduling Problems - New Applications and Trends

20

Journal of Research - The National Bureau
of Standards. 1979;84(6):489-506. DOI:
10.6028/jres.084.024

[15] Dandashi A, Al-Mouhamed M.
Graph coloring for class scheduling.
In: Proceeding of the 8th ACS/
IEEE International Conference on
Computer Systems and Applications
(AICCSA 2010); Hammamet, Tunisia;
May 2010

[16] Soria-Alcaraz JA, Özcan E, Swan J,
Kendall G, Carpio M. Iterated local
search using an add and delete
hyper-heuristic for university course
timetabling. Applied Soft Computing.
2016;40:581-593. DOI: 10.1016/j.
asoc.2015.11.043

[17] Jamal A. University course
scheduling using the evolutionary
algorithm. In: Proceeding of
International Conference on Soft
Computing, Intelligent System, and
Information System (ICSIIT 2010); Bali,
Indonesia; 2010. pp. 86-90

[18] Jamal A. A three stages approach
of evolutionary algorithm and local
search for solving the had-m and soft
constrained course scheduling problem.
In: Proceeding of the 11th Seminar
on Intelligence Technology and its
Application (SITIA2010); Surabaya,
Indonesia; 2010. pp. 324-328

[19] Lutuksin T, Pongcharoen P.
Experimental design and analysis
on parameter investigation and
performance comparison of ant
algorithms for course timetabling
problem. Naresuan University
Engineering Journal. 2009;4:31-38

[20] Oner A, Ozcan S, Dengi D.
Optimization of university course
scheduling problem with a hybrid
artificial bee colony algorithm. In:
Proceeding of 2011 IEEE Congress of
Evolutionary Computation (CEC 2011);
2011. pp. 339-346

[21] Bolaji AL, Khader AT, Al-Betara
MA, Awadallah MA. University course
timetabling using hybridized artificial
bee colony with hill climbing optimizer.
Journal of Computational Science.
2014;5(5):809-818. DOI: 10.1016/j.
jocs.2014.04.002

[22] Ojha D, Sahoo RK, Das S. Automatic
generation of timetable using firefly
algorithm. International Journal of
Advanced Research in Computer
Science and Software Engineering.
2016;6(4):589-593

[23] Poli R, Kennedy J, Blackwell T.
Particle swarm optimization: An
overview. Swarm Intelligence.
2007;1(1):33-57. DOI: 10.1007/
s11721-007-0002-0

[24] Shiau DF. A hybrid particle swarm
optimization for a university course
scheduling problem with flexible
preferences. Expert Systems with
Applications. 2011;38(1):235-248. DOI:
10.1016/j.eswa.2010.06.051

[25] Jamal A. Multiple local scattered
local search for course scheduling
problem. In: Proceeding International
Conference on Soft Computing,
Intelligent System and Information
Technology (ICSIIT 2017) IEEE;
September 2017; Bali, Indonesia; 2017.
DOI: 10.1109/ICSIIT.2017.22

[26] Forrest S, Mitchell M. Relative
building-block fitness and the
building-block hypothesis. In: Whitley
D, editor. Foundations of Genetic
Algorithms 2. San Mateo, CA: Morgan
Kaufmann; 1993

[27] Trabzon SA, Pehlivan H,
Dehkharghani R. Adaptation and use of
artificial bee colony algorithm to solve
curriculum-based course time-tabling
problem. In: Proceeding of the 5th
International Conference on Intelligent
Systems, Modelling and Simulation;
2014. pp. 77-82

21

Global Optimization Using Local Search Approach for Course Scheduling Problem
DOI: http://dx.doi.org/10.5772/intechopen.86228

[28] Burke EK, Elliman DG, Weare RF. A
genetic algorithm based university
timetabling system. In: Proceeding
of the 2nd East-West International
Conference on Computer Technology
in Education; September 1994; Crimea,
Ukraine; 1994. pp. 35-40

[29] Hoos HH. Stochastic local search:
Methods, models, application [Thesis].
Darmstadt, Germany: Technisen
Universitat Darmstadt; 1998

[30] Hoos HH, Stutzle T. Stochastic
local search: Foundation and
applications. San Francisco: Elsevier;
2004

