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Abstract

In the modern digitalized era, the use of electronic devices is a necessity in daily 
life, with most end users requiring high product quality of these devices. During the 
electronics manufacturing process, environmental control, for monitoring ambient 
temperature and relative humidity, is one of the critical elements affecting product 
quality. However, the manufacturing process is complicated and involves numer-
ous sections, such as processing workshops and storage facilities. Each section has 
its own specific requirements for environmental conditions, which are checked 
regularly and manually, such that the whole environmental control process becomes 
time-consuming and inefficient. In addition, the reporting mechanism when 
conditions are out of specification is done manually at regular intervals, resulting 
in a certain likelihood of serious quality deviation. There is a substantial need for 
improving knowledge management under smart manufacturing for full integration 
of Internet of Things (IoT) data and manufacturing knowledge. In this chapter, an 
Internet-of-Things Quality Prediction System (IQPS), which is a mission critical 
system in electronics manufacturing, is proposed in adopting the advanced IoT 
technologies to develop a real-time environmental monitoring scheme in electronics 
manufacturing. By deploying IQPS, the total intelligent environmental monitoring 
is achieved, while product quality is predicted in a systematic manner.

Keywords: smart manufacturing, Internet of Things, knowledge management, 
quality prediction, fuzzy logic

1. Introduction

In recent years, the demand on consumer electronics has dramatically increased 
due to the numerous advanced inventions, such as smartphones and smart city 
devices. Product quality, which is assessed by the products’ features and character-
istics, is one of the determinant factors in the sale of consumer electronics [1]. In 
order to maintain and improve product quality, it’s essential that the manufacturing 
process is under tight control with monitoring of environmental conditions so as to 
produce electronic devices with high levels of product quality. This area has drawn 
considerable research interest regarding effective approaches for managing manu-
facturing conditions, for example, industrial Internet of Things (IoT) applications. 
However, the electronic manufacturing process is different and more complicated 
than other general manufacturing processes, including design, development, 
fabrication, assembly, and testing approaches [2, 3]. Therefore, an effective 
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environmental monitoring and quality prediction system that fits various manufac-
turing requirements in the production lines is needed. In electronic manufacturing 
sites, the arrival of production orders affects the entire manufacturing process, 
namely, picking, inspecting, soldering, assembling, software burning-in, and 
dispatching, as shown in Figure 1. However, there are two major problems regard-
ing environmental monitoring in manufacturing sites. Firstly, various sections 
in the manufacturing process have their own requirements on environmental 
conditions, and data loggers are used to record the environmental conditions, i.e., 
ambient temperature and humidity, for each section or workshop. On-site supervi-
sors are required to memorize all this information and check it regularly. However, 
it is time-consuming to record all the data and act accordingly if the conditions do 
not meet to the requirements. Secondly, traditional environmental control does not 
allow other parties, such as customers or auditors, to access the data externally, and 
there is an inefficient warning system when violation of specific environmental 
conditions occurs. Therefore, the performance of environmental control and moni-
toring in existing electronic manufacturing is poor, resulting in negative impact on 
product quality. In order to address the above problems, the development of IoT 
system in smart manufacturing requires the integration of certain level of domain 
knowledge, such as the relationship between environmental conditions and qual-
ity prediction. In addition, the intelligent environmental monitoring and quality 
prediction align the business missions and policies of most electronic manufactur-
ing companies. Without such systems, the companies may not be able to formulate 
operational and business strategies in a proactive manner.

In this chapter, a research methodology for problem identification and knowl-
edge goal definition is presented to connect the academic research and real-world 
applications with anticipated results in knowledge management. For electronic 
manufacturing companies, in order to survive in the fiercely competitive busi-
ness environment, quality management, including quality control and quality 
assurance, is one of the essential objectives. In the past, the quality problems were 
identified after production by inspection and testing. By using such a reactive 
approach in quality management, certain amount of waste in raw materials and 
company resources are incurred. Therefore, there is room to integrate knowledge 
from quality management and state-of-the-art technologies, such as IoT technolo-
gies and artificial intelligence techniques. An Internet of Things quality predic-
tion system (IQPS) is proposed through making use of the advanced Internet of 
Things (IoT) technologies and artificial intelligence technique, i.e., fuzzy logic, for 
monitoring the environmental conditions in a real-time manner and predicting the 
quality of manufacturing process. Wireless sensor nodes are adopted to collect the 
environmental data in a specific manufacturing site and transmit the data to local 

Figure 1. 
Process flow of electronic manufacturing and its problems.
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devices via wireless communication technologies, such as Wi-Fi and Bluetooth. 
Consequently, the messaging protocol is then applied to publish the data to a 
specific IoT platform and cloud database for further system development and data 
management. Under the IoT environment, the sensing devices are interconnected 
efficiently and effectively such that the various requirements regarding environ-
mental monitoring can be fulfilled. This enables the environmental conditions to be 
ensured within the specifications, and it can reduce one of the crucial factors which 
may cause the deviation on product quality. With using the collected monitoring 
data, the decision support on quality prediction can be established by means of 
fuzzy logic, and relationship between product quality and some indirect factors can 
be constructed. Adopting fuzzy logic in real-world application adds the intelligence 
in learning the knowledge from domain expert in the form of membership func-
tions and fuzzy rules. The resultant knowledge can be managed and stored in the 
knowledge repository for generating meaningful results, namely, quality predic-
tion, in this chapter. The membership functions can define the fuzziness of input 
and output parameters, while fuzzy rules are used to connect input and output to 
generate appropriate adjustments and evaluations in specific circumstances.

This chapter is organized as follows. Section 1 is the introduction. In Section 2, 
the related work and literature in the aspects of electronic manufacturing, Internet 
of Things (IoT), and its applications are described. Section 3 presents the system 
architecture of IQPS. A case study in implementing the proposed system is illus-
trated in Section 4. Section 5 gives the results and discussion related to the benefits 
and limitations of the proposed system. Conclusions are drawn in Section 6.

2. Related works

Electronic manufacturing is a series of activities for designing, developing, 
fabricating, assembling, and testing of electronic parts, tools, products, and 
systems [4]. There are three epochs in the evolution of electronic manufacturing, 
namely, the vacuum tube era, the transistor era, and the integrated circuit era. 
Current electronic manufacturing falls under the integrated circuit era, focusing 
on producing small and reliable electronic devices and components at low cost. 
However, the complexity and dynamics in electronic manufacturing processes 
have rapidly increased in recent years due to short product life cycle and efficient 
new product development [5, 6]. Since the initial investment for manufacturing 
technologies is high and talented professionals in process engineering and quality 
are required, there is a great barrier for most start-up electronic manufacturers to 
enter the fiercely competitive market. In addition, effective and comprehensive 
control on the production environment, without which product quality deviation, 
occupational injuries, and low productivity may occur, should consider four major 
elements, i.e., equipment, process, ambient factors, and job procedures [7]. Most 
studies have covered the elements of equipment, process, and job procedures, such 
as advanced inkjet printing equipment, process optimization, job shop scheduling, 
and lean manufacturing [8–11]. Moreover, in order to manage the manufacturing 
process effectively, some new manufacturing systems have been developed. For 
example, an advanced concept of cyber-physical system (CPS) architecture where 
the information from all related perspectives in the manufacturing process are 
closely monitored and synchronized was proposed so as to standardize the devel-
opment process for Industry 4.0 [12]. However, the ambient factors in electronic 
manufacturing are a less-touched research area due to the technology barriers in 
the past. The control and monitoring of the ambient factors, for example, light-
ing, relative humidity, and temperature, can be completed under the environment 
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and paradigm of Internet of Things (IoT). In addition, the concept of knowledge 
management can be integrated in the system development process so as to improve 
the machine learning process and the expected results from the system.

The ontology of knowledge management (KM) has drawn huge attention 
in the modern research and business sectors, with the aim of creating value for 
stakeholders [13]. In recent years, KM is well-defined as the processes and practices 
in an organization with the aim of enhancing the effectiveness and efficiency in 
managing its knowledge resources [14]. To facilitate the development of knowledge 
management, technology adoption is a crucial element to provide functionalities of 
knowledge sharing and process innovation, such as business process reengineering. 
An et al. [15] presented a KM framework to drive collaboration, communication, 
and connectivity in three directions, namely, (i) rearrangement of KM roles by 
people, (ii) reengineering of KM activities by processes, and (iii) reconfiguration of 
KM artifacts by technology. In other words, the effective KM approach requires the 
integration of people, process, and technology in a systematic manner. Dehghani 
and Ramsin [16] summarized several methodologies used in the development of 
knowledge management systems, which should cover the stages of identification, 
assessment, classification, and knowledge goals. Also, the development of KM 
needs to focus on adaptability, analysis, and maintenance so as to develop a practical 
and beneficial application for the industry. In the world of smart manufacturing, 
it refers to adopting pervasive applications and ubiquitous computing, in which 
traditional facilities are transformed to knowledge-embedded facilities, enabling 
functions of predictive approach, incident prevention, performance enhance-
ment, and decision-making capabilities [17]. Thus, the role of KM for knowledge-
embedded facilities in smart manufacturing is inevitable. Papazoglou et al. [18, 19] 
proposed a knowledge-based model for smart manufacturing with integrating 
advanced technologies, including IoT, to establish manufacturing analytics and 
resource integration. Its knowledge structures covered partner, product, process 
orchestration, and quality assurance blueprint controlled by various knowledge 
repositories. Therefore, the value of quality assurance in smart manufacturing by 
means of KM is proven, and the integration of state-of-the-art technologies and KM 
is the preferred approach.

IoT a is an emerging concept in which objects equipped with certain sensors, 
actuators, and mobile devices are able to interact with each other so as to achieve 
a specific goal [20, 21]. IoT technologies are developed from the extension of 
radio-frequency identification (RFID) technologies. In recent years, the IoT-
related solutions and applications have dramatically increased in many industries, 
such as smart health, smart home, and smart manufacturing. The IoT solutions 
are basically developed with three technology stacks, namely, thin layer, con-
nectivity layer, and IoT cloud layer [22]. The above three stacks clearly describe 
the requirements on the sensor nodes, the process of using protocols to connect 
the sensor nodes and cloud services, and the system development in the IoT cloud 
platform. In view of the detailed IoT elements, IoT consists of six major elements 
to create various functionalities in the applications and solutions, i.e., identifica-
tion, sensing, communication, computation, services, and semantics. Da et al. 
[23] presented six key considerations in building a new IoT solution, i.e., energy 
consumption, data latency, throughput rate, scalability, topology, and security. 
For evaluating the industrial IoT applications, the aforementioned factors are used 
to establish the key performance indicators (KPIs) to ensure designated level in 
quality of service (QoS) and appropriate structure of service-oriented architecture 
(SOA). With appropriate system configuration and deployment, IoT applications 
can be developed which are applied into numerous application areas, including 
the healthcare service industry, food supply chain, safer mining production, and 
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logistics [24–27]. The above applications show that IoT technologies have sufficient 
capability in monitoring the conditions of an indoor environment. Therefore, 
there is room to extend the advanced IoT concepts, methods, and technologies for 
building an environmental monitoring system in electronic manufacturing. After 
IoT monitoring application is established, the data analytics by means of artificial 
intelligence can be followed. To achieve the goals of quality assurance and quality 
prediction, fuzzy logic, which is able to process linguistic variables and terms and 
mimicking human thinking process, is selected [28]. The knowledge from domain 
experts is managed in the knowledge repository in the form of if-then rules, and it 
can connect input and output attributes which may be subjective and uncertain to 
provide decision support in quality assurance.

With the above study, it is concluded that electronic manufacturing plays an 
essential role in our society for producing the latest electronic devices. Since the end 
users require a high level of product quality, control and monitoring in the elec-
tronic manufacturing process are one of the key elements for improving product 
quality and productivity. In order to achieve the above objective, IoT technology is 
feasible for developing a real-time and automatic monitoring system in electronic 
manufacturing and formulating an intelligent quality prediction for manufacturing 
process. Therefore, an intelligent environmental monitoring and quality prediction 
system is proposed, and a knowledge-based approach is used to design the frame-
work of entire system development and implementation in this chapter.

3. Integrating KM and IoT data in smart manufacturing

To achieve the goals of quality assurance and prediction in smart manufactur-
ing, a knowledge-based approach is used to formulate the practical system with 
three phases, as shown in Figure 1. They are (i) problem identification and knowl-
edge goal definition, (ii) design of IQPS, and (iii) performance measurement. It 
takes advantage of KM approach in developing and deploying the IoT systems in 
the real-world situations [29]. Apart from merely collecting the IoT data, the fusion 
between IoT data and human knowledge from domain experts is then exploited 
to generate decision support in smart manufacturing. With the systematic way to 
manage such knowledge, the effectiveness and efficiency of an organization can be 
further improved. Consequently, the projection of expected quality defects can be 
quantified in a systematical manner (Figure 2).

Figure 2. 
Process flow of electronic manufacturing and its problems.
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3.1 Phase 1: problem identification and knowledge goal definition

To harness IoT data and knowledge in the environment of smart manufacturing, 
the primary research in the fields of IoT and smart manufacturing is required to 
select the appropriate IoT technologies and techniques. However, merely deploying 
systematic solutions is insufficient for success, and KM approaches are needed to 
consider other angles in the organization. The literature related to KM and inter-
views with the industrial experts are then conducted to explore research gaps in the 
real-world situations. The interview and even site visits can truly reflect the existing 
situations in the organization, by investigating the workflow and discussing with 
the frontline operators. This generates the information for identifying the practi-
cal problems for manufacturing companies. Once the problem scenarios are built, 
the knowledge goals can be defined for effectively managing the knowledge in the 
entire system environment.

3.2 Phase 2: design of IQPS

This section describes an Internet-of-Things (IoT) quality prediction system 
(IQPS) to automatically collect ambient factors, namely, ambient temperature and 
relative humidity in production lines, and to predict in-process quality by using 
fuzzy logic. Figure 3 shows the system architecture of the proposed system, IQPS, 
which consists of three modules, namely, the sensor node deployment module, the 
cloud connectivity module, and the quality prediction module. It aims at develop-
ing an automatic and real-time environmental monitoring system so that it can 
assist the regular recording and checking process for the indoor ambient factors. 
As a result, the collected data are analyzed to formulate decision support in quality 
prediction regarding manufacturing quality defects.

3.2.1 Sensor node deployment module

The SensorTag CC2650 is selected for the use in the sensor nodes in the 
proposed system due to low cost, capability of using multiple communication 
protocols, and low energy consumption. It is placed in various workshop envi-
ronments so as to collect, at most, 10 different types of data, including ambient 
temperature and relative humidity. In order to deploy the sensor nodes effec-
tively, target coverage and sensor node connectivity are two key elements, which 
are achieved by using the deterministic approach [30]. Firstly, the target cover-
age, which implies that sensor nodes at the target point get the optimal coverage 
level, is done by a binary coverage model and coverage algorithm. It ensures that 
the deployed sensor nodes are able to reach all the target nodes within the sens-
ing reading range. In addition to controlling the number of sensor nodes, sensor 
si which covers the most target points is selected in a specific grid m, as in Eq. 
(1). When considering multiple grids simultaneously in a Cartesian coordinate 
system, the grid n is selected where the distance to the farthest target node di,t 
is minimized among all the considered grids, as in Eq. (2). P denotes the grid 
set with the same number of target nodes, and Q denotes the set of target nodes 
covered by the sensor nodes:

  m = arg max  ( s  i  )   (1)

  n = arg   min  
i∈P

     max  
t∈Q

    ( d  i,t  )   (2)
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Secondly, for the sensor node connectivity, relay nodes should be placed in the 
indoor environment so as to transmit the collected data to specific host computers. 
Sensor node grouping and group connectivity are two major factors for placing 
the relay nodes. Firstly, relay nodes are required when there are some unconnected 
groups of sensor nodes, and the relay nodes are used as the node neighbor in each 
unconnected group. In addition, the number of relay nodes should be controlled 
through minimizing the relay node ri and sensor node sk in group j in a specific grid, 
as in Eq. (3). When considering more than one grid, the relay nodes r ∈ R should 
connect the various groups of sensor nodes t ∈ P as far as possible, as in Eq. (4):

   d  rj   = min  [d ( r  i  ,  s  k  ) ]   (3)

                                  f  n   = arg max min  [d ( r  i  , t) ]                                                   (4)

3.2.2 Cloud connectivity module

In this module, all the collected data are then transmitted to the cloud services or 
host computers through the transmission protocols, for example, Message Queuing 
Telemetry Transport (MQTT). In order to effectively create the IoT applications, the 
data are stored in the cloud database under an IoT development platform, such as 

Figure 3. 
System architecture of IQPS.
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IBM Cloud. The sensor nodes have to be registered in advance for configuring and 
authenticating data queries and messaging to the pointed web services. In the cloud 
platform, the real-time data and specifications for ambient factors are integrated 
to formulate a monitoring application. In addition, the collected data stored in the 
cloud database can be linked to the existing manufacturing management system so 
as to enable suppliers and customers to view the reports on indoor ambient factors. If 
the collected ambient environmental conditions are violated, corresponding action 
will be taken to maintain stable and appropriate environmental conditions.

3.2.3 Quality prediction module

In the IBM Cloud, some development tools are well-designed for creating a 
customized IoT application, for example, Node-RED. They embed the major pro-
gramming environment and capability of using multiple programming languages. 
It offers the advantage to freely design an appropriate solution for meeting a specific 
goal. The proposed system, apart from real-time monitoring and alert manage-
ment, is also able to generate a report with time series data and to build customized 
user interfaces for displaying the collected data to the suppliers and customers. 
Last but not least, the proposed system is also able to record the number of quality 
deviations under the controlled indoor environment in order to access the system 
performance.

On the other hand, the fuzzy logic approach is used to evaluate the quality in the 
manufacturing process by making use of the real-time data and other static data, 
namely, workshop specification and production rate. In the fuzzy logic approach, the 
percentage of major and minor defects per batch can be evaluated by the environmental 
information, i.e., ambient temperature and relative humidity; workshop specification, 
i.e., workshop area; and production rate. In order to formulate the relationship between 
input and output attributes, there are three generic steps in fuzzy logic approach, 
namely, fuzzification, inference engine, and defuzzification. In the step of fuzzifica-
tion, the linguistic input attributes are converted into fuzzy sets, where the fuzzy set F is 
defined by membership function μF(x) with element x as shown in Eq. (5):

  F =  ∑ 
i=1

  
n
      

 μ  F   ( x  i  ) 
 _____  x  i  

    (5)

The fuzzy sets are then processed to the inference engine in which Mamdani’s 
method is used to integrate the fuzzy-rule-based knowledge stored in the knowledge 
repository. Therefore, the crisp input values are estimated and aggregated to be 
an appropriate adjustment of output values. The fuzzy rules used in this process 
are stated in the format of if-then rule which contains antecedent and consequent 
statements. The rules in the fuzzy logic are the knowledge which is collected from 
domain experts intuitively to express the relationship between input and output 
attributes. The inference engine is connected with the knowledge repository to 
facilitate the computation and conversion. Thus, the inference engine can be custom-
ized according to the extracted knowledge related to input and output attributes in 
different manufacturing environments. After aggregating the membership values 
in consequent membership functions, the OR operator is used for handling mul-
tiple attributes, and thus the bounded area can be formed, and the defuzzification 
process can be used consequently so as to obtain estimated output values. In the step 
of defuzzification, the centroid method which measures the center of gravity of 
the bounded area is applied to obtain the crisp output value y as shown in Eq. (6). 
Therefore, the average number of major and minor defects per batch can be pre-
dicted and estimated:
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                                                        y =   
∫  μ  F   (y)  ∙ ydx

 __________ 
∫  μ  F   (y) dx

                                                                    (6)

3.3 Phase 3: performance measurement

To measure the performance of the proposed method, a case study and perfor-
mance evaluation are two major approaches. To conduct a case study, two major 
steps are involved, i.e., company selection and system implementation. In the case 
study, the company should be the active practitioner in the electronic manufac-
turing industry, and the quality assurance is one of its business objectives. The 
selection criteria cover the company size, capability on quality management, and 
product variety. Thus, operators and staff at management level can be actively 
engaged in the quality assurance to provide high level of knowledge quality, and 
the value of decision support by using expert knowledge can be guaranteed. After 
implementing the system, the results need to be analyzed, and the effectiveness 
and satisfaction should be evaluated through conducting a survey. The results can 
be used to formulate the strategic quality planning in future production schedule to 
adjust the controllable factors for maximizing yield rate. Also, the proposed system 
advocates the domain experts to input their own expertise and knowledge for the 
inference engine to improve the quality of results.

4. Case study in an electronic manufacturing company

In order to validate the proposed system, a case study was conducted in an 
electronic manufacturing company, called Innovation Sound Technology Co. Ltd., 
which mainly produces headsets, headphones, and earphones. The company has 10 
working and storage areas with various requirements on ambient temperature and 
relative humidity. The areas, with specifications as shown in the bracket, are the 
mold workshop (21–28°C; 40–60%), laboratory (21–28°C; 40–60%), processing 
workshop (21–28°C; 40–70%), dust-free workshop (21–28°C; 40–70%), packaging 
workshop (21–28°C; 40–70%), assembly workshop (21–28°C; 40–65%), chemical 
warehouse (10–25°C; 40–80%), electronic warehouse (15–28°C; 40–60%), glue 
warehouse (5–21°C; 40–60%), and general warehouse (15–32°C; 40–70%). The sec-
tion supervisors and managers are required to remember all the above specifications 
and to check it regularly, but this manual approach is not effective in monitoring the 
ambient factors and in providing alert management. Due to growing technologies 
and solutions under the IoT environment, a real-time environmental monitoring 
system can be used to address the above challenges in electronic manufacturing 
sites. In order to implement the proposed system in the case company, there are 
three milestones in the entire implementation process, namely, (i) sensor node 
deployment, (ii) IoT system deployment, and (iii) quality prediction development.

In the first milestone, the sensor nodes, i.e., the SensorTag CC2650, are deployed 
according to the consideration of the target coverage and sensor node connectivity. 
The sensing radius for the sensor nodes is around 50 m in using Bluetooth Smart for 
data transmission. In the workshop environment, the sensor nodes are placed in the 
corners to collect temperature and humidity data at specific points, and the relay nodes 
have to be placed within sensor nodes’ sensing radius so as to transmit the data to the 
cloud services. This method not only collects the data at the specific locations but also 
computes an average value to express the entire environmental conditions in the work-
shop environment. After placing the sensor nodes and relay nodes correctly, the sensor 
nodes and relay nodes are registered in the IoT development platform, i.e., IBM Cloud, 
in the second milestone. In this milestone, the service “Internet of Things Platform 
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Starter,” which consists of a standard development kit (SDK) for Node.js, Cloudant 
NoSQL database, and Internet of Things platform, is used. First and foremost, the 
sensor nodes are required to register in the Internet of Things platform with returning 
the authentication and configuration information. The sensor nodes can be connected 
to the Internet of Things platform by setting the configuration information in the relay 
nodes using IoT-registered services. After successfully connecting the sensor nodes, 
the system development is done in the Node-RED platform, including environmental 
monitoring, alert management, reporting, user interface development, and quality 
deviation analysis. Figure 4 shows the entire system development to achieve all the 

Figure 5. 
User interface of IQPS.

Figure 4. 
System development in IBM Cloud.
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above functionalities. The node IBM IoT is the input from the sensor nodes where 
the data is transmitted in the format of JavaScript Object Notation (JSON). The data 
can be stored in the Cloudant NoSQL database effectively for further messaging and 
querying functions. In addition, a rule-based mechanism can be set to detect any viola-
tion of the collected data by comparing with the specifications. If there is a violation in 
either temperature or humidity, it will activate the services of Twilio, email, and tweet 
to alert supervisors and managers via SMS, email, and Twitter. Therefore, such alerts 
are transparent to all the corresponding parties. These functions are limited to a certain 
number of stakeholders with controlling security settings and system environment 
variables in the Node-RED platform, and therefore the leakage of personal information 
can be prevented. In addition, an add-on system monitoring plug-in is used to keep 
track of the IPs of access and usage of Internet traffic.

On the other hand, the collected data can be sent to a web application by using 
WebSocket, i.e., /ws/sdzonea in the proposed system. Figure 5 shows the user 
interface for displaying the collected data in a user-friendly manner. All the stake-
holders, including supervisors, managers, and customers, can gain access right to 
the web application for checking the environmental conditions at specific zones.

In the third milestone, the fuzzy logic approach is implemented in the case 
company so as to predict the product quality in the electronic manufacturing 
process. Under the Python programming environment, skfuzzy 0.2, which is 
the Python module of fuzzy logic approach, is applied where the fuzzification, 
Mamdani’s inference, and defuzzification are included. First of all, the maxi-
mum and minimum values of attributes are defined in advance. The membership 
function of input and output attributes in the triangular shape are presented 
by fuzz.trimf(attribute name, [x1, x2, x3]), where [x1, x2, x3] represents the 

Attributes Range Fuzzy class Membership 

function

Input attributes [Abbr.] (Unit)

Ambient temperature [AT] (°C) [10, 35] Low [10, 15, 20]

Medium [15, 20, 25, 30]

High [25, 30, 35]

Relative humidity [RH] (%) [0, 1] Low [0, 0.1, 0.2]

Medium [0.1, 0.4, 0.7]

High [0.4, 0.7, 1.0]

Workshop area [WA] (m2) [100, 

5000]

Small [100, 400, 500]

Medium [400, 500, 1500, 

2000]

Large [1500, 2000, 5000]

Production rate [PR] (unit/hour) [50, 500] Slow [50, 70, 100]

Medium [70, 100, 270, 300]

Fast [270, 300, 500]

Output attributes

Percentage of major defects per batch 

[MD1] (%)

[0, 1] Low [0, 0.2, 0.4]

Medium [0.2, 0.4, 0.6]

Percentage of minor defects per batch 

[MD2] (%)

High [0.4, 0.6, 0.8]

Significantly high [0.6, 0.8, 1]

Table 1. 
Fuzzy logic specifications for input and output attributes.
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vertexes of the triangular membership function. For the trapezoidal member-
ship function, fuzz.trapmf(attribute name, [x1, x2, x3, x4]) is used, where 
[x1, x2, x3, x4] represents the vertexes of the trapezoidal shape. After that, 
the fuzzy rules stored in the knowledge repository is controlled by using ctrl.
Rule(antecedent, consequence) and ctrl.ControlSystem([rule1, rule2 … rulen]). 
Consequently, when the values of the input attributes are input properly, the 
fuzzy logic engine is then able to estimate the values of the output attributes. 
Table 1 shows the range and membership function of the attributes for the fuzzy 
logic approach.

Moreover, the fuzzy rules for the Mamdani’s inference is collected from domain 
experts and summarized as Table 2. The fuzzy rules, or core knowledge in the pro-
posed system, are expressed by using the defined fuzzy classes in Table 1. They are 
stored in knowledge repository and activated when the input parameters match the 
antecedents of the rules. The quality and quantity of stored knowledge determine 
the quality and accuracy of the results in quality prediction.

5. Results and discussion

This chapter presents IQPS for formulating a real-time environmental 
monitoring and quality prediction system for managing the environmental 
conditions and manufacturing process in electronic manufacturing sites with 
the adoption of advanced IoT technologies. According to the implementation of 
IQPS in Innovation Sound Technology Co. Ltd., routine work regarding regularly 
recording and checking the environmental conditions by using data loggers can 
be eliminated. All the relevant parties can access and view the environmental 
conditions for all the zones in a web application, and the site supervisors and 
managers can receive an alert message via either SMS, email, or Twitter, when 
any violation of environmental specifications occur. Besides, all the collected data 
is stored in a cloud database such that this can be used to generate a report about 
the workshop’s environmental condition with a defined timeframe. On the other 
hand, the results of the quality prediction in manufacturing process by means 
of fuzzy logic approach are shown in Table 3. Five processing workshops are 

Fuzzy inputs Fuzzy outputs

AT RH WA PR MD1 MD2

Low Low Small Low Low Low

Low Low Small Medium Low Low

⁞ ⁞ ⁞ ⁞ ⁞ ⁞

Low Low Medium Medium Low Medium

⁞ ⁞ ⁞ ⁞ ⁞ ⁞

Medium Low Medium Medium Medium Medium

Medium Medium Medium Medium Medium Medium

⁞ ⁞ ⁞ ⁞ ⁞ ⁞

High Medium Medium Medium Medium High

High High Large Medium High Significantly high

Table 2. 
Knowledge of fuzzy rules for manufacturing quality prediction.
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selected to conduct the inspection to investigate the quality performance during 
the manufacturing process. Through the proposed system, the environmental 
conditions and quality performance can be visualized for all the staff involved in 
the electronic manufacturing process. The high percentage of estimated defects 
can be an indicator to the line supervisors and manager to adjust the operations 
and other manufacturing processes.

Through implementing the IQPS, the expert knowledge is constructed in the 
form of the if-then rules to generate expected quality defects in electronic manufac-
turing operations. The results can be used to evaluate the system effectiveness, and 
a survey is conducted to compare the performance and satisfaction before and after 
implementing the proposed system in the case company. Table 4 shows the findings 
of the comparative analysis for implementing IQPS in the case company. It demon-
strates a positive impact on reduction of average quality defects and improvements 
in quality management staff satisfaction and average production yield rate. Also, the 
environmental monitoring is done by IoT technologies instead of the manual record-
ing approach. Thus, the time for recording environmental conditions manually can 
be minimized.

As a consequence, two advantages can be gained after implementing the 
proposed system, namely, (i) better visibility of environmental conditions in 
the manufacturing sites and (ii) systematic approach to analyze the relationship 
between quality deviation and ambient factors. Firstly, since the regular recording 
and checking of environmental conditions are not the core business in electronic 
manufacturing sites, the time taken for these tasks is regarded as wasteful and 
redundant. Through adopting the IQPS, the operators don’t need to keep recording 
and checking data regularly, such that they pay more attention to the electronic 
production. In addition, the proposed system also gives a better visibility regarding 
environmental conditions for all the stakeholders as the data can be accessed in a 
simple web application. Secondly, as a report on environmental factors in various 

Workshop AT RH WA PR MD1 MD2

1 25 0.55 1000 210 0.06 0.11

2 23 0.58 850 180 0.01 0.05

3 29 0.66 1650 480 0.12 0.20

4 26 0.49 600 200 0.01 0.03

5 26 0.52 1500 480 0.09 0.31

Table 3. 
Results of fuzzy logic approach.

Parameters Before implementing IQPS After implementing IQPS

Average % of quality defects

• Major quality defects 0.11 0.07

• Minor quality defects 0.19 0.12

QM staff satisfaction (scale of 1–10) 6.8 7.9

Average production yield rate 98.5% 99.1%

Time for environmental monitoring 1 hr./day Real-time

Table 4. 
Comparative analysis before and after implementing IQPS.
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workshops can be generated, managers are able to conduct an analysis to investi-
gate the relationship between quality deviation and ambient environmental factors. 
Incidents on quality deviation, including major and minor defects in production, 
are of great concern, and management aims at minimizing all possible causes of 
product defects. The above analysis is helpful to the management level to predict 
future quality deviation and to improve the existing manufacturing facilities.

6. Conclusions

Due to increasing demand and higher-quality level of electronic products all over 
the world, attention on quality improvement and monitoring has attracted consider-
able attention in the research field of electronic manufacturing. In manufacturing sites, 
there are numerous workshops and facilities for producing the electronic products, 
such as laboratory and assembly lines, but the requirements for environmental condi-
tions in workshops vary according to the technical specifications. In order to ensure 
that the environmental conditions inside the manufacturing site are met, an environ-
mental monitoring system is needed, but the traditional approach, which relies on data 
loggers and manual recording, is ineffective. With the rapid growth of IoT in recent 
years, the environmental monitoring system can be integrated with advanced IoT 
technologies. However, only replying on advanced technologies cannot develop and 
deploy the practical and mission-critical systems for the companies. Knowledge-based 
approach is considered in providing the systematic framework for the system develop-
ment and performance measurement. Apart from that, the knowledge and informa-
tion from the companies can be managed in the knowledge repository to enhance the 
computing systems by mimicking human thinking and logic. This chapter proposes an 
Internet of Things quality prediction system (IQPS) where SensorTag CC2650 is used 
to collect the environmental data and to transmit the data through wireless communi-
cation protocols to the cloud services. The sensor nodes and relay nodes are deployed 
by satisfying the target coverage and sensor node connectivity and are registered in the 
IBM Cloud so as to develop a customized system in the Node-RED platform. All the 
collected data is stored in the Cloudant NoSQL database with complete messaging and 
querying functions. With the adoption of IQPS, the manual recording and checking 
work can be eliminated, and automatic environmental monitoring and alert manage-
ment can be provided. In view of the managerial perspectives, IQPS not only provides 
the real-time environmental monitoring inside manufacturing sites but also can be 
applied to investigate relationships between quality deviation and ambient environ-
mental conditions. The fuzzy logic is thus applied in this situation for predicting the 
product quality along the entire manufacturing process. The expert knowledge stored 
in knowledge repository is extracted for the use of inference engine, and thus the pro-
posed system can reflect the on-site relationship between input and output attributes 
in quality assurance. The possibility of major and minor defects per order batch can be 
estimated and visualized, and the workshop supervisors and managers are able to take 
any control actions to maintain the product quality at an appropriate level. Therefore, 
the visibility of environmental conditions inside manufacturing sites can be enhanced, 
while the quality deviation can be predicted and reduced.
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