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Chapter

Fourier Transforms for
Generalized Fredholm Equations

Juan Manuel Velazquez Arcos,
Ricardo Teodoro Paez Hernandez, Alejandro Pevez Ricardez

and Jaime Granados Samaniego

Abstract

In this chapter we take the conventional Fredholm integral equations as a
guideline to define a broad class of equations we name generalized Fredholm
equations with a larger scope of applications. We show first that these new kind of
equations are really vector-integral equations with the same properties but with
redefined and also enlarged elements in its structure replacing the old traditional
concepts like in the case of the source or inhomogeneous term with the generalized
source useful for describing the electromagnetic wave propagation. Then we can
apply a Fourier transform to the new equations in order to obtain matrix equations
to both types, inhomogeneous and homogeneous generalized Fredholm equations.
Meanwhile, we discover new properties of the field we can describe with this new
technology, that is, mean; we recognize that the old concept of nuclear resonances is
present in the new equations and reinterpreted as the brake of the confinement of
the electromagnetic field. It is important to say that some segments involving
mathematical details of our present work were published somewhere by us, as part
of independent researches with different specific goals, and we recall them as a tool
to give a sound support of the Fourier transforms.

Keywords: Fredholm equations, electromagnetic resonances,
electromagnetic confinement, evanescent waves, left-hand materials,
Fourier transforms, vector-matrix equations

1. Introduction

There is a very broad class of problems on physics that requires a tool that not
only serves to handle the mathematical problem related to the solution of some
differential equation describing the behavior of a system but that gives us an
alternative description of them from a distinct point of view in a manner that allows
us to discover some hidden physical properties, that is, we need to generalize the
application of the Fourier transform from the conventional task to achieve a set of
algebraic equations to a complete alternative formulation in terms of the Fourier
transform of the integral Fredholm equations [1-5, 13, 17]. Many of the problems
we want to consider are those related with vector fields like the electromagnetic.
For this situation we dedicate the present chapter first to the integral equation
formulation of the electromagnetic traveling waves, and then, by the application of
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the Fourier transform, we obtain finally a matrix-vector formulation [9, 10, 12, 14,
18]. To this end we go from the conventional Fredholm equations to new vector-
integral equations we name generalized Fredholm equations proving that really
they have the same properties of the conventional scalar Fredholm equations. In the
meantime we discover that the new formulation brings a resonant behavior solution
when some specific conditions are accomplished. The resonant behavior can be
associated with the physical phenomenon of a brake of confinement of the so-called
evanescent waves [6-8, 10-12, 19, 20] which leaves the region known as the near-
field zone and is strongly related to the condition we name a left-hand material
condition of the propagation media. The name left-hand material conditions
describes the fact that are related with a negative refraction index observed in
artificial materials created by man and we have used for describe the propagation
media property in which in some embedded region the electromagnetic waves are
diffracted like in a left-hand material. We find in the first part of the present
chapter a brief discussion about the relation between the inhomogeneous general-
ized Fredholm equations or GIFE [9, 10, 12, 18] and the homogeneous generalized
Fredholm equations or GHFE. The GHFE are behind the presence of the resonant
behavior, and we show how a sudden change in a little set of physical parameters
related to propagation properties triggers the brake of the confinement of the
evanescent waves. Then we incorporate to our description the plasma sandwich
model or PSM and their own parameters in order to propose that the change in these
last parameters changes drastically the wave propagation properties of media. It is
important to advise that our procedures are applied to continuous systems and
therefore are strictly original, and only the topics related to the funds of the PSM
were taken from previous works that involved discrete systems.

2. Beginning of the generalized Fredholm equations

In this section we will build the generalized Fredholm equations mentioned in
the introduction of this chapter. To this end, we suppose that both electric and
magnetic fields have the linearity property, and for this reason we can relate their
values represented with the symbol /" (r,) at different times and places ',7 and
r',7'. Due to the mentioned linearity of the wave equation, we can write (bearing in
mind that we can have more general conditions different to empty space)

n=1

F™(x,t) = F"C)(r,1) +J » T Gm©) (r, t; r’,t’)Um" (r’)FW(r’,t’)dt’dV’ (1)

G™(r,t;r',t") (2)

is the free Green’s function, and the complex dispersion coefficients are /™" (r")

which contain the complete linear or nonlinear space-dependent interaction, but
only time-independent ones are considered. By interchanging the volume and time
differentials on integrands in Eq. (1), we obtain

- 3
Fr,)=F"O@wn+] ¥[GO, cx YU () F'(c' t)dV 'dt' (3)

n=ly
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or

F™(r,t)= F"(r,1)+ j J’ K™t ) F " (x',t)dV ' dt" (4)
—o V'

This equation resembles inhomogeneous Fredholm’s integral equation (IFE) but
not as defined in scalar conventional form, and we will prove below that is strictly
the case, so we call it generalized inhomogeneous Fredholm’s integral equation or
GIFE and the homogeneous version generalized homogeneous Fredholm’s equation
or GHFE.

Also, we have used summation convention over n and defined the kernel:

K™ (e, 5t = G™O(r,r ', YU™ (r') ®)

The signal F""(r',¢") can be written in terms of a well-behaved non-null func-

tion Z"(r',¢'") defined by

Fre =] Y e (6)
’ Z"(r',t") if 1'€[0,7]

For convenience, we return to Eq. (2), which can be written as

3 T
Z"(r,0)= 2" (r,0)+ Y j j G (r, e U™ () Z" (', t)dt'dV"' (7)

n=ly o

On the other hand, we can express the Green’s function in terms of its Fourier
transform associated with frequency @

co

Gmn(O)(rat;r'pt') = ﬁ J. Ga’;m(O) (r;r')ejw(t_t')da) (8)

—o00

so that Eq. (7) becomes

3 .
Z"(r,0)= 2" w0+ 3, U™ () [ GO (rsr g (L w)dedD ! (9)

n=l p

where we have defined the function
T

g"(r'\w)= Ie’w"Zm(r',t')dt' (10)
0

That is, g” (r',@) is the Fourier transform of Z"(r',")
We also have
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oo

Z"(r,t)=5 I e’g" (r,)dw (11)

—oo

Substituting in Eq. (9) and performing some algebra, we obtain

3
g"(r,m)=g""(r,m)+ Z_[U’""(r')G;)""(")(r;r')g"(r',a))da)dV' (12)

n=ly

Now we introduce a very useful and powerful notation we call vector-matrix
form for Eq. (12) (vectors have another vectors as components, and also matrices
have matrices as components):

g""(@)=[1-K"(@)] ¢'() (13)

(Einstein summation convention was used here)
where

K" (r; r/;a)> = U’””(r)GZ)””(°) (r; rl> (14)
and also define

J um™ (rl> GZ’Z”(") (r; r/>g"dV/ = K™ (w)g"(r)

\%4

3. The vector-matrix forward equation

Eq. (13) can be inverted formally as
o _1 o]
g'(@)=[1-K" ()] 1,g""(®) (15)

By means of the development of this equation, we find the generalized Neu-
mann series [12] and obtain the Fourier transform of complete Green’s function

Gmmn(rj,rk).. The result is [1]
n _ n m(o)
g'(@)=|1+K(®) ]| g""(o) (16)
Here we have defined
K" <r; r; a)) =y (r) G <r; r’) (17)

and the integral

J um™ (rl> G (r; r/)gm(°) (r/>dV/ = K™ ()g™") (r)

\%4
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Egs. (16) and (17) comprise the basic tools needed to describe the forward
transmission of information but, as we will see in the next chapter, an incomplete
description for time reversal. We can use Eq. (16) to get experimental data on the

components of K;(r;r';a)) since the Fourier transforms of the original signals

gm(")(r',a)) are known, we can measure the arriving signals g"(r,®). In practice,

we may consider Egs. (16) and (17) as our starting point instead of assuming that
there is no signal for t < 0.

4. The role of the Fourier transforms assisting time reverse

Nowadays, there is not any device capable to manipulate electromagnetic signals
in the easy way; we can manipulate sound waves mostly when we make a time
reverse on them. Nevertheless, we have proposed in another work a recipe to
handle this problem, so we are convinced that the treatment of the time reversal
process that we now describe corresponds to a completely possible fact. Suppose
that we have recorded a signal during a time T and now the reversed signal returns
to site r. Then we can write

F'(r,T—t)=F"(r,T—1)

+2 [ U @GO (@, T~ e, F" (e, T~ ¢)dt' V" (18)

m=1} —oo

This Eq. (18) can be written in terms of the function Z”(r',#) as

Z"r,T-6)=Z"r,T-1)

R ¥ (0)* 3 (19)
| Jum @GO @, T,y 2" (', T~ ¢)dt' V"
V —oo m=1
We can express Eq. (19) in terms of the Fourier transform sz(")*(r‘;r)
G (e, T —tr,0) =5 j G (r',r)e” " dw (20)

—oo

in the form

Z°(r,T =ty =Z"x,T=1)

+ii

m=1

2

wmn*(rq)j Gin;(o)*(r|;r)eiw(T—t'—t)dem(rv’T_tv)dtrdVv

S C— N

—o0

(21)

And recalling the Fourier transform for Z”(r, ¢), this can be written as

3
¢'r0)=g"(rw+Y [ g"(reU™ G (e dr (2)

m=1y
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At this point it is important to distinguish between functions related to forward
phenomena and those related to backward direction when necessary. So we will use
a different notation for both cases, and also, we introduce a quantum mechanics
resembling notation for the product between matrices and vectors; in this manner,
Eq. (22) can be written in vector (row vector) form like

ﬂ n(o)(r,w) — ﬂ n(r’w) _< ﬂ m(rq,w)an(o)* (l";l";CU) > (23)
where we introduced the quantum mechanics resembling notation:

< g m(r',a))M’""(")*(r;r';a)) )zj“g m(r',a))M’""(")*(r;r';a))dV' (24)
vV

Also we define
mn (o) e _ mn# mn (o) . _ mnk mn (o) .
M™ (o) =U" ()G, " (rr)=U" (rG, " (r';r) (25
and

J‘ﬂ n(rc)Umn*(rr)g;nn(")*(r!;r)dVrE ﬂ ann(")*(w) (26)
V

Factorizing in Eq. (28) and using definition Eq. (29)

g "Nr,w)= g '”(r',a))[l—M(°)*(r';r;a))]n’” E< g "(r',w)[16(r'- r)—M“”(r';r;w)]f >
(27)

In the following we will use systematically Egs. (23), (25), and (27).

5. Fourier transforms and Neumann series make up a powerful tool

It is possible to invert formally Eq. (27)

g 'ro)=g ”’(")(r',w)[[l—M(°)*(r';r;a)):|_l]’" (28)

n

Formally

3
g'(r,m)=Y [8'¢"(r,»)
m=1

2
tg " MM (o) + g " o) MM (rre) |

+ﬂ m(o)(r |’w)|:an(o)*(rv;r;w)i|3 Jeive } (29)
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or

3
gn(l',a)) = 2 {5;g"(°)(r,a)) +J gm(o)(r v,a))Umn*(rv)G;:m(o)* (r.;r)e—indV.
m=1 1%

+I J' gm(u)(r,7w)Umn=l=(r|)G::n(oJ‘ (ru,r)e—imTUmn*(rn)G::n(o)" (r',r")e""’TdV'dV g } (30)
Vo
Now we substitute in Eq. (29) this last expression for g"(r,m):
3
g'(ro)=), [6,g""(r,w)
m=1
+[ UG (e {0 (' w)ay
vV
+JUnm*(r|)G:0nn(°)*(r|;r)e—imTUmn*(r H)G‘;m(n)*(rn;rl)e—z'cuTgm(O)(rn,a))dVndV v+ vad }] (31)
v
Canceling parentheses we obtain
3
g'(ro)=), [6,g""(r,w)
m=1
+[ UG (e {0 (' w)ay
vV
+JJ Umn*(rr)G:Jm(ﬂ)(rv;r)e—fwTUmn*(r ")G:)m(u)(l’";l")e_fwrgm(n)(I'",C{))dV"dV .. ] (32)
vy

We then obtain the Neumann series [12] for the Fourier transform of the inte-
gral equation solution for time reversal (for reference see Eq. (18)):

3
g'(rw)=), [6:g"(r,0)
m=1
+J.Umn* (rv)Gar;m(O)* (rr;r)e—in
4
+j G(r:rr(ﬂ)*(rr;r")e*icoTUrmr*(r||)G:ﬂ(°)*(r";r)eﬂ'aﬂdV"
V

. T e e TR O s U N - USRI S
[ G @ U G (e U (MG e e)e Ty ] (33)
Vv
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6. An algebraic equation for time reverse

Because the bracketed expression in Eq. (36) is convergent, then it must equal
the Fourier transform of complete Green’s function gaf;m*(l‘ ;T), so that we can
write

g " €)=Y [, g " (co)+ [U™ ()G (£ir) g "(r 0)dV ]

(34)
Equation (34) can be written in a compact row vector form:
g"(@)=g""()1+M (o), (35)
In this equation, we define the kernel
M'(r';r;0)=U""(r'G " (r';r) (36)

and also define

[g " O@Uum™ @G (indr'= g "M (@) 3

Transposing Eq. (35) we obtain finally the column vector form (for real interac-
tions):

g"(w)=[1+M(o)],g"" () (38)

Obviously, Eq. (38) is identical with Eq. (16) but with M(w) instead of K(w).

7. Operators and resonances on continuum formulation

Egs. (16) and (38) are algebraic representations of integral equations, that is,
they are strongly dependent on the Fourier transform of the Green function; indeed
the behavior of the late referred function determines the solution whether or not
the regime was resonant. For this reason it is convenient to analyze how the Green
function changes in the neighborhood of a resonance. With this purpose in mind,
we recall Egs. (13) and (16):

g"(@)=[1-K"(@)] g'() (39)
g'(0)=[1+K(@)] g""() (40)

By applying the operator [1+K()] from the left to Eq. (13) and summing over
m, we have
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[1+K(@)] g"(0)=[1+K(@)] [1-K(@) ] g'(@) (1)
Then using Eq. (16), we obtain
g(©)=[1+K()] [1-K"(0) ] g'(®) (42)

g(@)=[1+K (@) | 1-K“() |g(®) (43)

In this expression g(@ ) is also a short notation for a “vector” whose components
are 8" (@) or as we have seen M " (r,ro;a))
Now, by spanning Eq. (41)

g(0)=[1-K“(0)+K(0)-K(@)K" () |g(0) (44)
This can be expressed as
g(@) =1g(0)+[ K" (0)+K(0)-K@)K" () [gw)  ©9
Then we can write
[-K“(@)+K(@)-K(@)K" (@) |g@)=0 (46
and by rearrangement of terms and writing only the operators
K(w)=K"(0)+K(0)K" () (47)
But we can now explicitly write Eq. (45) in terms of Green’s function:
G(0)U =G (@)U +G(0)UG" (w)U (48)
Here we have defined the product
U™ (r)G™ (r; r’) = [UG(0)]", (49)
That is, the Fourier transform of Green’s function satisfies the equation

G(w) = G"(0) + K(0)G" () (50)

And if we start with Eq. (39) (time reversal), we obtain by a similar procedure

G(w)=6"%w)+M(w)c"(w) (51)
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Now, if we are near a resonance, Egs. (48) and (49) are transformed in homo-
geneous equations with solutions we will denote as w, (), and if we denote the

interaction as U and the kernel K" (w), then from Egs. (48) or (49) without the
source term, we have the following relation:

W} (@)Ow, (@) [n," —n; '] =0 (52)
This relation establishes that the resonant solutions are mutually orthogonal and

the functions n(®) are known as the Fredholm eigenvalues.

8. The homogeneous Fredholm equation and Fredholm’s eigenvalue

As we saw in Section 8, the resonant solutions are orthogonal and in Eq. (50) the
Fredholm eigenvalues appear, but these last functions emerge when the inhomoge-
neous Fredholm equations are transformed in a homogeneous equation near a
resonance. The resulting homogeneous equation is

wi(r;m)= ne(a))ojo KZ"(")(G);r,r')w;"(r';a))dr' (53)
0

According to the theory of homogeneous Fredholm equations [1, 2, 3, 5, 9, 15, 16],
one of the conditions for the existence of solutions is that first Fredholm’s minor

‘M m(r,r

0 w) complies

M " (r,xr;0)=n(@)AN,0)

+n(w)IKZ’(°)(w;r,s)M "(s,1,;0)ds (54)
0

From Egs. (51) and (52) and after a little algebra, we arrive to the following
equation:

M "(r,r;0)-AM,0)g" (r,0) =
An.o)n(@)-g""(r,0)]

1 [KI(@sir,s)| M "(s.1:0) - AM,0)g"(r' o) |ds
0

+A(n,w)[n(w)—v(w)]TKZ“")(w;r,r')g”(r',w)dr' (55)

At this point, it is convenient to make the following definitions:

O(r,@)=M "(r,r ;0)-AN,0)g"(r,0) (56)

10
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with also

O (r;0) =
A(n,0)[n(®)-g""(r,0)]

+AM,0)N(0) - (@)K (0.r, e (o) (57)

We can reduce the last equations to a compact one:

O(r,w)=

O (r,0) +1(@) [ K (;r.5)P(s;0)ds (58)
0

It is clear that our procedure leads to an inhomogeneous Fredholm equation in
which it is possible to observe that the transit from a non-resonant regime to a

resonant regime is described by the generalized source term ®®)(r, »).

9. The role of resonances on broadcasting applications

In precedent sections we have seen how we can go from inhomogeneous to
homogeneous Fredholm equations, that is, from non-resonant or conventional

zZ A

umMu

Transmitted wave

Figure 1.

We show the superposition of three plasma layers subjected to local high electromagnetic potential creating
resonances and releasing evanescent waves: Layer M is composed of magnetic plasma, and the U layers are
composed of unmagnetized plasma.

11
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solutions to resonant ones. But we know that the resonant solutions are related with
a left-hand behavior of the transmitting media, that is, with negative refraction
index. On the other hand, Xiang-kun Kong et al. [7, 11] have studied the sign change
of the refraction index on devices with superposed layers of magnetized an
unmagnetized plasma. This experiment suggested us to propose the plasma sand-
wich model for transmitting media illustrated in Figure 1 that consists in itinerant
and random appearing of superposed magnetized and unmagnetized plasma layers
in high atmosphere that creates localized zones with negative refraction index.
According to the precedent results, the change to negative refraction index must
establish completely different conditions for the crossing of electromagnetic signals,
and we have the appropriate tool to handle these very important phenomena. That
is we can observe the transition from evanescent waves (non-traveling waves) to
traveling waves like an increase in the polarization effect. In Figure 1 three plasma
regions appear named U (unmagnetized), M (magnetized), and U (again
unmagnetized) representing a region on the atmosphere. When some local electro-
magnetic potential values occur, it is possible to reach left-hand material conditions.

10. Conclusions

In this chapter we have expanded the scope of Fourier transforms by application
to a relatively new class (really a vector generalization) of integral equations we
named generalized Fredholm equations (GFE). We think that the very relevant
subjects we discussed, not only because they are far-reaching implications but also
for they are not presented nowadays by other authors, are the properties we have
discovered about both the GFE and its own solutions. We have shown a strong
relation between the resonant solutions of the generalized homogeneous Fredholm
equations for the electromagnetic field and the resonances observed in scattering in
nuclear physics. The physical interpretation of the new class of resonances allows us
to discern completely new applications in different subjects like electromagnetic
wave propagation or the understanding of meta-materials. We give the mathemat-
ical proofs for properties of the integral equations, the relation between homoge-
neous and inhomogeneous equations, and the mechanism for release of the
evanescent waves converting them in traveling ones.
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