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Chapter

Vibration Characteristics of
Single-Walled Carbon Nanotubes
Based on Nonlocal Elasticity
Theory Using Wave Propagation
Approach (WPA) Including
Chirality
Muzamal Hussain and Muhammad Nawaz Naeem

Abstract

This chapter deals with the vibrational properties of single-walled carbon
nanotubes (SWCNTs), based on nonlocalized theory of elasticity (NLT). The
nanotube pilot control with nonlinear parameters was derived from Euler’s beam
theory. The wave propagation (WPA) approach was used to derive the frequency
equation describing the natural frequencies of vibration in SWCNTs. Complex
exponentials depend on the boundary conditions given at the edges of the carbon
nanotubes used. Vibration frequency spectra were obtained and evaluated for
different physical parameters such as diameter ratio for single chiral carbon
nanotubes and flexural strength for chiral SWCNT. The results show that the
natural frequencies are significantly reduced by increasing the nonlocal parameters,
but by increasing the ratio of the diameter length (aspect ratio), the natural
frequency increases. The frequency of SWCNTs is calculated with the help of
MATLAB computer software. These results are compared to previously known
numerical simulations.

Keywords: nonlocal, wave propagation approach, vibration, MATLAB

1. Introduction

Vibrational properties of CNTs play important critical roles in controlling the
performance of various scientific and engineering fields and stability of CNT-based
devices, superconductivity, and material strength analysis. New technologies and
innovative improvements such as nano-probe, wood mirror, nano-electronic
devices, chemical release, and drug release have been proposed. The important
application of the current investigation of rotating FG-CNT is in nano-engineering
structure as nano-components like sensors and actuators. The use of carbon
nanotubes (CNTs) has been practiced in a variety of fields such as field emission,
construction, electronics, and fashion [1]. CNT’s free vibration surveys have been
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tested in relation to their physical properties and behavior. Much of the work was
done with high rate of elasticity and characterization, a very effective Young mod-
ule [2], and the bond strength between carbon atoms [3]. In the past 15 years,
researchers have used different models such as the ring [4], the beam [5], the shell
[6], and other continuous models [2, 7] to capture the object anew. Due to their
attractive applications, dynamic features such as buckling, stability, and vibration
are explored in a theoretical way and avoid potential risks for future use. Therefore,
a new model is needed to capture the nanoscale structure. Researchers [8–12] have
conducted investigations of higher-order elasticity theories. Other nonclassical the-
ories of elasticity have attracted the attention of researchers such as the theory of
stress [13, 14], theories of stress [15, 16], and nonlocal theory [17, 18].

In NLT, the pressure applied at a certain point depends on the stress at all points,
which is quite different from conventional theory. Wang et al. [19] and Yang et al.
[20] presented a survey of SWCNT based on nonlocal Timoshenko beam theory
(TBM). CNT analysis has been explained by some researchers [21–25]. Bocko and
Lengvarský studied the vibration frequencies of CNTs for different termination
conditions and mode shapes using nonlocal elastic theory. Chawis et al. [26] ana-
lyzes vibrational behavior of SWCNTs with small-scale effects using nonlocal the-
ory. Recently, some researchers have investigated the vibrational behavior of
SWCNTs [27–29].

In addition, many researchers investigated the vibrational behavior of the above
structures using different types of theories. The method chosen for studying nano-
scale systems is the NLT (WPA) wave propagation method, which allows the study
of fundamental frequencies of SWCNTs through combinations of different param-
eters. The beam model (BM) [30] is used to calculate the associated frequencies and
shapes of MWCNT. Bocko and Lengvarský [31] investigate the bending free vibra-
tion of SWCNTs with four different boundary conditions. A continuum approach is
used for the computation of natural frequency based on nonlocal theory of bending
beam. The natural frequencies are given for several nano-parameters with two
different diameters of nanotubes and continuously changed length. It is concluded
that when tube length increases, the frequency decreases the nonlocal parameter
and diameter. Chawis et al. [26] reported SWCNT vibration based on nonlocal
theory to access the scale length. With the addition of nonlocal parameter in Euler
beam theory, the governing equation is derived.

NLT-based are another option of robust research techniques of CNTs within the
acceptable error range compared to previously used BMs and the subsequent other
approaches [2–5, 21, 25, 32–34]. For solving ordinary differential equations (ODEs),
Fourier variable separation method is used. According to the current model, the
basic natural frequencies of chiral SWCNTs are calculated and obtained for various
physical parameters such as the aspect ratio (length-to-diameter ratios) of SWCNTs
with different nonlocal parameters and the effect of bending stiffness (rigidity) on
the vibration frequencies of SWCNT. This is also our motivation for doing the
present work.

2. Governing equation of motion

In classical theory, the physical mass acts as a local action. In conventional
theory, the stress produced at a point is influenced by stress at the point. According
to Eringen [35], in nonlocal theory, the stress applied at a given point depends on
the stress at all points [1], which is quite different from conventional theory. Under
this assumption, the nonlocal relationship based on homogeneous isotropic beams
can be expressed as
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εxx � _ϖ2κj
2 ∂

2εxx

∂x2
¼ Eυxx (1)

The factor p ¼ _ϖ2κj
2 is termed as the small-scale effect, where _ϖ and κj are

defined as the material constant and lattice spacing length or internal characteristic
length.

Equation (1) can be written as

εxx � p
∂
2εxx

∂x2
¼ Eυxx (2)

where εxx, υxx, and E are, respectively, the normal pressure, normal stress, and
modulus of the child. In general, the parameter is called a nonlocal parameter,
and in classical theory, this parameter is used to investigate the vibration,
pinching, and bending problems of the beam [36, 37]. According to Euler’s
theory [36] equation can be written as

α xð Þp
∂
2s

∂t2
þ

∂
2

∂x2
EJ xð Þ

∂
2s

∂t2

� �

¼ 0 (3)

where α and J are the mass per unit length and moment of inertia of CNT,
respectively. By using the Fourier method of variable separation, the two leading
differential equation systems are normalized (ODE). In this system, an equation
involving the space variable x and other equations is connected to the time variable

S x; tð Þ ¼ β xð ÞT tð Þ (4)

αp
∂
2

∂t2
β xð ÞT tð Þ þ

∂
2

∂x2
EJ

∂
2

∂x2
β xð ÞT tð Þ

� �

¼ 0 (5)

αpβ xð Þ
d2T

dt2
þ EJT tð Þ

d4β

dx4
¼ 0 (6)

EJT tð Þ
d4β

dx4
¼ �αpβ xð Þ

d2T

dt2
(7)

For harmonic response

T tð Þ ¼ cosωt or sinωt or eiωt (8)

αpβ �ω2cosωt
� �

þ EJcosωt
d4β

dx4
¼ 0 (9)

d4β

dx4
�
αpω2

EJ
β xð Þ ¼ 0 (10)

d4β

dx4
� μ4β xð Þ ¼ 0 (11)

Here β xð Þ denotes the mode shape (eigenshape).
For parameter μ

μ4 ¼
αpω2

EJ
(12)
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where the general solution of fourth-order ODEs is

β xð Þ ¼ γ1sinμxþ γ2cosμxþ γ3sinμxþ γ4coshμx (13)

where γ1, γ2, γ3 and γ4 are the unknown constants.
Equation (11) becomes

βiv xð Þ � μ4β xð Þ ¼ 0 (14)

3. Application of WPA

For the solution of CNT problem, an analytical technique wave propagation
approach is evoked. A simple approach called the propagation waveform (WPA)
was developed by Zhang et al. [38]. Thus, a simple and effective technique is
applied as the wave propagation method [34, 39, 40] used for problem-solving in
the form of differential equations. Prior to this, many techniques have been
sequentially used to study the vibration of CNTs [41–43]. Previously, the current
approach was used continuously to study the vibration of carbon nanotubes [27, 29,
44–47].

β xð Þ ¼ e�iqm (15)

where qm denoted the wave number in axial direction and used for support
conditions of SWCNTs [29]. ω = 2π f is the angular frequency.

βiv xð Þ ¼ q4me
�iqmx (16)

After putting these values in Eq. (14), we get

q4me
�iqmx � μ4e�iqmx ¼ 0 (17)

μ4 ¼ q4m (18)

By using Eq. (12), we can write as

αpω2

EJ
¼ q4m (19)

4. Nonlocal boundary conditions

In the article, the vibration of chiral SWCNTs with CC boundary conditions was
investigated. In addition, the network interpretive directives (m, n) for chiral CNTs
can be expressed as (m, n) for n m correspondingly as shown in Figure 1. General
boundary conditions C▬C and C▬F are considered for the system; then it is used
in order to find the frequency equation of SWCNTs and eigenfrequencies of differ-
ent indices for chiral SWCNTs such as (12, 5), (22, 7), and (25, 10).

Support conditions in the form of frequency.
From Eq. (19)

For clamped� clamped,
αpω2

EJ
¼

2nþ 1ð Þπ

2L

� �4

(20)
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where qm ¼ 2nþ1ð Þπ
2L (CC boundary condition).

For clamped� free
αpω2

EJ
¼

2n� 1ð Þπ

2L

� �4

(21)

where qm ¼ 2n�1ð Þπ
2L (CF boundary condition).

5. Results and discussion

The fundamental natural frequencies (FNF) f (Hz) of SWCNTs obtained from
nonlocal theory (NLT) based on wave propagation approach (WPA) with C-C and
C-F boundary conditions are presented. A comparison of nondimensionalized nat-

ural frequencies Δ =ωR
ffiffiffiffiffiffiffiffi

ρ=E
p

of SWCNT is presented in Table 1. It is noted that
from Table 1, the frequency value of present model have the small values as the
values followed by the Alibeigloo and Shaban [48] shows a frequency difference
between these studies. It can be seen that the error percentage is negligible, hence
showing high rate of convergence. The results of nondimensional frequency are
computed for two different values of n = 1, 2 with circumferential wave number
(m = 0, 1, 2, 3, 4, 5) as shown in Table 1.

In order to analyze the effect of nonlocal parameter and bending rigidity on the
vibration of chiral SWCNTs for different scales, the effects of nonlocal parameters
on natural frequencies are illustrated in Figures 2–5. The natural frequencies are
reduced by increasing nonlocal parameters (p = 0.5, 1, 1.5, 2). The results for the

Figure 1.
(a) Graphene sheet. (b) SWCNT.

m n = 1 n = 2

Alibeigloo and Shaban [48] Present Alibeigloo and Shaban [48] Present

0 0.97087 0.97063 0.99351 0.99289

1 0.59721 0.59698 0.88357 0.88301

2 0.34025 0.34019 0.68072 0.68013

3 0.20145 0.20099 0.50059 0.5003

4 0.12886 0.12872 0.36918 0.36897

5 0.09105 0.9087 0.27671 0.27662

Table 1.
Comparison of nondimensional frequencies Δ ¼ ωR

ffiffiffiffiffiffiffiffi

ρ=E
p

(L/R = 1, n = 1).
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chiral clamped SWCNT with the indices (12, 5), (22, 7), and (25, 10) are shown in
Figure 2. For the effect of nonlocal parameters with chiral index C▬C(=12, 5) at
L/d(=1�10), the first 10 frequencies at p = 0.5 are 0.2773, 1.1094, 2.4961, 4.4376,
6.9337, 9.9846, 13.501, 17.7503, 22.4653, and 27.7349. When p = 2, then the fre-
quency peaks are 0.1387, 0.5547, 1.2481, 2.2188, 3.4669, 4.9923, 6.7951, 8.8752,
11.2326, and 13.8675. Now, for C▬C(=22, 7), with the same parameters, the first 10
frequencies at p = 0.5 and 2 are 2.6958, 10.7833, 26.2624, 43.1331, 67.3955, 97.0496,
132.0953, 172.5326, 218.3616, and 269.5822 and 1.3472, 5.3886, 12.1244, 21.5566,
33.6788, 48.4975, 66.0105, 86.2178, 109.1808, and 134.7152, respectively. Now, for
C▬C(=25, 10), with the same parameters, the first 10 frequencies at p = 0.5 and 2
are 4.9142, 19.6569, 44.2280, 78.6276, 122.8556, 176.9120, 240.7969, 314.5103,
398.0521, and 491.4223 and 2.4571, 9.8284, 22.1140, 39.3138, 61.4278, 88.4560,
120.3985, 15.2551, 199.0260, and 245.7112, respectively. It can be seen that FNF is
reduced by increasing nonlocal parameters (p = 0.5, 1, 1.5, 2). To illustrate the effect

Figure 2.
FNFs versus aspect ratio for CC chiral SWCNTs (a) (12, 5), (b) (22, 7), and (c) (25, 10) with different
nonlocal parameter p.
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of different nonlocal parameters on natural frequencies for chiral SWCNTs with
indices (12, 5), (22, 7), and (25, 10) based on NLT as shown in Figures 2 and 3. It is
remarkable that from Figures 2–5, the FNF values of the chiral CC tubes are
certainly higher than the chiral CF values of the SWCNTs.

Figures 4 and 5 show the FNFs against aspect ratio with varying bending
strength index (EI). They refer to instances when EI changes from 5.1122e�9 to
7.2629e�9nm with nonlocal parameters p = 1. These figures show the natural fre-
quency behavior of the calculated SWCNT system under bending rigidity (EI)
parameters. It is considered that with the increase of the bending rigidity
(EI = 5.1122e�9 to 7.2617e�9 nm), the fundamental natural frequencies increase, and
with the increase of aspect ratio, the frequencies also increase as C▬C = (12, 5) f
(Hz): 0.1961–0.2337 [C▬F (12, 5) f (Hz): 0.1660–0.1978)] and C▬C = (22, 7) f
(Hz): 1.9062–2.2719 [CF (22, 7) f (Hz):1.7406–2.0745)] and C▬C = (25, 10) f (Hz):
3.4749–4.1415 [C▬F (25, 10) f (Hz):3.2077–3.8230)] at L/d = 1. The fundamental
natural frequencies at L/d = 10 are as C▬C = (12, 5) f (Hz): 27.7349–23.3737 [C▬F
(12, 5) f (Hz:16.5992–19.7835)] and CC = (22, 7) f (Hz): 190.6234–227.1912 [C▬F
(22, 7) f (Hz):174.0556–207.4452)] and C▬C = (25, 10) f (Hz): 347.4881–414.1476

Figure 3.
FNFs versus aspect ratio for CF chiral SWCNTs (a) (12, 5), (b) (22, 7), and (c) (25, 10) with different
nonlocal parameter p.
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[C▬F (25, 10) f (Hz): 320.7685–382.3023)]. These relate to the case where EI varies
from 5.1122e�9 to 7.2617e�9 nm and the nonlocal parameter p = 1. A trend of increas-
ing frequencies of indices with bending rigidity is as (25, 10) > (22, 7) > (12, 5).

The tendency to increase the frequency of indices with bending stiffness is
(25, 10) > (22, 7) > (12, 5). Figure 5 shows that FNF, calculated by NLT, is based on
WPA, with (12, 5), (22, 7), and (25, 10) CF chiral SWCNT, respectively. It was
observed that FNF increased with increasing EI (hardness) and its value increased
with increasing L/d. From our results, we can easily conclude that the climbing
frequencies for bending the hardness of the curves (12, 5), (22, 7), and (25, 10) are
as follows: (12, 5) < (22, 7) < (25, 10).

Figure 4.
FNFs with aspect ratio for CC chiral SWCNTs (12, 5), (22, 7), and (25, 10) with nonlocal parameter p = 1
and bending rigidity (a) EI ¼ 5:1122e�9nm and (b) EI ¼ 7:2629e�9nm.

Figure 5.
FNFs with aspect ratio for CF chiral SWCNTs (12, 5), (22, 7), and (25, 10) with nonlocal parameter p = 1
and bending rigidity (a) EI ¼ 5:1122e�9nm and (b) EI ¼ 7:2629e�9nm.
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6. Conclusion

In this study, the influence of boundary conditions on the vibration of single-
walled carbon nanotubes was analyzed in chiral fashion with indices (12, 5), (22, 7),
and (25, 10), respectively. An attempt of nonlocal elasticity theory models has been
employed to study the vibration characteristics of SWCNTs analytically, and the
WPA is exploited to develop the ODE of the vibrations of the SWCNTs. The
influences of different boundary conditions and bending rigidity of chiral SWCNTs
against aspect ratio have investigated. As can be seen from these, by increasing the
aspect ratio of the carbon nanotube, fundamental natural frequency increases. In
addition, as can be seen, increasing the bending rigidity results in the increase of the
fundamental frequencies. The frequencies of CC end condition are higher than CF
end condition for all computations in this chapter.
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