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Chapter

Noncoding RNAs as Predictive 
Biomarkers of Therapeutic 
Response to Tyrosine Kinase 
Inhibitors in Metastatic Cancer
Julia Kovacova and Ondrej Slaby

Abstract

Since their discovery, noncoding RNAs have acquired extensive attention due to 
their eminent role in the regulation of gene expression and thus also in the patho-
genesis of many diseases. Currently, strong evidence is showing that noncoding 
RNAs are integral parts of key cancer-related cellular pathways, and the deregula-
tion of their levels is pathogenetic on one hand but feasible as a biomarker of 
pathogenesis itself on the other hand. In cancer, diagnosis, prognosis, and predic-
tion of therapy outcome can be derived from levels of various noncoding RNAs. 
This chapter is focused on potential application of noncoding RNAs in prediction 
of therapeutic response to tyrosine kinase inhibitors commonly used as targeted 
therapy in a wide range of metastatic cancers.

Keywords: biomarker, response, ncRNA, tyrosine kinase inhibitors

1. Introduction

Since the 1980s there was some spare evidence of low-molecular RNAs being 
able to bind complementarily to bigger RNA molecules and having a role in 
chromatin organization. Small nuclear RNAs (snRNAs) and small nucleolar 
RNAs (snoRNAs) [1–4] were the early discoveries in noncoding RNA field 
besides tRNAs, and at first, it looked like an exotic exception in rather binary 
world of protein-coding sequences and the rest of the genome which considered 
to be “junk” DNA. At the time some mechanisms of regulation of gene expres-
sion were known, and overall picture seemed to be complete, give or take a few 
details. Although it was known that mRNA is a vital part of gene expression and 
central dogma of molecular biology, the only functional product arising from 
genetic information, as it was commonly believed, is protein. As the genomic era 
was just about to come, there was no reason to think that most RNA transcripts 
are not translated.

Such remarks were first made in 1995 with H19. Expression of this lncRNA 
correlated with bladder carcinoma caused by loss of H19 imprinting pattern [5]. 
Further evidence was provided after discovery of other noncoding transcripts, 
for example, growth arrest-specific 5 (GAS5) [6] and, most importantly, prostate 
cancer antigen 3 (PCA3/DD3) highly overexpressed in prostate tumor tissue [7].
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The beginning of the millennium was marked by the discovery of RNA interfer-
ence and new short noncoding RNAs regulating gene expression and thus develop-
mental timing in Caenorhabditis elegans [8–13]. MicroRNA (miRNA) was coined as 
the name for this new group of RNAs, and followed by diligent hunt for more, many 
other microRNAs were identified. Like miRNAs which were discovered first—lin-4 
and let-7—many miRNAs were time- or site-specific, meaning they serve their 
function in some periods of life or only in some cell types [14, 15]. Targets of these 
RNAs were found in more than 60% of human protein-coding genes [16]. Together 
with their specific level necessary for fulfilling their job, it was inevitable to notice 
possible role of ncRNAs in the development of various diseases.

Of all ncRNAs known so far, miRNAs occupy exceptional position, considering 
the amount of knowledge on their role in pathogenesis of cancer; therefore, their 
biogenesis, function, and predictive potential will be discussed in the subsequent 
lines. Following will be lncRNAs, for their potential to be used as a biomarker has 
been studied extensively in recent years, even though their association with cancer 
has been outlined already in the very first publications on lncRNAs [5].

This chapter is therefore focused on the potential application of noncoding 
RNAs in prediction of therapeutic response to tyrosine kinase inhibitors commonly 
used as targeted therapy in a wide range of metastatic cancers.

2. Noncoding RNAs and their role in cancer

2.1 Classification

Noncoding RNAs (ncRNAs) are usually divided into two groups according to their 
length. The term small ncRNA (sncRNA) is reserved for diverse group of transcripts 
shorter than 200 nucleotides. Longer transcripts above 200 nucleotides of length are 
called long ncRNA (lncRNA). Both short and long ncRNAs usually do not possess any 
protein-coding capacity [17] which is the main difference from mRNA; there are, how-
ever, some cases of cryptic reading frames in longer ncRNAs [18] and even translation of 
short functional micropeptides from transcripts formerly annotated as noncoding [19].

In contrast to sncRNA, spectrum of lncRNAs is much broader in possible length 
and thus also in sequence, structure, and function; therefore, similarities with 
protein-coding mRNA are highly variable with many exceptions among numerous 
types of noncoding transcripts [20]. Classification of lncRNAs is now more than 
imperfect due to limited understanding of this group with many structural and 
functional families unknown yet [21].

For some types of ncRNA, known sequences and their annotations [22] are 
gathered in online databases. miRbase.org has been established in 2006 as a first 
noncoding RNA registry for microRNA [23] following the formation of a unified 
nomenclature for miRNA.

Catalog of lncRNAs has been created much later, in 2012, under the domain 
mitranscriptome.org and contains data acquired with high-throughput RNA 
sequencing [24], combining results from several published sources such as The 
Cancer Genome Atlas [25] or the GENCODE project [21, 24].

2.2 Biogenesis

2.2.1 microRNA

miRNAs are 19–24 nucleotides long endogenously produced regulatory RNAs. 
Canonical pathway starts with RNA polymerase II which typically transcribes 
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miRNA sequences, creating capped and polyadenylated primary miRNAs (pri-
miRNAs) several hundred nucleotides long. Future mature miRNA sequence resides 
in the stem region of the secondary hairpin structure of pri-miRNA.

In the next step, pri-miRNA is spliced by a microprocessor complex to one or 
several hairpins each containing one future mature miRNA sequence—precur-
sor miRNA (pre-miRNA) with its characteristic 5´phosphate and overhang of 
two nucleotides at 3´OH end. The microprocessor complex comprises mainly of 
RNase III enzyme Drosha [26] and dimer of protein DiGeorge critical region 8 
(DGCR8 or known as Pasha in flies) able to bind double-stranded RNA (dsRNA) 
[27, 28].

Pre-miRNA is further processed in the cytoplasm, and to get there, it is bound 
by nuclear transporter protein Exportin 5 [29] and transferred out of the nucleus. 
In the cytoplasm, pre-miRNA is cleaved by another RNAse III-type enzyme Dicer 
in cooperation with other proteins depending on species; in humans, for example, 
it is trans-activation-responsive RNA-binding protein (TRBP) [30]. Pre-miRNA 
is cleaved at stem sequence close to the terminal loop, creating double-stranded 
RNA intermediate. Depending on several factors such as thermodynamic stabil-
ity, one of the strands is then recruited into an RNA-induced silencing complex 
(RISC) by binding with protein Argonaute (AGO) [30], such strand is termed 
leading. The other, which is thermodynamically more stable, called passenger 
strand, is usually discarded but can also act in complex with Ago as functional 
miRNA [31].

Canonical pathway, however, can be overcome, and miRNAs can be produced 
in alternative, noncanonical ways [32]. Alternative routes independent on vari-
ous parts of the canonical biogenesis have been described before [33–35], and it 
is known that they give rise to some other types of sncRNA such as snoRNA or 
endogenous short hairpin RNAs (shRNAs).

2.2.2 Long noncoding RNA

Due to their highly variable structure and function, it is difficult to outline a 
general biogenesis pathway for lncRNA. At least part of the biogenesis is shared 
among lncRNAs and protein-coding mRNAs [21], including transcription by RNA 
polymerase II and chromatin modifications as those seen during transcription of 
protein-coding sequences, for example, methylation and acetylation of histones in 
active promoters [36]. The main differences lie in fewer but usually longer exons in 
lncRNAs [21], more tissue-specific expression [20], and abundance in the nucleus 
rather than the cytoplasm [36, 37].

Enormous variability of noncoding RNAs is achieved more on posttranscriptional 
level than by individual transcriptional mechanisms. Besides standard processes such 
as polyadenylation, capping, and splicing, nascent ncRNAs undergo modifications 
that are not typical for mRNAs. Cleaving of 3´end by RNAse P is a typical modifica-
tion in the biogenesis of metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1) while creating short tRNA-like transcript (MATAL1-associated small 
cytoplasmic RNA—mascRNA) and mature lncRNA. Another variation of standard 
pre-mRNA splicing is the back-splicing of previously spliced transcript creating a cir-
cular lncRNA (circRNA). Spliced-out introns can also gain lncRNA status when they 
escape degradation and then function as lariat-shaped circular RNAs [38, 39]. After 
all, even miRNAs, as much as other sncRNAs, arise from primary long transcripts 
which are classifiable as lncRNA but are processed by following miRNA biogenesis 
pathway [39]. Evidence also suggests that transcriptional apparatus of miRNAs 
is somehow involved in expression of lncRNAs, too, as knockout of Dicer leads to 
downregulation of not only miRNAs but also lncRNAs as a class [40].
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2.3 Cellular functions and roles in cancer

Distinct length of miRNA predestines them for a specific cellular function. The 
so-called seed region of miRNA sequence recognizes its target mRNA and binds 
complementary to its 3´untranslated region. miRNA-mRNA interaction leads to 
repression of the translation by destabilization of the target mRNA or by recruiting 
the mRNA degradation factors. As a result, expression of the target is decreased 
[41]. As the seed region of miRNA is only eight nucleotides long, recognized 
sequence will not be very specific—many different target mRNAs can contain iden-
tical eight-nucleotide combination. miRNAs are therefore pleiotropic in their effect, 
creating an intertwined posttranscriptional regulatory network. sncRNAs however 
expand their impact beyond posttranscriptional downregulation of expression. 
Other types of sncRNAs such as PiWi-interacting RNAs or siRNAs facilitate vari-
ous cellular functions through pathway of RNA interference and its components. 
Transposon gene silencing, maturation of rRNA or histone pre-mRNA, and guiding 
of various complexes to a certain site are only some of very specific functions of 
short transcripts in cell [42].

In lncRNAs, the range of cellular roles is considerably wider, affecting processes 
spanning from transcription to epigenetic modification.

LncRNAs regulate transcription in cis (genes on the same chromosome) or 
trans (genes on another chromosome) manner acting through transcriptional 
interference, for example, by overlapping promoters or by binding to transcription 
factors [43, 44].

Of posttranscriptional modifications, lncRNAs are involved in pre-mRNA 
capping and polyadenylation, necessary for proper mRNA translation and mRNA 
splicing, the processes indispensable for diverse protein products from rather small 
choice of protein-coding sequences in higher eukaryotes [43]. lncRNAs are involved 
also in epigenetic regulation by loss of imprinting or changes in methylation pat-
terns of cytosine residues in CpG dinucleotide islands. Chromatin remodeling is 
facilitated by lncRNA, too, as they can recruit chromatin-remodeling and histone-
modifying enzymes [43, 45].

Like miRNA, lncRNA can affect mRNA half-life and its stability, consequently 
triggering mRNA decay or repression of translation by imperfect pairing; on the 
contrary, perfect pairing can protect the target mRNA from degradation. Moreover, 
lncRNAs can affect miRNA network by acting as miRNA decoys or cause forming of 
endogenous siRNAs [43, 46].

The processes stated above are just few of many cellular actions affected by 
ncRNAs. Mere expression of a gene, protein-coding or not, is only a first step in a 
working cellular environment which is achieved by fine tuning and multiple layers 
of control facilitated by ncRNAs on transcriptional and posttranscriptional level. 
Although different from their targets, ncRNAs suffer from the same errors and 
damages as protein-coding sequences. Deregulated levels of ncRNAs are mostly 
observed either because given ncRNA is a target of upstream mutated or epigeneti-
cally deregulated effector oncogene, as a result of mutation in ncRNA sequence or 
defects in transcription and posttranscriptional editing and splicing. Either way, 
disruption of this network can add to imbalances in critical nodes such as DNA 
damage repair, cell division, and response to mitogenic and proapoptotic signals, 
thus shifting cells to precancerous phenotypes.

The genome-wide studies to localize miRNA genes in human genome found that 
miRNAs are frequently localized at fragile sites, minimal regions of heterozygous 
loss or amplification, or common breakpoint regions in human cancer [45]. Besides 
the structural and genetic alterations, the epigenetic silencing of miRNAs genes by 
DNA promoter hypermethylation or histone hypoacetylation has been described in 
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some solid tumors and hematologic malignancies. Whole-genome miRNA expres-
sion analysis clearly showed that the aberrant miRNA expression patterns present 
a common feature in the various tumor types. Based on these studies, deregulation 
of miRNAs was declared to be an important event in the initiation and progression 
of many cancers. Considering the network of targeted mRNAs and miRNA expres-
sion changes, miRNA can be classified as oncogenic miRNA or tumor-suppressive 
miRNA; some miRNAs may exhibit both features dependently on the cellular 
context in various cancers [45].

3. Noncoding RNAs as predictive biomarkers of therapeutic response

Drug resistance, either primary or developed secondary, is a crucial factor in 
tumor recurrence and poor outcome. Administration of the best of current thera-
pies to a group of patients with similar symptoms and seemingly identical diagnosis 
has shown itself to be inefficient as there is almost always a subgroup of patients 
not benefiting from the treatment. With ever more precise options in molecular 
description of patients, it has become evident that cancer is not a single disease, but 
large family of heterogenous diseases asking for an individual approach. Even after 
onset of targeted therapy, incomparably more specific than conventional chemo- 
and radiotherapy, the problem of non-responding subgroups of patients remained. 
Histological classification was insufficient in prediction of what would be the most 
effective treatment for a given patient.

To be considered a feasible biomarker, a molecule needs to meet several criteria. 
Its expression must be cell-type- or tissue-specific and significantly altered during 
the disease or studied condition compared to normal state. Predictive biomarker 
then should provide an information on therapeutic outcome in a given patient 
before the treatment administration, and it could manifest itself in a form of 
up- and downregulations of RNA or protein expression level, gene copies, muta-
tions, and signaling signatures either downstream or in parallel and can be derived 
retrospectively or prospectively [47]. For obvious reasons, before ncRNAs, various 
proteins in the blood and tissue, gene mutations, and later mRNA transcripts were 
prominent candidates as predictive biomarkers. Up to now, several genetic variants 
(e.g., SNPs in VEGF-A, VEGF-R1, VEGF-R3, and FGF-R2; [48]) were associated, 
for example, with response to sunitinib, pazopanib, sorafenib, or axitinib response. 
Histological and molecular features are also potential biomarkers, in addition to 
other such as protein expression and immune response activation (e.g., differential 
levels of some cytokines like IL-6 were observed in patients with progressive dis-
ease, although with insignificant results). Also, epigenetic factors such as methyla-
tion status were studied; for example, hypermethylation of cystatin-M gene (CST6) 
and leukocyte adhesion deficiency-1 (LAD1) were observed in patients with shorter 
PFS on TKI therapy (all reviewed in [48]). Although many molecules have been 
considered as biomarker candidates, only a few of them have really made it to clini-
cal practice mostly due to lack of proper validation on significant cohorts and study 
design discrepancies. Also, in some cases, it is not clear whether given molecule has 
prognostic or rather predictive character.

With the discovery of miRNA and their regulatory impact, attention has been 
turned to ncRNAs. Concerning miRNAs, the first attempts in finding cancer-
specific ncRNA biomarkers were made in Carlo Croce’s research group in 2002 
[49]. A team of researchers discovered that miR-15 and miR-16 sequences lie in a 
region frequently deleted in chronic lymphocytic leukemia (CLL) and this dele-
tion leads to downregulation of these miRNAs. Further investigation revealed that 
many microRNA genes are located at fragile genomic regions and that microRNA 
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profiles show specific patterns correlating with distinct clinical subtypes of CLL 
[50, 51]. In this case, microRNAs were the first ncRNAs tested for biomarker 
potential, but many more different kinds of noncoding RNAs emerged throughout 
the years, mostly after next-generation sequencing was introduced. Advances 
in high-throughput profiling technologies led to discovery of over 1900 mature 
human miRNAs from more than 1500 miRNA gene loci [23] and were followed 
by numerous studies focused on application of ncRNAs as diagnostic, prognostic, 
and predictive markers or therapeutic targets. To name just a few of many exam-
ples of promising biomarkers [52, 53], long intergenic RNA named HOX tran-
script antisense RNA (HOTAIR) is known to be metastasis-associated in breast 
cancer and playing active role in modulating cancer epigenome [54]. Choosing 
from sncRNAs, one example out of many could be miR-126 which has been shown 
to be involved in VEGF/PI3K/Akt/MRP1 signaling pathway as a principal player 
directly binding to vascular endothelial growth factor A (VEGF-A) [55]. Another 
one is miR-31, a potent factor in the development of various tumors with many 
target genes [56] which has been shown in many studies to be a reliable biomarker 
of response to anti-EGFR therapy. Recent large randomized trials proved low 
expression of miR-31 is an indicator of longer response and overall survival 
of patients with advanced colorectal carcinoma and wild-type allele of KRAS 
[57–59]. As for therapeutical applications, phase I study of MRX34, a liposomal 
miR-34a mimic, has been finished in 2017 with promising results in treatment of 
various solid tumors [60].

Reasons for extensive biomarker research on ncRNAs are their unique attributes 
beating proteins and mRNAs as biomarkers. In comparison, ncRNAs often manifest 
higher tissue-specific expression patterns which are necessary for precise distinc-
tion between different molecular subtypes of the disease and avoiding false-positive 
or false-negative results. Among the important characteristics of promising bio-
markers is their detection in samples obtained noninvasively. Overall trend is to get 
as many and as detailed information with minimal burden for patients. Although 
ncRNAs are easily detectable in tissue samples (either fresh frozen or formalin-fixed 
paraffin-embedded), they are released and circulating in body fluids such as the 
blood, plasma, saliva, or urine as well which is incomparably less painful and faster 
to obtain than tissue specimens. This would be of tremendous value, for example, 
for patients with lung cancer who are routinely recommended for molecular testing 
for mutational status of epidermal growth factor receptor (EGFR) and anaplastic 
lymphoma receptor tyrosine kinase (ALK) in order to identify patients with supe-
rior response to TKIs so that they can avoid conventional chemotherapy. However, 
to obtain accurate lung biopsies for such testing, patients experience severe dis-
comfort during difficult invasive procedures. Liquid biopsies would be thus much 
convenient option [61].

Replicative nature of ncRNAs makes them easy to detect by polymerase chain 
reaction and various modifications of this method, also microarrays and sequenc-
ing. ncRNAs vary in stability according to their length, secondary structure, 
association with proteins, or protection by exosomes; however, there is a consensus 
that relative to DNA or mRNA, shorter ncRNAs are more stable and less likely to 
be cleaved by RNAses or to be degraded by environmental agents such as storing 
temperature [62]. There are however some limits and variability between different 
types of sample handling and storage [63].

Based on many functions and pleiotropic character of ncRNAs, their involve-
ment in progression of cancer and in modulation of therapeutic response is not 
surprising. In the following lines, we provide an overview (Table 1) of ncRNAs 
currently known to play a role in the development of resistance to TKIs, and what is 
more, their level seems to be an indicator of such resistance.
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Drug ncRNA Deregulation 

in drug-

resistant 

patients

Diagnosis Technological 

platform

Study

Sunitinib miR-1307-3p 

+ miR-425-5p

Up RCC (all) NGS, qPCR García-Donas 

et al. [64]

miR-942 

+ miR-133 

model

Up qPCR Kovacova et al. 

[65]

miR-942 Up qPCR array Prior et al. [66]

miR-628-5p

miR-23b

miR-27b

Down qPCR Puente et al. 

[67]

miR-99-5p Down NGS, qPCR Lukamowicz-

Rajska et al. 

[68]

miR-9-5p Up TaqMan-

MicroRNA 

Cards, qPcr, 

digital PCR

Ralla et al. [69]

miR-141 Down qPCR array Berkers et al. 

[70]

miR-424c Down Microarray, 

qPCR

Gámez-Pozo 

et al. [71]

miR-1 + miR-

597 model

Up qPCR array Khella et al. 

[72]

miR-155

miR-484

Up qPCR array Merhautova 

et al. [73]

Sorafenib SRLR Up RCC Microarray, 

qPCR

Xu et al. [84]

miR-425-3p Down HCC TaqMan low 

density array, 

qPCR

Vaira et al. [83]

Gefitinib miR-21 Up NSCLC Microarray qPCR Shen et al. [74]

EGFR-AS1 Up HNSC qPCR, 

NanoString panel

Tan et al. [85]

miR-630 Down LUAD qPCR Wu et al.  

[88]

miR-200c Down NSCLC qPCR Li et al. [75]

MiG6-

miR-200 

ratio

Up NSCLC, 

BC

qPCR Izumchenko 

et al. [76]

Erlotinib miR-630 Down LUAD qPCR Wu et al. [77]

miR-223 Up NSCLC Microarray, 

FirePlex

Joerger et al. 

[78]

miR-200c Down NSCLC qPCR Li et al. [75]

EGFR-AS1 Up HNSC qPCR, 

NanoString panel

Tan et al. [85]

MiG6-

miR-200 

ratio

Up NSCLC, 

BC

qPCR Izumchenko 

et al. [76]
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3.1 Sunitinib

Most studies on prediction of response by miRNA levels have been carried out 
on renal cell carcinoma and sunitinib as a prominent treatment choice in patients 
with clear cell renal cell carcinoma. Ten papers have been published so far on pre-
diction of sunitinib response in metastatic renal cell carcinoma (mRCC). Though 
there are some discrepancies in experimental design, mainly in samples and tech-
nologies used in explorative phase, most of the studies are carried out on a rather 
small cohort; there is some overlap in results. miR-484, miR-221/222, miR-942, 
miR-133a, miR-628-5p, and miR-155-5p were successfully validated by more than 
one study; however, none of them turned out to be significantly deregulated in all 
the studies [64–73].

It is useful to have some information about mechanistic impact of predic-
tive miRNAs, because usually their deregulation is somehow connected with the 
development of therapy resistance. For example, in the work of Puente et al., two 
of three significantly deregulated miRNAs, miR-23b and miR-27b, are known to 
inhibit Notch1 and c-Met pointing on potential involvement of Notch pathway in 
sunitinib response, serving as solid base for future research. In some cases, how-
ever, the targets of predictive miRNAs are waiting to be characterized and subjected 
to a further functional analysis of mechanistic connection of a given miRNA with 
response to sunitinib. In other work [77], miR-99b-5p has been discovered to be 
significantly lower in patients with shorter progression-free survival; unfortunately 
they did not manage to validate it in an independent cohort by RT-qPCR with suf-
ficient statistical significance. However, miRNAs from miR-99 family are possibly 
tumor suppressors not only in RCC; there is evidence of their involvement in OSCC 
in regulation of IGF1R [81].

3.2 Sorafenib

Primarily used for treatment of RCC, sorafenib is ineffective in patients with 
initial resistance, which can be predicted by expression levels of sorafenib resistance-
associated lncRNA (SRLR) identified by Xu et al. [82]. lncRNA-SRLR level has been 

Drug ncRNA Deregulation 

in drug-

resistant 

patients

Diagnosis Technological 

platform

Study

Lapatinib miR-16 Down BRCA, 

STAD

Microarray, 

qPCR

Venturutti 

et al. [86]

miR-630 Down BRCA qPCRC Corcoran et al. 

[79]

Nintedanib miR-200 

family

Down LUAD qPCR array Nishijima et al. 

[80]

Neratinib miR-630 Down BRCA qPCRC Corcoran et al. 

[79]

Afatinib miR-630 Down BRCA qPCRC Corcoran et al. 

[79]

mRCC, metastatic renal cell carcinoma; RCC, renal cell carcinoma; HCC, hepatocellular carcinoma; NSCLC, non-
small cell lung carcinoma; HNSC, head and neck squamous carcinoma; LUAD, lung adenocarcinoma; BRCA, breast 
invasive carcinoma; BC, breast carcinoma; STAD, stomach adenocarcinoma.

Table 1. 
Overview of potential ncRNA biomarkers of response to tyrosine kinase inhibitors.
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correlated with sorafenib therapy response in RCC patients, and clear connection has 
been demonstrated. Manipulation with its expression leads to changes in response of 
RCC cell lines. According to recent findings, SRLR acts through IL-6/STAT3 pathway 
and by binding to NF-κB promotes IL-6 transcription and activation of STAT3, in the 
end causing the development of sorafenib resistance [82]. To prove that, researchers 
introduced STAT3 inhibitor and IL-6-receptor antagonist, which restored response 
to the treatment.

In another study on patients with hepatocellular carcinoma [83], six miRNAs 
have been significantly associated with progression-free survival (PFS); however, 
only miR-425-3p was successfully validated. Higher levels of this miRNA indicated 
longer PFS. In vitro tests have shown reduced cell motility and increased cell death 
in HCC cell lines when miR-425-3p was added which indicates that miR-425-3p 
probably acts as tumor suppressor [83].

3.2.1 Gefitinib, erlotinib, and nintedanib

There are known some mutations in epidermal growth factor receptor (EGFR) 
which are reliable indicator of response to EGFR-targeting TKIs. However, these 
mutations are minor, and for patients with wild-type EGFR, there is no biomarker 
of response to the treatment [84].

Quite robust has been a study of non-small cellular lung carcinoma (NSCLC) 
patients treated with gefitinib [74], where miR-21 has been proven to be a potent 
biomarker of response. The study has been carried out on 128 radically resected 
patients in explorative phase compared to 32 healthy controls; results have been 
validated on 201 EGFR-mutated patients. In patients with better therapy outcome, 
miR-21 has been significantly reduced.

Tan et al. [85] showed interesting case report of two patients with exceptional 
response to gefitinib, diagnosed with head and neck squamous cell carcinoma. 
Silent mutation in lncRNA epidermal growth factor receptor—associated 1 
(EGFR-AS1)—led to destabilization of this lncRNA which in turn shifted splicing 
of EGFR to isoform D and noncanonical EGFR addiction, thus affecting its sensitiv-
ity to tyrosine kinase inhibitors.

Gefitinib and erlotinib are frequently used in EGFR-mutated lung adeno-
carcinoma where they reach better results and longer progression-free survival 
than in wild-type-EGFR lung adenocarcinoma patients. However, in both cases 
the development of resistance to treatment is inevitable; still its mechanism 
remains uncovered. The first information on the development of resistance was 
shown by Wu et al. [77]. miR-630 and one of its target transcripts, YAP1, create 
a feedback loop with ERK and are suspected to be responsible for the resistance 
in EGFR-mutated adenocarcinoma cells. Further they showed that low level of 
miR-630 indicates future resistance to TKIs in EGFR-mutated patients with lung 
adenocarcinoma.

Erlotinib alone has been studied in phase II clinical trial of Swiss Group for 
Clinical Cancer Research (SAKK) on blood samples of NSCLC patients treated with 
first-line combination of bevacizumab and erlotinib followed by chemotherapy. 
The study was focused on circulating miRNAs, and their main objective was to 
find prognostic miRNAs, but they identified also some predictive miRNAs both 
for targeted therapy and chemotherapy. miR-223 expression was shown to have 
the highest predictive value for disease stabilization and time to progression, with 
higher expression being associated with worse outcome [78].

Among other miRNAs, miR-200 family seems to have extensive impact on 
response to nintedanib, gefitinib, and erlotinib. Nintedanib is a multi-targeted 
angiokinase inhibitor prescribed for idiopathic pulmonary fibrosis and advanced 
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NSCLC [80]. It has been shown in work on lung cancer cell lines (5 nintedanib-
resistant/5 nintedanib-sensitive) that some miRNAs belonging to miR-200 family 
(miR-200, miR-200a, and miR-141) are significantly lower in nintedanib-resistant 
cells. Induction of miR-200 and miR-141 has led to restored treatment sensitivity 
in resistant cells. miR-200/ZEB axis might play a role in resistance to treatment 
and serves as a potential biomarker of response to nintedanib. The work also 
proved some role of this family in EMT transition which has been outlined before 
in Izumchenko et al. [76] where miR-200 has been suggested to play a role in 
TGFβ-miR200-MIG6 axis. According to their findings, authors concluded that this 
pathway creates an EMT-associated switch-inducing resistance to EGFR-targeting 
drugs. Further, they observed that the ratio of MIG6 versus miR-200 expression 
indicates response to erlotinib.

Yet another work connected miR-200c with response to erlotinib and gefitinib 
in patients with NSCLC. When upregulated, miR-200c correlates with sensitivity 
to gefitinib in EGFR wild-type cell lines. Besides other pathways leading to EMT, 
in this work it has been shown that miR-200c regulates EMT also through PI3K/
AKT pathway and MEK/WRK. One hundred fifty patients treated with gefitinib 
or erlotinib as a second- or third-line treatment were tested in this study, and in 
66 NSCLC patients with wild-type EGFR, high levels of miR-200c expression 
were associated with higher disease control rate (DCR), longer progression-free 
survival (PFS), and longer overall survival (OS) than low miR-200c expression 
subgroup [75].

3.2.2 Lapatinib

MiR-16 mediates trastuzumab and lapatinib response, as shown on trastu-
zumab- and lapatinib-resistant breast and gastric cancer cell cultures [86]. 
Artificial increase of miR-16 expression had an inhibitory effect on cell growth 
in vitro, and it is speculated that expression of miR-16 is regulated by phosphati-
dylinositol 3 kinase (PI3K)/AKT pathway starting at extracellular signal regulated 
kinases 1/2 (ERK1/2) which are blocked by trastuzumab and lapatinib. Probably 
due to inhibition of c-Myc which is downregulated by PI3K/AKT, the level of 
miR-16 is then upregulated to normal level and inhibits proliferation of both breast 
cancer and gastric cancer cells. The same effect was achieved by artificial increase 
of miR-16, as stated above, indicating that miR-16 is not only a biomarker but pos-
sible therapeutic target, too.

3.2.3 HER-targeting drugs

miR-630, as mentioned above, has been linked also to response to HER-targeting 
drugs, namely, lapatinib, neratinib, and afatinib, used in breast and lung cancer. 
The same problem as elsewhere repeats itself also in these diagnosis—targeting of 
HER in HER2 overexpressing patients is mostly effective, except in patients with 
primary or secondary resistance. Response to these drugs is mediated by IGF1R 
which is targeted by miR-630. Work of Corcoran et al. [79] shows that an artificial 
increase of miR-630 in cells with primary or secondary resistance to anti-HER 
therapy leads to restored efficacy of such drugs. Blocking of miR-630 leads to 
the development of resistance. Results were validated also on set of tumor and 
non-tumor tissue. According to current knowledge, miR-630 plays a dual role in 
apoptosis and drug resistance, because depending on cell type, it serves as a tumor 
suppressor in breast carcinoma [87] and hepatocellular carcinoma [88] or as an 
oncogene in renal cell carcinoma [89].
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4. Conclusions

Noncoding RNAs gained extensive attention in recent years for their unique 
features as endogenous regulators of gene expression, potential biomarkers, and 
therapeutic targets. Tissue specificity, stability, and detectability in all types of 
tissues and body fluids predestine them to become very promising biomarkers 
applicable in personalized medicine. Major attention has been devoted to miRNAs; 
less is known about involvement of lncRNAs. Although studies on profiling and 
feasibility of various ncRNAs as diagnostic, prognostic, and predictive biomark-
ers are accumulating, none have made it to real clinical practice so far. Here we 
provide an overview of current knowledge on possible biomarkers of response to 
tyrosine kinase inhibitors, a breakthrough targeted therapy of several solid tumors. 
Currently, besides studies focused on sunitinib, there are rather solitary results 
acquired on small cohorts of less than 100 patients; therefore, it is difficult to come 
up with any conclusions. Even if there are more studies on response prediction of 
one therapeutic agent, inter-study discrepancies in validated biomarkers are signifi-
cant, and results overlap sparsely. This can be ascribed to differences in study design 
such as type of samples, technology, normalization, statistical analysis, thresholds, 
and cutoff values set as criteria for stratification of patients and many more. Out 
of all TKI, sunitinib is much more ahead in terms of number of biomarker studies, 
study design similarity, and partial overlap of the results.

In spite all of that, miR-200 family, miR-221/222, miR-484, miR-221/222, miR-
942, miR-133a, miR-628-5p, miR-155-5p, and miR-630 seem to have significant 
biomarker potential indicated by several studies. However, independent prospective 
validation on larger cohorts taking utmost account of study design in previous rel-
evant studies is necessary for future clinical application of miRNA-based biomarker 
technology to TKIs’ therapeutic response prediction.

Acknowledgements

This publication was supported by the Ministry of Health of the Czech Republic, 
grant no. 15-34678A.

Conflict of interest

The authors whose names are listed immediately below certify that they have 
no affiliations with or involvement in any organization or entity with any financial 
interest (such as honoraria; educational grants; participation in speakers’ bureaus; 
membership, employment, consultancies, stock ownership, or other equity interest; 
and expert testimony or patent-licensing arrangements) or nonfinancial interest 
(such as personal or professional relationships, affiliations, knowledge, or beliefs) 
in the subject matter or materials discussed in this manuscript.



Tyrosine Kinases as Druggable Targets in Cancer

12

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Author details

Julia Kovacova and Ondrej Slaby*
Central European Institute of Technology, Masaryk University, Brno, 
Czech Republic

*Address all correspondence to: on.slaby@gmail.com



13

Noncoding RNAs as Predictive Biomarkers of Therapeutic Response to Tyrosine Kinase Inhibitors…
DOI: http://dx.doi.org/10.5772/intechopen.86082

References

[1] Wise JA, Weiner AM. Dictyostelium 
small nuclear RNA D2 is homologous 
to rat nucleolar RNA U3 and is encoded 
by a dispersed multigene family. Cell. 
1980;22(1 Pt 1):109-118

[2] Calvet JP, Pederson T. Base-pairing 
interactions between small nuclear 
RNAs and nuclear RNA precursors 
as revealed by psoralen cross-linking 
in vivo. Cell. 1981;26(3 Pt 1):363-370

[3] Calvet JP, Meyer LM, Pederson 
T. Small nuclear RNA U2 is base-paired 
to heterogeneous nuclear RNA. Science. 
1982;217(4558):456-458

[4] Lacoste-Royal G, Simard R.  
Localization of small nuclear RNA by 
EM autoradiography in Chinese hamster 
ovary (CHO) cells. Experimental Cell 
Research. 1983;149(2):311-323

[5] Elkin M, Shevelev A, Schulze E, 
Tykocinsky M, Cooper M, Ariel I, 
et al. The expression of the imprinted 
H19 and IGF-2 genes in human 
bladder carcinoma. FEBS Letters. 
1995;374(1):57-61

[6] Smith CM, Steitz JA. Classification 
of gas5 as a multi-small-nucleolar-RNA 
(snoRNA) host gene and a member 
of the 5’-terminal oligopyrimidine 
gene family reveals common 
features of snoRNA host genes. 
Molecular and Cellular Biology. 
1998;18(12):6897-6909

[7] Bussemakers MJ, van Bokhoven A, 
Verhaegh GW, Smit FP, Karthaus HF, 
Schalken JA, et al. DD3: A new prostate-
specific gene, highly overexpressed 
in prostate cancer. Cancer Research. 
1999;59(23):5975-5979

[8] Brannan CI, Dees EC, Ingram RS,  
Tilghman SM. The product of 
the H19 gene may function as an 
RNA. Molecular and Cellular Biology. 
1990;10(1):28-36

[9] Brown CJ, Ballabio A, Rupert JL,  
Lafreniere RG, Grompe M, Tonlorenzi 
R, et al. A gene from the region of 
the human X inactivation centre 
is expressed exclusively from the 
inactive X chromosome. Nature. 
1991;349(6304):38-44

[10] Fire A, Albertson D, Harrison SW,  
Moerman DG. Production of antisense 
RNA leads to effective and specific 
inhibition of gene expression in 
C. elegans muscle. Development. 
1991;113(2):503-514

[11] Fire A, Xu S, Montgomery MK, 
Kostas SA, Driver SE, Mello CC. Potent 
and specific genetic interference by 
double-stranded RNA in Caenorhabditis 
elegans. Nature. 1998;391(6669):806-811

[12] Lee RC, Feinbaum RL, Ambros V.  
The C. elegans heterochronic gene lin-4 
encodes small RNAs with antisense 
complementarity to lin-14. Cell. 
1993;75(5):843-854

[13] Reinhart BJ, Slack FJ, Basson M, 
Pasquinelli AE, Bettinger JC, Rougvie 
AE, et al. The 21-nucleotide let-7 
RNA regulates developmental timing 
in Caenorhabditis elegans. Nature. 
2000;403(6772):901-906

[14] Slack FJ, Basson M, Liu Z, Ambros 
V, Horvitz HR, Ruvkun G. The lin-
41 RBCC gene acts in the C. elegans 
heterochronic pathway between the 
let-7 regulatory RNA and the LIN-29 
transcription factor. Molecular Cell. 
2000;5(4):659-669

[15] Pasquinelli AE, Reinhart BJ, Slack 
F, Martindale MQ , Kuroda MI, Maller 
B, et al. Conservation of the sequence 
and temporal expression of let-7 
heterochronic regulatory RNA. Nature. 
2000;408(6808):86-89

[16] Friedman RC, Farh KKH, Burge CB, 
Bartel DP. Most mammalian mRNAs 



Tyrosine Kinases as Druggable Targets in Cancer

14

are conserved targets of microRNAs. 
Genome Research. 2009;19(1):92-105

[17] Jia H, Osak M, Bogu GK, Stanton 
LW, Johnson R, Lipovich L. Genome-
wide computational identification 
and manual annotation of human 
long noncoding RNA genes. RNA. 
2010;16(8):1478-1487

[18] Bánfai B, Jia H, Khatun J, Wood E,  
Risk B, Gundling WE, et al. Long 
noncoding RNAs are rarely translated in 
two human cell lines. Genome Research. 
2012;22(9):1646-1657

[19] Anderson DM, Anderson KM, 
Chang CL, Makarewich CA, Nelson 
BR, McAnally JR, et al. A micropeptide 
encoded by a putative long noncoding 
RNA regulates muscle performance. 
Cell. 2015;160(4):595-606

[20] Cabili MN, Trapnell C, Goff L, 
Koziol M, Tazon-Vega B, Regev A, 
et al. Integrative annotation of human 
large intergenic noncoding RNAs 
reveals global properties and specific 
subclasses. Genes and Development. 
2011;25(18):1915-1927

[21] Derrien T, Johnson R, Bussotti G, 
Tanzer A, Djebali S, Tilgner H, et al. The 
GENCODE v7 catalog of human long 
noncoding RNAs: Analysis of their gene 
structure, evolution, and expression. 
Genome Research. 2012;22(9):1775-1789

[22] Ambros V, Bartel B, Bartel DP, 
Burge CB, Carrington JC, Chen X, 
et al. A uniform system for microRNA 
annotation. RNA. 2003;9(3):277-279

[23] Kozomara A, Griffiths-Jones S. 
miRBase: Annotating high confidence 
microRNAs using deep sequencing 
data. Nucleic Acids Research. 
2014;42(D1):D68-D73

[24] Harrow J, Frankish A, Gonzalez JM, 
Tapanari E, Diekhans M, Kokocinski 
F, et al. GENCODE: The reference 
human genome annotation for the 

ENCODE project. Genome Research. 
2012;22(9):1760-1774

[25] Cancer Genome Atlas Research 
Network, Weinstein JN, Collisson EA, 
Mills GB, Shaw KRM, Ozenberger 
BA, et al. The cancer genome Atlas 
Pan-Cancer analysis project. Nature 
Genetics. 2013;45(10):1113-1120

[26] Lee Y, Ahn C, Han J, Choi H, Kim J,  
Yim J, et al. The nuclear RNase III 
drosha initiates microRNA processing. 
Nature. 2003;425(6956):415-419

[27] Han J, Lee Y, Yeom KH, Kim YK, 
Jin H, Kim VN. The drosha-DGCR8 
complex in primary microRNA 
processing. Genes and Development. 
2004;18(24):3016-3027

[28] Landthaler M, Yalcin A, Tuschl 
T. The human diGeorge syndrome 
critical region gene 8 and its D. 
melanogaster homolog are required for 
miRNA biogenesis. Current Biology. 
2004;14(23):2162-2167

[29] Yi R, Qin Y, Macara IG, Cullen BR.  
Exportin-5 mediates the nuclear export 
of pre-microRNAs and short hairpin 
RNAs. Genes and Develpoment. 
2003;17(24):3011-3016

[30] Chendrimada TP, Gregory RI, 
Kumaraswamy E, Norman J, Cooch N, 
Nishikura K, et al. TRBP recruits the 
dicer complex to Ago2 for microRNA 
processing and gene silencing. Nature. 
2005;436(7051):740-744

[31] Okamura K, Liu N, Lai EC. Distinct 
mechanisms for microRNA strand 
selection by Drosophila argonautes. 
Molecular Cell. 2009;36(3):431-444

[32] Kim YK, Kim B, Kim VN.  
Re-evaluation of the roles of 
DROSHA, Export in 5, and DICER in 
microRNA biogenesis. Proceedings 
of the National Academy of Sciences 
of the United States of America. 
2016;113(13):E1881-E1889



15

Noncoding RNAs as Predictive Biomarkers of Therapeutic Response to Tyrosine Kinase Inhibitors…
DOI: http://dx.doi.org/10.5772/intechopen.86082

[33] Babiarz JE, Ruby JG, Wang Y, 
Bartel DP, Blelloch R, Mouse ES. Cells 
express endogenous shRNAs, 
siRNAs, and other microprocessor-
independent, dicer-dependent small 
RNAs. Genes and Development. 
2008;22(20):2773-2785

[34] Ender C, Krek A, Friedländer MR,  
Beitzinger M, Weinmann L, Chen 
W, et al. A human snoRNA with 
microRNA-like functions. Molecular 
Cell. 2008;32(4):519-528

[35] Okamura K, Hagen JW, Duan H,  
Tyler DM, Lai EC. The mirtron 
pathway generates microRNA-class 
regulatory RNAs in drosophila. Cell. 
2007;130(1):89-100

[36] Melé M, Mattioli K, Mallard W,  
Shechner DM, Gerhardinger C, 
Rinn JL. Chromatin environment, 
transcriptional regulation, and splicing 
distinguish lincRNAs and mRNAs. 
Genome Research. 2017;27(1):27-37

[37] Djebali S, Davis CA, Merkel A,  
Dobin A, Lassmann T, Mortazavi 
A, et al. Landscape of transcription 
in human cells. Nature. 
2012;489(7414):101-108

[38] Quinn JJ, Chang HY. Unique 
features of long non-coding RNA 
biogenesis and function. Nature 
Reviews. Genetics. 2016;17(1):47-62

[39] Ulitsky I. Interactions between 
short and long noncoding RNAs. FEBS 
Letters. 2018;592(17):2874-2883

[40] Zheng GXY, Do BT, Webster 
DE, Khavari PA, Chang HY. Dicer-
microRNA-Myc circuit promotes 
transcription of hundreds of long 
noncoding RNAs. Nature Structural and 
Molecular Biology. 2014;21(7):585-590

[41] MacFarlane L-A, Murphy PR.  
MicroRNA: Biogenesis, function and 
role in cancer. Current Genomics. 
2010;11(7):537-561

[42] Martens-Uzunova ES, Olvedy M, 
Jenster G. Beyond microRNA – Novel 
RNAs derived from small non-coding 
RNA and their implication in cancer. 
Cancer Letters. 2013;340(2):201-211

[43] Kunej T, Obsteter J, Pogacar Z, 
Horvat S, Calin GA. The decalog of long 
non-coding RNA involvement in cancer 
diagnosis and monitoring. Critical 
Reviews in Clinical Laboratory Sciences. 
2014;51(6):344-357

[44] Wang KC, Yang YW, Liu B, Sanyal 
A, Corces-Zimmerman R, Chen Y, 
et al. A long noncoding RNA maintains 
active chromatin to coordinate 
homeotic gene expression. Nature. 
2011;472(7341):120-124

[45] Slaby O, Laga R, Sedlacek O.  
Therapeutic targeting of non-coding 
RNAs in cancer. The Biochemical 
Journal. 2017;474(24):4219-4251

[46] Watanabe T, Totoki Y, Toyoda A, 
Kaneda M, Kuramochi-Miyagawa S, 
Obata Y, et al. Endogenous siRNAs 
from naturally formed dsRNAs regulate 
transcripts in mouse oocytes. Nature. 
2008;453(7194):539-543

[47] Lowery A, Han Z. Assessment 
of tumor response to tyrosine kinase 
inhibitors. Frontiers in Bioscience 
(Landmark Edition). 2011;16:1996-2007

[48] Diekstra MHM, Swen JJ, 
Gelderblom H, Guchelaar HJ. A decade 
of pharmacogenomics research on 
tyrosine kinase inhibitors in metastatic 
renal cell cancer: A systematic 
review. Expert Review of Molecular 
Diagnostics. 2016;16(5):605-618

[49] Calin GA, Dumitru CD, Shimizu M, 
Bichi R, Zupo S, Noch E, et al. Frequent 
deletions and down-regulation of 
micro-RNA genes miR15 and miR16 at 
13q14 in chronic lymphocytic leukemia. 
Proceedings of the National Academy 
of Sciences of the United States of 
America. 2002;99(24):15524-15529



Tyrosine Kinases as Druggable Targets in Cancer

16

[50] Calin GA, Sevignani C, Dumitru 
CD, Hyslop T, Noch E, Yendamuri 
S, et al. Human microRNA genes are 
frequently located at fragile sites and 
genomic regions involved in cancers. 
Proceedings of the National Academy 
of Sciences of the United States of 
America. 2004;101(9):2999-3004

[51] Calin GA, Liu CG, Sevignani C, 
Ferracin M, Felli N, Dumitru CD, 
et al. MicroRNA profiling reveals 
distinct signatures in B cell chronic 
lymphocytic leukemias. Proceedings 
of the National Academy of Sciences 
of the United States of America. 
2004;101(32):11755-11760

[52] Gutschner T, Richtig G, Haemmerle 
M, Pichler M. From biomarkers to 
therapeutic targets—the promises 
and perils of long non-coding RNAs 
in cancer. Cancer Metastasis Reviews. 
2018;37(1):83-105

[53] Di Leva G, Garofalo M, Croce 
CM. MicroRNAs in cancer. Annual 
Review of Pathology. 2014;9:287-314

[54] Gupta RA, Shah N, Wang KC, 
Kim J, Horlings HM, Wong DJ, et al. 
Long non-coding RNA HOTAIR 
reprograms chromatin state to 
promote cancer metastasis. Nature. 
2010;464(7291):1071-1076

[55] Zhu X, Li H, Long L, Hui L, Chen 
H, Wang X, et al. miR-126 enhances the 
sensitivity of non-small cell lung cancer 
cells to anticancer agents by targeting 
vascular endothelial growth factor 
A. Acta Biochimica et Biophysica Sinica. 
2012;44(6):519-526

[56] Gao W, Liu L, Xu J, Shao Q , Liu Y,  
Zeng H, et al. A systematic analysis of 
predicted MiR-31-targets identifies a 
diagnostic and prognostic signature 
for lung cancer. Biomedicine and 
Pharmacotherapy. 2014;68(4):419-427

[57] Laurent-Puig P, Paget-Bailly 
S, Vernerey D, Vazart C, Decaulne 

V, Fontaine K, et al. Evaluation 
of miR 31 3p as a biomarker of 
prognosis and panitumumab benefit 
in RAS-wt advanced colorectal 
cancer (aCRC): Analysis of patients 
(pts) from the PICCOLO trial. 
Journal of Clinical Oncology. 
2015;33(15_suppl):3547-3547

[58] Laurent-Puig P, Grisoni ML, 
Heinemann V, Bonnetain F, Fontaine K, 
Vazart C, et al. MiR 31 3p as a predictive 
biomarker of cetuximab efficacy 
effect in metastatic colorectal cancer 
(mCRC) patients enrolled in FIRE-3 
study. Journal of Clinical Oncology. 
2016;34(15_suppl):3516

[59] Laurent-Puig P, Grisoni ML, 
Heinemann V, Liebaert F, Neureiter 
D, Jung A, et al. Validation of miR-
31-3p expression to predict Cetuximab 
efficacy when used as first-line 
treatment in RAS wild-type metastatic 
colorectal cancer. Clinical Cancer 
Research. 2018;clincanres.1324.2018. 
2019;25(1):134-141. DOI: 10.1158/1078-
0432.CCR-18-1324

[60] Beg MS, Brenner AJ, Sachdev J, 
Borad M, Kang YK, Stoudemire J, et al. 
Phase I study of MRX34, a liposomal 
miR-34a mimic, administered twice 
weekly in patients with advanced solid 
tumors. Investigational New Drugs. 
2017;35(2):180-188

[61] Bernicker EH, Miller RA, Cagle 
PT. Biomarkers for selection of 
therapy for adenocarcinoma of the 
lung. Journal of Oncology Practice. 
2017;13(4):221-227

[62] Balzano F, Deiana M, Dei 
Giudici S, Oggiano A, Baralla A, 
Pasella S, et al. miRNA stability in 
frozen plasma samples. Molecules. 
2015;20(10):19030-19040

[63] Glinge C, Clauss S, Boddum K,  
Jabbari R, Jabbari J, Risgaard B, 
et al. Stability of circulating blood-
based microRNAs - pre-analytic 



17

Noncoding RNAs as Predictive Biomarkers of Therapeutic Response to Tyrosine Kinase Inhibitors…
DOI: http://dx.doi.org/10.5772/intechopen.86082

methodological considerations. PLoS 
One. 2017;12(2):e0167969

[64] García-Donas J, Beuselinck B, 
Inglada-Pérez L, Graña O, Schöffski P,  
Wozniak A, et al. Deep sequencing 
reveals microRNAs predictive of 
antiangiogenic drug response. JCI 
Insight. 2016;1(10):e86051

[65] Kovacova J, Juracek J, Poprach A, 
Buchler T, Kopecky J, Fiala O, et al. 
Candidate microRNA biomarkers 
of therapeutic response to sunitinib 
in metastatic renal cell carcinoma: A 
validation study in patients with extremely 
good and poor response. Anticancer 
Research. 2018;38(5):2961-2965

[66] Prior C, Perez-Gracia JL, 
Garcia-Donas J, Rodriguez-Antona 
C, Guruceaga E, Esteban E, et al. 
Identification of tissue microRNAs 
predictive of sunitinib activity in 
patients with metastatic renal cell 
carcinoma. PLoS One. 2014;9(1):e86263

[67] Puente J, Laínez N, Dueñas M, 
Méndez-Vidal MJ, Esteban E, Castellano 
D, et al. Novel potential predictive 
markers of sunitinib outcomes in 
long-term responders versus primary 
refractory patients with metastatic 
clear-cell renal cell carcinoma. 
Oncotarget. 2017;8(18):30410-30421

[68] Lukamowicz-Rajska M, Mittmann 
C, Prummer M, Zhong Q , Bedke J, 
Hennenlotter J, et al. MiR-99b-5p 
expression and response to tyrosine 
kinase inhibitor treatment in clear 
cell renal cell carcinoma patients. 
Oncotarget. 2016;7(48):78433-78447

[69] Ralla B, Busch J, Flörcken A, 
Westermann J, Zhao Z, Kilic E, et al. 
miR-9-5p in nephrectomy specimens 
is a potential predictor of primary 
resistance to first-line treatment with 
tyrosine kinase inhibitors in patients 
with metastatic renal cell carcinoma. 
Cancers (Basel). 2018;10(9):pii: E321. 
DOI: 10.3390/cancers10090321

[70] Berkers J, Govaere O, Wolter P,  
Beuselinck B, Schöffski P, van 
Kempen LC, et al. A possible role for 
microRNA-141 down-regulation in 
sunitinib resistant metastatic clear cell 
renal cell carcinoma through induction 
of epithelial-to-mesenchymal transition 
and hypoxia resistance. Journal of 
Urology. 2013;189(5):1930-1938

[71] Gámez-Pozo A, Antón-Aparicio 
LM, Bayona C, Borrega P, Gallegos 
Sancho MI, García-Domínguez R, 
et al. MicroRNA expression profiling 
of peripheral blood samples predicts 
resistance to first-line sunitinib in 
advanced renal cell carcinoma patients. 
Neoplasia. 2012;14(12):1144-1152

[72] Khella HWZ, Butz H, Ding Q , 
Rotondo F, Evans KR, Kupchak P, et al. 
miR-221/222 are involved in response to 
sunitinib treatment in metastatic renal 
cell carcinoma. Molecular Therapy. 
2015;23(11):1748-1758

[73] Merhautova J, Hezova R, Poprach 
A, Kovarikova A, Radova L, Svoboda 
M, et al. miR-155 and miR-484 are 
associated with time to progression in 
metastatic renal cell carcinoma treated 
with sunitinib. BioMed Research 
International. 2015;2015:941980

[74] Shen Y, Tang D, Yao R, Wang 
M, Wang Y, Yao Y, et al. microRNA 
expression profiles associated with 
survival, disease progression, and 
response to gefitinib in completely 
resected non-small-cell lung cancer with 
EGFR mutation. Medical Oncology. 
2013;30(4):750

[75] Li J, Li X, Ren S, Chen X, Zhang Y, 
Zhou F, et al. miR-200c overexpression 
is associated with better efficacy of 
EGFR-TKIs in non-small cell lung 
cancer patients with EGFR wild-type. 
Oncotarget. 2014;5(17):7902-7916

[76] Izumchenko E, Chang X, Michailidi 
C, Kagohara L, Ravi R, Paz K, et al. 
The TGFβ-miR200-MIG6 pathway 



Tyrosine Kinases as Druggable Targets in Cancer

18

orchestrates the EMT-associated 
kinase switch that induces resistance 
to EGFR inhibitors. Cancer Research. 
2014;74(14):3995-4005

[77] Wu DW, Wang YC, Wang L, Chen 
CY, Lee H. A low microRNA-630 
expression confers resistance to tyrosine 
kinase inhibitors in EGFR-mutated 
lung adenocarcinomas via miR-630/
YAP1/ERK feedback loop. Theranostics. 
2018;8(5):1256-1269

[78] Joerger M, Baty F, Früh M, Droege 
C, Stahel RA, Betticher DC, et al. 
Circulating microRNA profiling in 
patients with advanced non-squamous 
NSCLC receiving bevacizumab/
erlotinib followed by platinum-
based chemotherapy at progression 
(SAKK 19/05). Lung Cancer. 
2014;85(2):306-313

[79] Corcoran C, Rani S, Breslin S, 
Gogarty M, Ghobrial IM, Crown J, 
et al. miR-630 targets IGF1R to regulate 
response to HER-targeting drugs 
and overall cancer cell progression in 
HER2 over-expressing breast cancer. 
Molecular Cancer. 2014;13:71

[80] Nishijima N, Seike M, Soeno C, 
Chiba M, Miyanaga A, Noro R, et al. 
miR-200/ZEB axis regulates sensitivity 
to nintedanib in non-small cell lung 
cancer cells. International Journal of 
Oncology. 2016;48(3):937-944

[81] Yen YC, Shiah SG, Chu HC, 
Hsu YM, Hsiao JR, Chang JY, et al. 
Reciprocal regulation of microRNA-
99a and insulin-like growth factor I 
receptor signaling in oral squamous 
cell carcinoma cells. Molecular Cancer. 
2014;13:6

[82] Xu Z, Yang F, Wei D, Liu B, Chen C,  
Bao Y, et al. Long noncoding RNA-
SRLR elicits intrinsic sorafenib 
resistance via evoking IL-6/STAT3 axis 
in renal cell carcinoma. Oncogene. 
2017;36(14):1965-1977

[83] Vaira V, Roncalli M, Carnaghi C, 
Faversani A, Maggioni M, Augello 
C, et al. MicroRNA-425-3p predicts 
response to sorafenib therapy in patients 
with hepatocellular carcinoma. Liver 
International. 2015;35(3):1077-1086

[84] Li X, Cai W, Yang G, Su C, Ren S, 
Zhao C, et al. Comprehensive analysis 
of EGFR-mutant abundance and its 
effect on efficacy of EGFR TKIs in 
advanced NSCLC with EGFR mutations. 
Journal of Thoracic Oncology. 
2017;12(9):1388-1397

[85] Tan DSW, Chong FT, Leong HS, 
Toh SY, Lau DP, Kwang XL, et al. Long 
noncoding RNA EGFR-AS1 mediates 
epidermal growth factor receptor 
addiction and modulates treatment 
response in squamous cell carcinoma. 
Nature Medicine. 2017;23(10):1167-1175

[86] Venturutti L, Cordo Russo RI, Rivas 
MA, Mercogliano MF, Izzo F, Oakley 
RH, et al. MiR-16 mediates trastuzumab 
and lapatinib response in ErbB-2-
positive breast and gastric cancer via 
its novel targets CCNJ and FUBP1. 
Oncogene. 2016;35(48):6189-6202

[87] Zhou CX, Wang CL, Yu AL, Wang 
QY, Zhan MN, Tang J, et al. MiR-630 
suppresses breast cancer progression 
by targeting metadherin. Oncotarget. 
2016;7(2):1288-1299

[88] Chen WX, Zhang ZG, Ding 
ZY, Liang HF, Song J, Tan XL, et al. 
MicroRNA-630 suppresses tumor 
metastasis through the TGF-β- 
miR-630-Slug signaling pathway 
and correlates inversely with poor 
prognosis in hepatocellular carcinoma. 
Oncotarget. 2016;7(16):22674-22686

[89] Zhao JJ, Chen PJ, Duan RQ , Li KJ, 
Wang YZ, Li Y. miR-630 functions 
as a tumor oncogene in renal cell 
carcinoma. Archives of Medical Science. 
2016;12(3):473-478


